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Chapter 1

Topological Spaces and Continuous

Functions

Preliminaries

A little set theory goes a long way... apparently.

It’s possible to define the Cartesian product of an arbitrary indexed family of sets. If I is any index set

and {Xi}i∈I is a family of sets, then their Cartesian product is defined as

∏
i∈I
Xi =

f : I →
⋃
i∈I
Xi : ∀i ∈ I, f (i) ∈ Xi

 .
There are two useful expressions for working with complements and unions of sets. These are called

De Morgan’s laws. Given a family of subsets {Ai}i∈I of a set X,

X \
⋃
i∈I
Ai =

⋂
i∈I

(X \ Ai) X \
⋂
i∈I
Ai =

⋃
i∈I

(X \ Ai) .

A relation on a set A is a subset R of the Cartesian product A× A. If R is a relation on A, we write

xRy to mean the same thing as (x, y) ∈ R and read it as “x is in the relation R to y”. We’ll consider a

special kind of relation called an equivalence relation.

An equivalence relation on a set X is a relation ∼ on X having the following three properties:

(Reflexivity) For every x ∈ X: x ∼ x ,

(Symmetry) if x ∼ y , then y ∼ x ,

(Transitivity) and if x ∼ y and y ∼ z , then x ∼ z .

Given an equivalence relation ∼ on X and an element x ∈ X, we define a special subset of X, called

the equivalence class determined by x , given by [x ] = {y ∈ X : y ∼ x}. These form a partition of the

set X. More formally, a partition of a set X is a collection of disjoint subsets of X whose union is the

whole of X.

1
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1.1 Topological Spaces

A topology is informally a structure on a set that allows us to discuss its properties that are preserved

under continuous deformation. To motivate the notion of a topology, we begin by discussing facts

about the real line. Recall that A ⊆ R is called open if for every x ∈ A, there exists an ε > 0 s.t.

(x − ε, x + ε) ⊆ A. A set C ⊆ R is called closed if for every sequence of elements {xn}n∈N in C, (xn → x

as n →∞) =⇒ x ∈ C.

Proposition 1.1. Let T = {A ⊆ R : A is open in the sense defined above}. Then T satisfies the follow-

ing properties:

• ∅ ∈ T 3 R,

• T is closed under arbitrary unions and,

• T is closed under finite intersections.

Proof.

• The empty set vacuously satisfies the criterion for a set to be open.

Any open set about any point x ∈ R is contained in R so R ∈ T .

• For the second property, let {Ui}i∈I be a collection of elements of T and consider their union

U =
⋃
i∈I Ui . Let x ∈ U. Then ∃i0 ∈ I with x ∈ Ui0-open so ∃r > 0 such that x ∈ (x − r, x + r) ⊆

Ui0 ⊆ U. As x is arbitrary, U is open i.e. U ∈ T .

• For the final property, consider any finite intersection V =
⋂n
i=1 Ui of a collection {Ui}ni=1 ⊆ T and

let x ∈ V . For all i = 1, . . . , n, x ∈ Ui -open so ∃εi > 0 such that (x − εi , x + εi) ⊆ Ui ⊆ V . Take

ε = min16i6n{εi} > 0. Then for all 1 6 i 6 n,

(x − ε, x + ε) ⊆ (x − εi , x + εi) ⊆ Ui ⊆ V

so V is open.
�

Definition 1.2. Let X be an arbitrary set. A collection T ⊆ P(X) that satisfies the following conditions

is called a topology on X:

1) X and ∅ ∈ T ,

2) T is closed under arbitrary unions and,

3) T is closed under finite intersections.

Given an element A ∈ T , we say A is open (relatively to T ). We say that T0 is the standard topology

on R where A ⊆ R is open in the usual sense. The complement of an open set A ∈ T , denoted X \A, is

called closed.
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e.g. Let X be an arbitrary set. Then we can define the following two topologies on X: the discrete

topology T = P(X) = 2X and the trivial (or indiscrete) topology T = {∅, X}.

e.g. Consider X = R and T = {(a, b) : a < b}. Then T satisfies the first and third axioms of a topology

but fails the second. Indeed, consider U1 = (1, 2), U2 = (3, 4) ∈ T and observe that (U1 ∪ U2) < T .

Proposition 1.3. Let X be an arbitrary set and Tf = {U ⊆ X : X \ U is finite} ∪ {∅}. Then Tf is a

topology on X and is called the finite complement topology on X.

Proof.

• ∅ ∈ Tf by definition and X \X = ∅ which is certainly finite so X ∈ Tf .

• Let {Ui}i∈I ⊆ Tf be arbitrary and consider U =
⋃
i∈I Ui . Then for all i ∈ I, X \ Ui is finite. By De

Morgan’s law, for any i ∈ I

X \ U = X \
⋃
i∈I
Ui =

⋂
i∈I

(X \ Ui) ⊆ X \ Ui

Therefore X \ U is finite so U ∈ Tf .

• Let {Ui}ni=1 ⊆ Tf and consider V =
⋂n
i=1 Ui . Each complement X \Ui is finite and by De Morgan’s

law,

X \
n⋂
i=1

Ui =

n⋃
i=1

(X \ Ui)

the right hand side of which is a finite union of finite sets, and therefore finite so V ∈ Tf . �

Remark The closed sets in X are those that are finite and X. If X is a finite set, Tf coincides with the

discrete topology.

Definition 1.4. Let X be an arbitrary set and suppose that T , T ′ are two topologies on X. We say that

T is finer than T ′ if T ′ ⊆ T (equivalently, T ′ is coarser than T ). If either T is finer than T ′ or T ′ is

finer than T , then we say that T , T ′ are comparable.

Proposition 1.5. Consider X = R, let T be the standard topology on R and Tf be the finite complement

topology on R. Then T is finer than Tf .

Proof. Let U ∈ Tf . Then either U = ∅ or R \ F where F = (
⋃
k∈K xk) and K is a finite indexing set. If

U = ∅, then U ∈ T so suppose otherwise. For every x ∈ R \ F , ∃r > 0 such that (x − r, x + r) ⊆ R \ F .

Therefore R \ F ∈ T . Indeed, T is strictly finer than Tf as (0, 1) ∈ T \ Tf . (If F is an empty union,

U = R \ ∅ and X = R is always in T .) �



CHAPTER 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS 4

1.2 Topological Bases

Definition 1.6. Let X be a set. A topology basis on X is a collection of subsets B ⊆ P(X) satsfying:

(i) ∀x ∈ X. ∃B ∈ B s.t. x ∈ B

(ii) ∀B1, B2 ∈ B, ∀x ∈ (B1 ∩ B2) . ∃B3 ∈ B s.t. x ∈ B3 ⊆ (B1 ∩ B2)

x

B1

B2

B3

Figure 1.1: An illustration of the second condition if we let B be the collection of all discs in the plane.

Remark The finite intersection property of a topology is stronger than the second axiom for a topological

basis.

Proposition 1.7. Let B be a topological basis. Then B generates the following topology T on X:

For U ⊆ X, U ∈ T if ∀x ∈ U, ∃B ∈ B s.t. x ∈ B ⊆ U.

Proof.

• The empty set satisfies the condition trivially.

For any x ∈ X, ∃B ∈ B such that x ∈ B ⊆ X so X ∈ T .

• Let {Ui}i∈I ⊆ T . Consider their union U =
⋃
i∈I Ui and let x ∈ U. Therefore, ∃i0 ∈ I such that

x ∈ Ui0 and because Ui0 ∈ T , ∃B ∈ B such that x ∈ B ⊆ Ui0 ⊆ U =⇒ U ∈ T .

• Finally, we prove by induction that given {Ui}ni=1 ⊆ T , their intersection is also in T . Let U1, U2 ∈ T
and U = U1 ∩ U2. Let x ∈ U. As x ∈ U1 ∈ T , ∃B1 ∈ B s.t. x ∈ B1 ⊆ U1. Analogously, ∃B2 ∈ B
s.t. x ∈ B2 ⊆ U2. Therefore, x ∈ B1 ∩ B2 ⊆ U1 ∩ U2 and by the second basis axiom, ∃B3 s.t.

x ∈ B3 ⊆ B1 ∩ B2 ⊆ U1 ∩ U2 so U ∈ T . Assuming that the statement is true for U1 ∩ · · · ∩ Un−1,
by the result we’ve shown for two sets, (U1 ∩ · · · ∩ Un−1) ∩ Un ∈ T .

Therefore, T is a topology. �
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Proposition 1.8. The collection B` = {[a, b) : −∞ < a < b < ∞} is a basis for a topology on R and

this topology is called the lower limit topology T`.

Proof. Exercise. �

Lemma 1 Let B be a topological basis on X and T be the topology generated by B. Then

T =

 ⋃
i∈I
Bi : {Bi}i∈I ⊆ B

 .

Proof. Denote the right hand side by T ′. Let
⋃
i∈I Bi ∈ T ′. Then ∀i ∈ I, Bi ∈ T =⇒

⋃
i∈I Bi ∈ T .

Let U ∈ T . Then for all x ∈ U, ∃Bx ∈ B such that x ∈ Bx ⊆ U =⇒ U =
⋃
x∈U Bx . �

Lemma 2 Let (X, T ) be a topological space and C be a collection of open sets in X. If

∀U ∈ T , ∀x ∈ U ∃C ∈ C. x ∈ C ⊆ U, (?)

then C is a topology basis that generates T .

Proof. Firstly, we show that C is a topological basis. Let x ∈ X and choose U = X. By (?), ∃C ∈ C
such that x ∈ C ⊆ U = X. Consider C1, C2 ∈ C, let U = C1 ∩ C2 ∈ T and let x ∈ U. By (?), ∃C3 ∈ C
s.t. x ∈ C3 ⊆ U = C1 ∩ C2.

Let T ′ be the topology generated by C. Let U ∈ T ′. By lemma 1, we may write it as a union U =
⋃
i∈I Ci

where {Ci}i∈I ⊆ C is a collection of open sets. Therefore, U ∈ T and T ′ ⊆ T . Let U ∈ T . We need to

show that for all x ∈ U, ∃C ∈ C such that x ∈ C ⊆ U. This is exactly what we assume in (∗) so U ∈ T ′

and so T ⊆ T ′. �

e.g. Consider X = R equipped with the standard topology and C = {(a, b) : a < b}. For any x ∈
(a, b) ⊆ R, consider (for sufficiently small ε) C = (x − ε, x + ε) ⊆ (a, b). C ∈ C so using lemma 2, C is

a basis for the standard topology on R.

e.g. Consider X = R2 equipped with the standard topology. Both {(a, b) × (c, d) : a < b and c < d}
and {B(x, r) : x ∈ R2, r > 0} are topological bases for the standard topology on R2. For an intuitive

illustration as to why both of these generate the same topology, we can nest open balls and rectangles

within one another:
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x

U ⊆ R2 open

Lemma 3 Suppose that B and B′ are topological bases on a set X and they generate the topologies

T , T ′ respectively. Then TFAE:

1) T ′ is finer than T

2) ∀B ∈ B, ∀x ∈ B ∃B′ ∈ B′ s.t. x ∈ B′ ⊆ B.

Proof. (2) =⇒ (1). Let U ∈ T . We wish to show that U is also an element of T ′. As B generates T ,

for every x ∈ U, there exists a B ∈ B such that x ∈ B ⊆ U. By the second condition, ∀x ∈ U ∃B′ ∈ B′

s.t. x ∈ B′ ⊆ B. Then x ∈ B′ ⊆ U so U ∈ T ′.

(1) =⇒ (2). The definition of the topology T ′ is that ∀U ∈ T ′ ∀x ∈ U, ∃B′ ∈ B′ such that x ∈ B′ ⊆ U.

Take a basic open neighbourhood B ∈ B. Then B ∈ T and because T ′ is finer than T , this means that

B ∈ T ′. Therefore, for all x ∈ B, there exists B′ ∈ B′ such that x ∈ B′ ⊆ B. �

1.3 The Product Topology (n = 2)

We begin with two topological spaces (X, TX), (Y, TY ) and want to define a topology on X × Y . A

natural suggestion is to consider the collection {U × V : U ∈ TX , V ∈ TY }.

e.g. Consider X = Y = R and take the following sets:

X

Y

U1 × V1

U2 × V2

Figure 1.2: Two elements of the collection whose union doesn’t belong to the collection.



CHAPTER 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS 7

This collection isn’t closed under unions and so doesn’t define a topology on X. Fortunately this

collection does define a basis for a topology.

Definition 1.9. Let (X, TX) and (Y, TY ) be two topological spaces. The product topology on X × Y is

the topology generated by the collection B = {U × V : U ⊆ X open, V ⊆ Y open}.

Is it indeed a topological basis? To show that the collection coversX×Y , note that every (x, y) ∈ X×Y
and X and Y are open in themselves. For the second axiom of a topology basis, we’ll prove the stronger

finite intersection property (of a topology). Let (U × V ) and (U ′ × V ′) ∈ B. Then (U × V )∩(U ′ × V ′) =(
U ∩ U ′

)︸    ︷︷    ︸
open in X

×
(
V ∩ V ′

)︸    ︷︷    ︸
open in Y

∈ B.

e.g. Consider R2 = R × R where R2 and R are equipped with their respective standard topologies and

the Cartesian product is endowed with the product topology. Do both of these topologies coincide? A

more general statement is below and will serve to definitively answer this problem.

Proposition 1.10. Let X and Y be two topological spaces generated by the topology bases BX and BY
respectively. Then the collection B = {B × C : B ∈ BX , C ∈ BY } generates the product topology.

Proof. Given an open set W ⊆ X × Y and a point (x, y) ∈ W , by the definition of the product topology

there is a basis element U × V such that (x, y) ∈ U × V ⊆ W . As BX and BY are bases for X and Y

respectively, ∃B ∈ BX and C ∈ BY such that x ∈ B ⊆ U and y ∈ C ⊆ V . Then (x, y) ∈ B × C ⊆ W so

B meets the criterion of lemma 2. Therefore, B is a basis for X × Y . �

e.g. Consider the projection maps π1 and π2 defined by

π1 : X × Y −→ X

(x, y) 7−→ x

π2 : X × Y −→ Y

(x, y) 7−→ y .

The product topology is the coarsest topology that makes the projection maps continuous (a property

of maps between topological spaces that we shall define later).

1.4 Subspace Topology

Let Y be a subset of a topological space X. A natural question that arises concerns how we can endow

Y with a topology. To do so, we use the existing topology on X:
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Definition 1.11. Let X be a topological space and Y ⊆ X. The subspace topology on Y is defined to

be TY = {U ∩ Y : U ⊆ X is open}.

Proof. Denote the topology on X by T . ∅ is open in X so ∅ ∩ Y = ∅ ∈ TY . Also, X is open in itself so

X ∩ Y = Y ∈ TY . Let {Ai}i∈I ⊆ TY . Then for each i ∈ I, ∃Ui open in X with Ai = Ui ∩ Y . Then

⋃
i∈I
Ai =

⋃
i∈I

(Ui ∩ Y ) =

⋃
i∈I
Ui

︸   ︷︷   ︸
∈T

∩Y

so TY is closed under arbitrary unions. For finite intersections, the argument is very similar. �

e.g. Let X = R and Y = [−1, 1]. Are the following sets open in Y ?

a) A = {x ∈ R : 12 < |x | < 1}

A is open in X and is also a subset of Y so is open in Y .

b) B = {x ∈ R : 12 < |x | 6 1}

Take a ∈ R with |a| > 1. Then B =
(
(−a,−12) ∪ (12 , a)

)
∩ Y so B is open in Y with the subspace

topology.

c) C = {x ∈ R : 12 6 |x | 6 1}

We claim that C isn’t open in Y . If C were open in Y , it’d be equal to U ∩Y for some U open in X.

As U is open and −1/2 ∈ U, there exists an ε > 0 such that (−1/2− ε,−1/2 + ε) ⊆ U. However,

(−1/2,−1/2 + ε) * C = U ∩ Y . These two statements contradict each other. The claim follows.

e.g. Let X = R and Y = (−1, 1). Is A = {x ∈ R : 12 6 |x | < 1} open in Y ?

Claim A is not open.

Proof. Notice that Y is open. If A were open, there would exist an open subset U of X so that A = U∩Y
which is open in R. However, A isn’t open in R so it can’t be open in Y . �

The last example leads us to consider a short lemma (and its converse).

Lemma Suppose that (X, T ) is a topological space and Y is a subspace of X. If U ⊆ Y is open in Y

and Y is open in X, then U is open in X.

Proof. If U is open in Y , then there exists a V ⊆ X open in X such that U = V ∩ Y . Since Y is open in

X, U is open in X as the intersection of two sets that are open in X. �

Remark The converse states that if (∀A ⊆ Y open =⇒ A ⊆ X open), then Y ⊆ X is open in X.
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e.g. For S1 ↪→ R2, open sets in S1 ”look like” open intervals in R.

e.g. The torus T ⊆ R3 inherits the product topology from its Cartesian product representation, S1×S1.

e.g. Let Y = [0, 1]2 ⊆ R2 and consider the set D =
{
x ∈ [0, 1]2 : ‖x − (1, 1)‖ < 1√

5

}
= B 1√

5

((1, 1))∩ Y.

X

Y

D

Figure 1.3: An illustration of D which is open in Y . Note that we include neither the arc nor its endpoints.

Lemma 4 Let Y ⊆ X be a subspace (i.e. equipped with the subspace topology) and B be a topological

basis on (X, TX). Then BY = {Y ∩ B : B ∈ B} is a basis for a topology on Y . Indeed, this topology is

the subspace topology on Y .

Proof. Firstly, we show that this is a topological basis. Let y ∈ Y so ∃B ∈ B such that y ∈ B ⊆ X

and so y ∈ B ∩ Y ⊆ X. This means that BY is a cover of Y . For the second property, suppose that

y ∈ (B1 ∩ Y ) ∩ (B2 ∩ Y ) = (B1 ∩ B2) ∩ Y where B1, B2 ∈ B. As B is a basis for a topology on X,

we have that ∃B3 ∈ B such that y ∈ B3 ⊆ (B1 ∩ B2). Consequently, y ∈ (B3 ∩ Y ) ⊆ (B1 ∩ B2) ∩ Y .

Therefore BY is a basis for a topology on Y , call it T .

The subspace topology on Y is TY = {U ∩ Y : U ⊆ X is open} and by lemma 1,

T =

⋃
i∈I
Bi : {Bi}i∈I ⊆ BY

 .
We’ll show that these two are the same. Let U ∈ T . Then there exists a collection {Bi}i∈I ⊆ B such

that

U =
⋃
i∈I

(Bi ∩ Y ) =

⋃
i∈I
Bi

︸   ︷︷   ︸
∈TX

∩Y =⇒ U ∈ TY .

For the reverse inclusion, let U ∈ TY . Then there exists some V that is open in X with U = V ∩ Y . Since

V is open in X, it can be written as the union of a collection of elements of B and so U ∈ T . Thus, BY
is a basis for the subspace topology on Y . �
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When it comes to embedding spaces in their ambient spaces, a small problem arises; Let X = R2 and

x0 ∈ R. We can embed R ↪→ R2 via the map x 7→ (x0, x). Now the question is which topology on R is

induced by our embedding into R2, the product topology or subspace topology? In this case, it seems

intuitive that we can associate the product topology on X×{x0} (where {x0} is endowed with the trivial

topology) with the topology on X via the map x 7→ (x, x0). More generally, we have a theorem to talk

about this.

Theorem 1.12 Let X, Y be topological spaces and A ⊆ X, B ⊆ Y be subspaces. Let TA×B be the

product topology on A×B and T̃A×B be the subspace topology on A×B ⊆ X× Y . Then TA×B = T̃A×B.

Proof. It’s easier to work with topological bases.

Let CX , CY be any topological bases on X, Y respectively.

By proposition 1.10, {C × C′ : C ∈ CX , C′ ∈ CY } is a topological basis for the product topology on

X × Y . By lemma 4, {(C × C′) ∩ (A× B) : C ∈ CX , C′ ∈ CY } =: B̃A×B is a topology basis for T̃A×B.

By lemma 4, {C ∩ A : C ∈ CX} and {C′ ∩ A : C′ ∈ CY } are topological bases for the subspace topologies

on A and B respectively. By proposition 1.10, {(C∩A)×(C′∩B) : C ∈ CX , C′ ∈ CY } =: BA×B generates

the topology TA×B.

Set theoretically, both topological bases coincide i.e. B̃A×B = BA×B so they generate the same topology.

�

Remark Note that finding two topology bases that differ doesn’t necessarily imply that they generate

different topologies.

1.5 Closed Sets and Limit Points

Definition 1.13. A set A ⊆ X (where X is a topological space) is closed in X if X \ A is open in X.

A set can be closed and open at the same time. Such sets are called clopen. The empty set and X are

always clopen subsets of a topological space X.

e.g. Consider Y = (0, 1)∪ (2, 3) ⊆ R = X and let A = (0, 1). A is clearly open in the subspace topology.

It’s closed in Y because Y \ A = (2, 3) is open. Therefore, A is clopen in Y .

Definition 1.14. Let Y ⊆ X be a subspace and A ⊆ Y . We say that A is closed in Y if Y \A is open in

the subspace topology on Y .

It turns out that we can characterise a topology entirely by closed sets. The very definition of a closed

set as the complement of an open one allows for such a characterisation.
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Theorem 1.15 Let (X, T ) be a topological space. The following conditions hold:

• ∅, X are closed in X.

• For any collection {Ci}i∈I of closed sets in X, their arbitrary intersection
⋂
i∈I Ci is still closed.

• Given any finite family of closed sets {Ci}ni=1, their union
⋃n
i=1 Ci is still closed.

Proof.

• The empty set and the whole space are both open and complements of each other so must also be

closed in X.

• Let {Ci}i∈I be a collection of closed sets in X. This means that for each i ∈ I, X \ Ci is an open

set in X. As T is a topology, it’s closed under arbitrary unions. By De Morgan’s law, we see that

the set below is an open set so the arbitrary intersection must be closed.

X \
⋂
i∈I
Ci =

⋃
i∈I

(X \ Ci)

• Let {Ci}ni=1 be a finite collection of closed sets in X. For each 1 6 i 6 n, X \ Ci is an open

set. Using that T is closed under finite intersections and De Morgan’s law again tells us that the

complement

X \
n⋃
i=1

Ci =

n⋂
i=1

(X \ Ci)

is an open set so the finite union of the Ci must be closed.

�

Theorem 1.16 Let Y ⊆ X be a subspace of X. Then A ⊆ Y is closed in Y ⇐⇒ ∃C ⊆ X closed s.t.

C ∩ Y = A.

Proof. Assume that A = C ∩ Y where C is closed in X. Then X \ C is open in X. This means that

(X \ C) ∩ Y is open in Y in the subspace topology. Notice that (X \ C) ∩ Y = Y \ A. Hence Y \ A is

open in Y , so that A is closed in Y .

Conversely, assume that A is closed in Y . Then Y \ A is open in Y so there exists an open subset U of

X s.t. Y \A = U ∩ Y . Since U is open in X, X \ U is closed in X. Notice that A = Y ∩ (X \ U) and the

claim follows. �

Remark Let Y be a subspace of X. If A is closed in Y and Y is closed in X, then A is closed in X.

1.5.1 Closure and Interior

Recall that for a subset A ⊆ R, we define its interior as int(A) = {x ∈ A : ∃ε > 0 s.t. (x−ε, x+ε) ⊆ A}.
More generally, we have the following definition for a topological space X.

Definition 1.17. If A ⊆ X, then the interior of A is int(A) =
⋃
U⊆A
open

U.
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Remark The interior is the largest open subset of A in the sense that if V ⊆ A is any open subset, then

V ⊆ int(A) ⊆ A. The interior is always open because it’s the union of a collection of open sets. Note

that int(A) = A ⇐⇒ A is open.

Recall that for a subset A ⊆ R, we define its closure A by the set of limits of sequences of elements of

A. We also know that A is closed ⇐⇒ A = A.

Definition 1.18. If A ⊆ X, then the closure of A is A =
⋂
C⊇A
closed

C.

Remark The closure of a set is the smallest closed set that contains A in the sense that if C is any

closed set containing A, then C ⊇ A ⊇ A. Also, A = A ⇐⇒ A is closed.

Definition 1.19. The boundary of A is ∂A := A \ int(A).

To check that a point x ∈ A belongs to the interior of A, it’s enough to check that there exists an open

set U in X with x ∈ U ⊆ A. For closed sets, life isn’t so easy. Luckily, we can formulate the closure in

terms of the interior and vice versa.

Proposition 1.20. The following are equivalent:

(i) A = X \ int(X \ A)

(ii) int(A) = X \ (X \ A)

Proof.

X \ int(X \ A) = X \
 ⋃
U⊆(X\A)
open

U

 =
⋂

U⊆(X\A)
open

(X \ U)
(†)
=

⋂
C⊇A
closed

C = A

At (†), we rewrite X \U = C and note that C is closed as its complement is open. Re-writing it as such,

we have the form of the closure of A.

As for why they’re equivalent, you can get (i i) from (i) by replacing A with X \ A

X \ A = X \ int(X \ (X \ A))

= X \ int(A)

and taking complements X \ (...) on both sides. Working backwards, we easily get (i) from (ii). �

Theorem 1.21 Let X be a topological space, Y ⊆ X be a subspace of X and A ⊆ Y . Denote the closure

of A in X by A. The closure of A in Y is given by A ∩ Y .

Proof. Let B denote the closure of A in Y . The set A is closed in X so A∩ Y is closed in Y (by theorem

1.16). Since A ∩ Y contains A, and since by definition B is the intersection of all closed subsets of Y

containing A, we must have B ⊆
(
A ∩ Y

)
.

On the other hand, we know that B is closed in Y so ∃C closed in X such that B = C ∩ Y . Then

C is a closed set in X containing A. As A is the intersection of all such closed sets, A ⊆ C. Then(
A ∩ Y

)
⊆ (C ∩ Y ) = B. �
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e.g. Let X be an arbitrary set and T be the discrete topology on X. Take A ⊆ X. Then A = A,

int(A) = A and ∂A = A \ A = ∅.

Proposition 1.22. ∂A = ∅ ⇐⇒ A is clopen in X.

Proof. A is both open and closed so A = A = int(A) and so ∂A = A \ int(A) = A \ A = ∅. For the

converse, suppose that ∂A = ∅ = A \ int(A) and recall that int(A) ⊆ A ⊆ A. (This means that there’d

be nothing in A that you couldn’t find in int(A)). �

e.g. Let X be an infinite set, Tf be the finite complement topology on X and A ⊆ X. Then

int(A) =

 A, if |X \ A| <∞
∅, if |X \ A| =∞

A =

 A, if |A| <∞
X, if |A| =∞.

Using these, we can calculate the boundary of A:

∂A =



X \X = ∅, if |A| =∞ and |X \ A| =∞
A \ ∅ = A, if |A| <∞ and |X \ A| =∞
X \ A, if |A| =∞ and |X \ A| <∞
� if |A| <∞ and |X \ A| <∞

For the last case, having |A| <∞ and |X \A| <∞ occur simultaneously isn’t possible as that’d mean

the union of two finite sets (A and X \ A) is an infinite set (X).

Remark Note that if |X| <∞, Tf = P(X) so the prior example applies to any A ⊆ X.

e.g. Consider Q ( R.

Let r ∈ int(Q). This occurs if and only if ∃ε > 0 such that (r − ε, r + ε) ⊆ int(Q). However, every

neighbourhood of r must contain an irrational point by the completeness of the real line. Therefore,

int(Q) = ∅. By definition, Q = R \ int(R \ Q) = R \ ∅ = R. Also, ∂Q = Q \ int(Q) = R \ ∅ = R.

e.g. Consider A = Q2 ⊆ R2.

The complement of Q2 in R2 is the set of tuples (q1, q2) where at least one of q1 and q2 is irrational.

Every neighbourhood of a point in the complement R2 \Q2 contains a point whose coordinates are both

rational so its interior is empty. Thus Q2 = R2 \ int(R2 \ Q2) = R2 \ ∅ = R2.

e.g. Consider S =

{
1

n
: n ∈ N

}
⊆ R

The interior of S is empty. S = R \ int(R \ S). Note that 0 < S and that

int(R \ S) = (−∞, 0) ∪
⋃
n∈N

(
1

n + 1
,

1

n

)
∪ (1,∞) =⇒ S = S ∪ {0}.
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Remark It appears as though the procedure of taking the closure of a set involves adding accumulation

points. In the prior example, 0 is where the sequence {1/n}n∈N seems to converge.

e.g. Consider S ⊆ (0, 1] (equipped with subspace topology induced by R)

Our theorem about closures in subspaces tells us that SY = S∩Y = S∩(0, 1] = (S∪{0})∩(0, 1] = S.

Therefore, S is closed in (0, 1] but not in R!

e.g. Consider A = Z2 ⊆ R2.

Seeing as R2 \Z2 is an open set, it’s equal to its own interior. Accordingly, Z2 = R2 \ (R2 \Z2) = Z2.

Now we’ll talk about deciding whether a point is in the closure of a set or not.

Definition 1.23. A neighbourhood of a point x ∈ X is any open set U ⊆ X containing x .

Remark We say that two sets A,B intersect (non-emptily) if A ∩ B , ∅.

Theorem 1.24 Let A be a subset of a topological space (X, T ). Then

a) For all x ∈ X, x ∈ A ⇐⇒ every neighbourhood of x intersects A.

b) If T is generated by B, then x ∈ A ⇐⇒ ∀B ∈ B that’s a basic open neighbourhood of x , B∩A , ∅.

c) x ∈ ∂A ⇐⇒ ∀ (basic) neighbourhood U of x , U intersects both A and X \ A.

Proof. Doing this by contrapositive is a lot easier than doing it directly. We’ll prove a):

• For the forward direction, suppose that there exists a neighbourhood U of x that doesn’t intersect

A. We want that x < A. As x ∈ U and U ∩ A = ∅, we can say that A ⊆ X \ U which is closed. By

the minimality of the closure of a set, A ⊆ A ⊆ V for any closed V in X. Therefore,

A ⊆ A ⊆ X \ U = x =⇒ x < A.

• For the reverse direction, suppose that x < A. In particular, x < A. Now X \ A is an open set that

contains x so is a neighbourhood of x with U ∩ A = ∅. Finally, (U ∩ A) ⊆ (U ∩ A) so we’ve found

a neighbourhood of x that doesn’t intersect A.

�

e.g. Consider (α, β) ⊆ R. Note that α and β are the only points in R for which every neighbourhood

containing them intersects (α, β) and (−∞, α] ∪ [β,∞). Therefore, ∂(α, β) = {α, β}.

e.g. A = R \ Q. For the same reason as the prior example, A = ∂A = R.

e.g. A = R ⊆ R = X. For the boundary, there aren’t any points x in R whose (basic) open neighbour-

hoods intersect R and R \ A = ∅ so ∂R = ∅.
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e.g. A = (a, b) ⊆ Ru where Ru is the real line equipped with the topology generated by the set B =

{(α, β] : −∞ < α < β <∞}. We call the generated topology the upper limit topology, Tu.

Since A can be written as

A =
⋃
n∈N

(a, b − 1/n] ,

int(A) = A. As for the closure, A = [a, b] because every neighbourhood about a intersects A. The same

applies to b but for every point c > b, there exists some δ > 0 such that (c − δ, c + δ) ∩ (a, b] = ∅.
Likewise for any d < a.

Remark On R, the upper limit topology Tu is finer than the standard topology.

1.5.2 Limit Points

If A ⊆ R and x ∈ R, we say x is a limit point of A (written x ∈ A′) if ∃{xn}n∈N ⊆ A \ {x} s.t. xn → x

as n →∞. An equivalent way of saying this is that ∃N s.t. n > N =⇒ xn ∈ (x − ε, x + ε) \ {x}. If we

call this interval U, it seems to suggest a limit point of a set is one that can be approximated by points

of the set.

Definition 1.25. Let A ⊆ X where X is a topological space. We say that x ∈ X is a limit (accumula-

tion/cluster) point of A if every neighbourhood U of x non-emptily intersects A \ {x}. We denote the

set of limit points of A by A′.

e.g. (0, 1)′ = (0, 1) = [0, 1]

e.g. For S =

{
1

n
: n ∈ N

}
⊆ R, we saw that S = S ∪ {0}. Note that S′ = {0} ( S.

Remark In particular, A′ ⊆ A.

Theorem 1.26 A = A ∪ A′

Remark This may or may not be a disjoint decomposition. It’s disjoint if and only if every point of A is

an isolated point (i.e. ∀x ∈ A ∃U ⊆ X that’s a neighbourhood of x that only intersects A at {x}).

Proof. A′ ⊆ A as points in A′ satisfy a stronger condition than those in A. Namely, intersecting open

neighbourhoods with A is a weaker condition than intersecting with A \ {x}.

For the reverse inclusion, let x ∈ A \A. If we can show that x necessarily lies in A′, we’ll have shown the

reverse inclusion. x ∈ A means that every neighbourhood U of x intersects A non-emptily i.e. U ∩A , ∅.
As x < A, we can write that A = A \ {x}. This means that U ∩ (A \ {x}) , ∅ and U is arbitrary so

x ∈ A′. �
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1.5.3 Convergence of Sequences

Recall that if {xn}n∈N ⊆ R and x ∈ R, xn → x as n → ∞ if ∀ε > 0, ∃N > 0 such that n > N =⇒
‖xn − x‖ 6 ε. This is equivalent to saying that xn ∈ (x − ε, x + ε).

In this case, we say that all but finitely many elements of the sequence lie in the ε-neighbourhood of

the point x .

Definition 1.27. Let {xn}n∈N ⊆ X be a sequence and x ∈ X. We say that xn converges to x (i.e.

xn → x as n →∞) if ∀U ⊆ X neighbourhood of x , ∃N = N(U) such that n > N =⇒ xn ∈ U.

Remark So far, we haven’t discussed if the limit of a sequence (if it exists) is unique. As we’ll see in the

next (somewhat pathological) example, it isn’t unique in general.

e.g. Let X be arbitrary and T be the trivial topology on X. Take any sequence {xn} in X. The only

candidate for a neighbourhood of our conjectured limit x is X. For U = X, the definition is satisfied for

N = 1. Therefore, any sequence converges to every element of X.

e.g. (X,P(X)) where X = R and xn = (a, b, c, 1, 1, 1, . . . ). Does xn converge to a limit?

Proposition 1.28. Let (X,P(X)) be a topological space and {xn}n∈N a sequence in X. Then xn con-

verges if and only if it’s eventually constant.

Proof. For the forward implication, suppose that {xn}n∈N converges to some x ∈ X. This means that

for every neighbourhood U of x , ∃N = N(U) such that n > N =⇒ xn ∈ U. In particular, take {x} = U.

Then we have that ∃N such that n > N =⇒ xn ∈ {x} i.e {xn}n∈N is eventually constant.

For the reverse implication, suppose that xn is eventually constant i.e. ∃N and ∃x ∈ X such that

n > N =⇒ xn = x . Since X is equipped with the discrete topology, {x} is certainly an example of a

neighbourhood of x . Any neighbourhood of x will contain {x} so we’re done. �

e.g. For R equipped with the standard topology (or Rn with the standard topology), we have convergence

in the usual sense i.e. xn → x as n →∞ iff ∀ε > 0, ∃N > 0 such that n > N =⇒ ‖xn − x‖ 6 ε.

e.g. X = R with the finite complement topology Tf .

a) Consider xn = (−1)n. The natural candidates for convergence are −1 and 1. We claim that xn 6→
−1. To disprove the convergence of a sequence to a point, it’s sufficient to find a neighbourhood

for which the definition doesn’t hold. Take U = R \ {+1} ∈ Tf . U is a neighbourhood of −1.

However, 1 = x2n < U for an unbounded collection of n. Therefore the claim holds. A similar

argument holds for xn 6→ +1.

b) Consider xn = n. Take x ∈ R and let U = R \
⋃k
i=1{ai} be a neighbourhood of x . If n >

max16i6k{ai} (note that the max is <∞), then xn = n ∈ R\
⋃k
i=1{ai}. Therefore, ∀x ∈ R, xn → x .
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Remark In fact, any sequence that doesn’t attain a given value infinitely many times has the same

property: that it converges to every x ∈ R. (In the finite complement topology)

Proof. Exercise �

Definition 1.29. A topological space X is Hausdorff (or satisfies the T2 separation axiom) if ∀x, y ∈ X
with x , y , ∃U, V neighbourhoods of x and y respectively such that U ∩ V = ∅.

x

X

U

V

y

Remark The property of a topological space being Hausdorff implies the uniqueness property of the

convergence of a sequence in the space (if the limit exists).

Theorem 1.30 Let X be a Hausdorff space and S be a finite subset of X. Then S is closed in X.

Remark This theorem is equivalent to the T1 separation axiom: that for any two distinct points in the

set, x and y , there exists an open neighbourhood U about x that doesn’t contain y .

Proof. Let X be Hausdorff and S a finite subset of X. It’s sufficient to prove that the singleton set is

closed i.e. that its complement in X is open. Denote U = X \ {x}. Therefore for any y ∈ U, there are

disjoint open neighbourhoods Ux and Vy containing x and y respectively. Then,

U = X \ {x} =
⋃
y∈U

Vy

is an open set. �

Theorem 1.31 (Hausdorff =⇒ uniqueness of limits) Suppose that {xn}n∈N is a sequence in a Hausdorff

space X. Then xn converges to at most one limit.

Remark The converse statement is not true. However, if a topological space has the property that every

sequence converges to at most one limit, then X is T1.

e.g. The real line equipped with the standard topology is Hausdorff. Therefore, sequences have at most

one limit and R is T1.

e.g. Let X be arbitrary, (X,P(X)) be a topological space and x and y be distinct elements of X. The

singletons {x} and {y} are of course open and disjoint so satisfy the criterion for a Hausdorff space.
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e.g. Let X be an infinite set equipped with the finite complement topology Tf . Consider two distinct

points x, y in X. Any two neighbourhoods of x and y respectively must intersect (as their complements

are finite). Therefore, X isn’t T2. Is it T1? We can either show this directly or prove the equivalent

assertion that any finite subset of X is closed. This is exactly what it means to closed in the finite

complement topology. Therefore, X is T1. However, limits aren’t unique (see the example with X = R

and xn converging to every point in the space).

Recall from univariate analysis, the following argument for proving that the limit of a real sequence is

unique: Suppose that there exist x , y s.t. xn → x and xn → y as n →∞ i.e.

∀ε > 0, ∃N1 > 0 such that n > N1 =⇒ |xn − x | 6 ε
∀ε > 0, ∃N2 > 0 such that n > N2 =⇒ |xn − y | 6 ε.

Let ε = |x − y |/3. Taking n > max{N1, N2}, xn ∈ (x − ε, x + ε) ∩ (y − ε, y + ε) = ∅ which is a

contradiction.

Proof. (Hausdorff =⇒ uniqueness of limits). Assume for a contradiction that xn → x and xn → y with

x , y . As X is T2, there exist disjoint neighbourhoods U and V of x and y respectively. By the definition

of convergence

xn → x means that ∃NU > 0 such that n > NU =⇒ xn ∈ U
xn → y means that ∃NV > 0 such that n > NV =⇒ xn ∈ V.

Letting n > max{NU , NV } =⇒ xn ∈ U ∩ V = ∅ which is a contradiction. �

e.g. X = R with the countable complement topology Tc . This isn’t a Hausdorff space because for any

distinct points x, y ∈ R, any open neighbourhoods U, V about x, y would be uncountable in R (as their

complements are countable). Thus, U and V must intersect. However, (R, Tc) is T1 because Tf ⊆ Tc .

Proposition 1.32. For an infinite set X equipped with the countable complement topology, a sequence

converges if and only if it’s eventually constant (or stabilises).

Proof. Assume that xn → x but xn doesn’t stabilise at x . Take U = (X \ {xn}) ∪ {x} as an open

neighbourhood1 of x . Since xn doesn’t stabilise at x , this means that xn < U for infinitely many n,

contradicting xn → x . The reverse implication is an exercise. �

e.g. Let A = (a, b) ⊆ R = X equipped with the countable2 complement topology. The claim is that

A′ = A = R. If we let x ∈ R, an open neighbourhood of x has finite complement (i.e. is an uncountable

subset of R) so it must hit any uncountable set. In particular, it hits A. Therefore, A′ = R. However,

if x < A then there does not exist a sequence {xn} ⊆ A with xn → x (in Tc). For if it did, it’d have to

stabilise at x .

1We adjoin the x in case it occurs at some point in the sequence xn that we’ve removed.
2Tc does not feel sequences - It happens to be the case that x ∈ A′ ⇐⇒ x is a limit of a net of elements of A. Nets

are generalisations of sequences.
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1.6 Continuous Functions

As usual, we’ll motivate our definition by considering R. Let f : R → R and x0 ∈ R. Recall that we

say f is continuous at x0 if3 for every ε > 0, there exists a δx0,ε =: δ > 0 such that |x − x0| < δ =⇒
|f (x)− f (x0)| 6 ε.

x0 f (x0)

x0 + δ

x0 − δ

f (x0) + ε

f (x0)− ε

f

From the definition, we see that f ((x0 − δ, x0 + δ)) ⊆ (f (x0)− ε, f (x0) + ε). Further, we can note that

if we label y0 = f (x0), then f −1 (y0 − ε, y0 + ε) ⊇ (x0 − δ, x0 + δ), the latter of which is an open set.

Definition 1.33. Let f : X → Y be a map between two topological spaces X, Y . We say f is continuous

if for every open U ⊆ Y , f −1(U) ⊆ X is open in X.

Definition 1.34. We say that f : X → Y is an open map if for every open U ⊆ X, the image f (U) ⊆ Y
is also open in Y .

Remark Both X and Y could be equal as sets but be equipped with different topologies.

1) There’s no notion of continuity at a point x ∈ X in the setting of topological spaces and maps

between them.

2) To check continuity of a map, it’s sufficient to check the set of basic open neighbourhoods B that

generate the topology on Y i.e.

∀B ∈ B, f −1(B) is open in X (?)

By lemma 1, if (?) is satsified for every B ∈ B, we can write any open U in Y as

U =
⋃
i∈I
Bi =⇒ f −1(U) =

⋃
i∈I

f −1(Bi)︸    ︷︷    ︸
need not
be basic

- which is open in X.

e.g. Let f : Rk → Rm. We say that f is continuous at x0 ∈ Rk if for all ε > 0, there exists a δ > 0 such

that ‖x0 − x‖ < δ =⇒ ‖f (x0)− f (x)‖ < ε. Then f is continuous if it’s continuous at every x0 ∈ Rk .

3In words, the difference in the abscissa being less than δ =⇒ the difference in the ordinate is < ε.
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e.g. Consider f : R→ R`, x 7→ x (where R` denotes R equipped with the lower limit topology generated

by B` = {[a, b) : −∞ < a < b < +∞}). Using remark 2, we can check the continuity by looking at basic

elements. The pre-image f −1([a, b)) = [a, b) which isn’t open in R so f isn’t continuous. However, f is

an open map as for any U ⊆ R open (in the standard topology), f (U) = U which is open in the lower

limit topology as T` is finer than T .

For a map that’s continuous but not open, consider f : R` → R, x 7→ x .

e.g. Consider f : R → R defined by x 7→ |x |. The map f is certainly continuous in the usual sense.

However, for a , 0, f ((−a, a)) = [0, a) which isn’t open in the standard topology on R so f isn’t open.

e.g. Let X be a topological space and Y ⊆ X a subspace. The inclusion map (or canonical embedding)

is ι : Y ↪→ X defined by y 7→ y . Take U ⊆ X open. Note that ι−1(U) = Y ∩ U and this is precisely the

definition of an open set in Y equipped with the subspace topology. Indeed, the subspace topology is the

coarsest topology on Y that makes the inclusion map continuous.

Theorem 1.35 Let f : X → Y be a map between topological spaces. Then TFAE:

1) f is continuous,

2) For every subset A of X, f (A) ⊆ f (A) and,

3) For every closed set B in Y , the set f −1(B) is closed in X.

4) For every x ∈ X and every neighbourhood U of f (x), ∃V neighbourhood of x . Then f (V ) ⊆ U.

Proof.

1 =⇒ 2 Assume that f is continuous and let A ⊆ X. Let x ∈ A. We want to show that f (x) ∈ f (A).

Let V be a neighbourhood of f (x). Then f −1(V ) is an open subset of X containing x

and so it must intersect A at some point y . Then V intersects f (A) at f (y) meaning that

f (x) ∈ f (A).

2 =⇒ 3 Let B be closed in Y and A = f −1(B). Then f (A) ⊆ B. If x is a point of A,

f (x) ∈ f (A) ⊆ f (A) ⊆ B = B

so that x ∈ f −1(B) = A. Thus A ⊆ A.

3 =⇒ 1 Let B be a closed set in Y . Thus, its complement Y \B is open in Y . By supposition, f −1(B)

is closed in X so

f −1(Y \ B) = f −1(Y ) \ f −1(B) = X \ f −1(B)

is an open set in X so f is continuous.

4 =⇒ 1 Let x ∈ f −1(U) where U is an open neighbourhood of f (x). We want f −1(U) to be open.

By 4), there exists an open neighbourhood Vx of x and f (Vx) ⊆ U. This last condition tells
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us that Vx ⊆ f −1(f (Vx)) ⊆ f −1(U) so we can write

f −1(U) =
⋃

x∈f −1(U)
Vx︸       ︷︷       ︸

open

=⇒ f is continuous.

1 =⇒ 4 Suppose that f is continuous. Take x ∈ X and U as any open neighbourhood of f (x). Then

f −1(U) is an open neighbourhood of x . Finally, note that f (f −1(U)) ⊆ U.

�

Definition 1.36. Let X and Y be topological spaces and f : X → Y be a bijection. If both f and its

inverse are continuous, then f is called a homeomorphism. If there exists a homeomorphism between

two spaces X and Y , we say that they are homeomorphic and write X � Y .

Remark In terms of open sets, X and Y being homeomorphic tells us that U is open in X iff its image is

open in Y . Thus, a homeomorphism gives a bijective correspondence between the open sets of X and Y .

If a property of X is expressed solely in terms of the topology on X, the same property holds for any space

homeomorphic to X. Such a property is called a topological invariant. Examples include connectedness,

cardinality, compactness, metrizability etc. Finally, note that the property of being homeomorphic is an

equivalence relation.

Definition 1.37. Suppose that we have an injective continuous map f : X → Y . Let Z = im(f ). If we

restrict f to a new map f̃ : X → Z and f̃ happens to be a homeomorphism, we say that the original map

f : X → Y is a topological embedding of X in Y .

e.g. The identity map on X, idX , is a homeomorphism.

e.g. The inclusion map ι : Y ↪→ X is a topological embedding.

e.g. Let f : R → R be defined by x 7→ 3x + 1. The map f is clearly continuous and bijective. To show

that it’s a homeomorphism, consider g : R→ R defined by x 7→ (x − 1)/3. This is clearly continuous and

is the inverse of f so f is a homeomorphism.

e.g. Consider the continuous map f : (−1, 1) → R, x 7→ x/(1− x2). The map g : R → (−1, 1) defined

by g(x) = 2x/(1 +
√

1 + 4x2) is also continuous. Noting that g ◦ f = id(−1,1) and f ◦ g = idR, we

conclude that f is a homeomorphism. Therefore, R � (−1, 1).

Proposition 1.38. R � [−1, 1]

Proof. Let f be a continuous map from [−1, 1] to R. By the extreme value theorem, f attains its extrema

so f cannot be surjective (and so can’t be a bijection so definitely isn’t a homeomorphism). �
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e.g. Consider f : [0, 1)→ S1 (where [0, 1) and S1 are endowed with the subspace topology from R and

R2 respectively) defined by t 7→ (cos(2πt), sin(2πt)).

It’s certainly a bijective map and is continuous as its components are continuous. However, f is not an

open map. Consider f ([0, 1/4)) which is an arc of the unit circle (including f (0) and excluding f (1/4)).

There isn’t any open neighbourhood about f (0) contained in the image arc so f ([0, 1/4)) isn’t open and

thus f isn’t a homeomorphism.

1.6.1 Locality of Continuity

In this section, we discuss the extent to which continuity is a local property (i.e. can we infer global

continuity from local continuity). We start with a useful lemma.

Lemma 5 Let f : X → Y be a continuous map between topological spaces. Then

1) If U is a subspace of X, then f |U : U → Y is continuous.

2) If Z contains Y (i.e. is an ambient space of Y ), then f : X → Z is continuous.

3) If W is a subspace of Y that contains f (X), then frestr. : X → W is continuous.

U

X
Y

Z

f

W

f |U

Proof. 1) Let V ⊆ Y be open. Then (f |U)−1(V ) = f −1(V ) ∩ U which is open in the subspace topology

as f −1(V ) is open in X (by the continuity of f ). 2) Note that the extended map is a composition of the

original f : X → Y and the canonical inclusion ι : Y → Z. This composition is continuous. 3) Let B be

open in W i.e. B = U ∩W for some U open in Y . Since f (X) ⊆ W , f −1(U) = (frestr.)
−1 (U). Since

f −1(U) is open, frestr. is continuous. �

Definition 1.39. We call a collection of open subsets {Ui}i∈I of X an open cover of X if X =
⋃
i∈I Ui .

Lemma (Locality of continuity) Suppose f : X → Y is a map and that {Ui}i∈I is an open cover of X.

Then f is continuous ⇐⇒ ∀i ∈ I, f |Ui : Ui → Y is continuous.

Proof. By (1) of lemma 5, for each i ∈ I, f |Ui is continuous. For the converse, assume that f |Ui is

continuous for each i ∈ I. We need to somehow glue the f |Ui to make a continuous function. Let V ⊆ Y
be open. Then

f −1(V ) =
⋃
i∈I
f −1(V ) ∩ Ui =

⋃
i∈I

(f |Ui )
−1(V ).
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As each (f |Ui )−1(V ) is open in Ui and Ui is open in X, each (f |Ui )−1(V ) is also open in X. Then an

arbitrary union of these open sets is still open in X so f is continuous. �

Lemma (The Pasting Lemma) Let X = A ∪ B with A,B closed in X and f : A → Y , g : B → Y

be continuous maps that agree on the intersection A ∩ B. Then the map h : X → Y defined below is

continuous.

h(x) =

 f (x), x ∈ A
g(x), x ∈ B.

Proof. Recall that h is continuous iff the pre-image of any closed set C in Y is closed in X. Now note

that

h−1(C) =
(
h−1(C) ∩ A

)
∪

(
h−1(C) ∩ B

)
= f −1(C)︸  ︷︷  ︸
closed in A

∪ g−1(C).︸    ︷︷    ︸
closed in B

Being closed in A and A being closed in X means that the original set is closed in X. The same applies

when you replace A with B so h−1(C) is closed in X. �

e.g. Let f : [1,∞) → R be defined by x 7→ x and g : (−∞, 1] → R be defined by x 7→ −x + 2. Both A

and B are closed, A ∩ B = {1} and f (1) = g(1) so the conditions for the pasting lemma are satisfied.

Therefore, h(x) = |x − 1|+ 1 is a continuous map. (It’s also continuous in the usual sense)

e.g. Consider h : Q→ R defined by

h(x) =

 0, x <
√

2

1, x >
√

2.

Let Y = R, A = (−∞,
√

2] ∩ Q and B = [
√

2,∞) ∩ Q. Apply the pasting lemma for f : A → Y taking

x 7→ 0 and g : B → Y taking x to 1 and you get that h is a continuous map.

1.7 Product Topology (i ∈ I)

We aim to generalise the notion of the product topology that we defined for two sets X, Y to a possibly

arbitrary collection {Xi}i∈I of topological spaces. So the main question is how we endow a topology onto

such a Cartesian product.

In the case of two spaces X1 and X2, we declared that the product topology on X1×X2 was generated

by the collection B = {U1×U2 : Ui is open in Xi for i = 1, 2}. A natural suggestion for a topology on X

is to simply write out the same definition for the generating collection but make everything indexed by

i ∈ I. We’ll see that such a topology doesn’t satisfy some desirable properties (e.g. if all the component

spaces are compact, the box topology on their Cartesian product isn’t necessarily compact) as it is simply

too fine.
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Definition 1.40. The box topology on X is the topology generated by the collection

Bbox =

∏
i∈I
Ui : ∀i ∈ I. Ui is open in Xi

 .

Recall that we defined projection maps earlier on and noted that the product topology is the coarsest

topology that allows projections to be continuous maps. In the general case, we can define

πi :
∏
j∈I
Xj → Xi , (xj)j∈I 7→ xi .

Suppose that for some i0 ∈ I, πi0 is continuous and let Ui0 be open in Xi0 . Then π−1
i0

(Ui0) has to be

open in X. Note that

π−1
i0

(Ui0) = Ui0 ×
∏
i,i0
i∈I

Xi .

If all projections are to be continuous, then all sets of the form π−1
i

(Ui) must be open, where i traverses

through the whole of I and Ui traverses through all the open sets of Xi . The topology generated by

these sets on X is therefore the coarsest for which all projections are continuous.

Ideally, we’d like to define a topological basis with such sets. Accordingly, if we take the intersection

of finitely many of these pre-images of projections, we obtain a set of the form

Ui0 × · · · × Uik ×
∏

i<{i0,...,ik}
i∈I

Xi .

Therefore, the collection of such sets is closed under finite intersections.

Definition 1.41. The product topology on X is the topology generated by the collection

Bprod =

∏
i∈I
Ui : ∀i ∈ I. Ui is open in Xi , Ui = Xi for all but finitely many i

 .

Remark This is more restrictive than the box topology in general. However, when I is a finite set both

generating sets (and hence topologies) coincide. Also, Bbox is finer than Bprod. Both collections satisfy

the intersection property which is stronger than the second axiom for a topological basis. We’ll use the

product topology by default from now on.

e.g. Consider X = Rω =

∞∏
i=1

R. Take A =

∞∏
i=1

(0, 1) ⊆ X.

Notice that A is open in the box topology (and is basic). However, A is not open in the product topology.

Suppose that A were open in the product topology on X. Then there exists at least one basic open
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neighbourhood U ⊆ A that can be written as a product U =
∏
i Ui where Ui = R for i > i0. Then

R = πi0(U) ⊆ πi0(A) = (0, 1) which is a contradiction.

e.g. For all i ∈ N, let Xi = {0, 1} be equipped with the discrete topology and consider

X =

∞∏
i=1

Xi .

Every x ∈ X is of the form x = (xi)
∞
i=1

where xi ∈ {0, 1} and we know that each {xi} is open in Xi so

{x} is open in the box topology. Accordingly, Tbox coincides with P(X).

Now equip X with the product topology. We wish to describe the product topology. Doing so on X

isn’t straight-forward so we’ll translate the problem from sequences in X to decimal representations in

[0, 1] via the map f : X → [0, 1] ⊆ R defined by

(bi)i∈N 7→
∞∑
i=1

bi

2i
.

If the map is ’good enough’, describing the topology induced by f on [0, 1] is enough to describe the

topology on X. The map f is “almost bijective”. It’s certainly surjective and if we remove the dyadic

numbers D := {k/2n} from [0, 1] and their pre-images under f from X, the restricted map f |new is

injective. The topology on [0, 1] \D is certainly not discrete and therefore can’t be induced by a discrete

map.

Claim The topology on [0, 1] \ D coincides with the subspace topology induced from R.

Proof. The basic open neighbourhoods of [0, 1] \ D contain elements whose decimal representations are

prescribed finitely bits and the rest are free. Since we’ve removed D from [0, 1], these intervals are

open. It’s a fact that any interval (a, b) ⊆ [0, 1] can be written as a disjoint union of dyadic intervals i.e.

(a, b) =
∐
i∈I(ai , bi) where ai , bi ∈ D. In particular, the claim follows. �

This topology is finer than the standard topology but coarser than the lower limit topology.

e.g. An exercise is to try the prior example with {0, 1, . . . , 9}N instead of {0, 1}.

e.g. Let I = [0, 1], X =
∏
i∈I

R = {f : I → R} and A = {f ∈ X : f is continuous}.

Suppose that f ∈ A. This means that every neighbourhood of f intersects A non-emptily i.e we can

approximate f by elements of A. (Note that the topology on X determines the accuracy to which we

can approximate f .)

In the box topology, we claim that A = A. In other words, no discontinuous functions can be

approximated by continuous functions. Let f < A (be discontinuous). Then ∃x0 ∈ [0, 1] such that

lim inf
x→x0

f (x)︸        ︷︷        ︸
y1

< lim sup
x→x0

f (x)︸         ︷︷         ︸
y2

.

Let xnj be a sequence in [0, 1] that converges to x0 as j →∞ and whose image sequence f (xnj )→ y0 as
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j →∞. Assume that all the xnj are distinct and define ε = |y2 − y1|/3. Define

U =

∞∏
n=1

(f (xn1)− ε, f (xn1) + ε) ×
∞∏
n=1

(f (xn2)− ε, f (xn2) + ε) ×
∏

x<{xn1 ,xn2}
R.

Let g ∈ U. Then we can say that

lim inf
x→x0

g(x) 6 lim inf
x→x0

f (x) + ε < lim sup
x→x0

f (x)− ε 6 lim sup
x→x0

g(x).

Therefore, U ∩ A = ∅ =⇒ f < A.

In the product topology, we claim that A = X. Let f ∈ X and U be any neighbourhood of f . (Every

open set is a union of basis elements so we can assume that U is basic.) Take

U =
∏

x<{x1,...,xn}
R×

n∏
i=1

Uxi .

We can find a piecewise linear function g so that for each i 6 n, g(xi) = f (xi). Since g ∈ U ∩A, we can

conclude that f ∈ A =⇒ A = X.

Theorem 1.42

1) If X =
∏
i∈I Xi , where for all i ∈ I, Bi is a general topology on Xi , then

(a) the box topology on X is given by ∏
i∈I
Bi : ∀i ∈ I. Bi ∈ Bi

 .
(b) the product topology on X is given by ∏

i∈{i1,...,in}
Bi ×

∏
i<{i1,...,in}

Xi : ∀j 6 n. Bij ∈ Bij

 .
2) Let i ∈ I and for each i ∈ I, let Ai ⊆ Xi be a subspace. Define A :=

∏
i∈I Ai . Then the product

topology of the subspaces Ai ⊆ Xi coincides with the subspace topology of A ⊆ X (where X is

equipped with either the box or product topology).

3) If for each i ∈ I, Xi is Hausdorff, then X is Hausdorff (in the box and product topologies).

4) If for each i ∈ I, Ai ⊆ Xi and A is of the form
∏
i∈I Ai , we have that∏

i∈I
Ai = A =

∏
i∈I
Ai .

Proof. Exercise. �
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Remark For lack of better notation, denote the closures of A in the box and product topologies on X

by Abox and Aprod respectively. For every set A of the form
∏
i∈I Ai , these closures coincide. However,

this doesn’t hold in general. As for why, recall that if we know the closures of all sets in a space, we

can completely describe the topology. If the equality did hold, both the box and product topologies on

X would coincide in general but we know that this isn’t the case.

Theorem 1.43 Let f : A→ X =
∏
i∈I
Xi be defined by a 7→ (fi(a))i∈I .

If X is endowed with the product topology, then f is continuous ⇐⇒ ∀i ∈ I, fi is continuous. If X is

endowed with the box topology instead, only the forward implication holds.

Proof. The forward implication is the same as in the finite case (which is addressed in an assignment

that I’m yet to do).

For the reverse implication, suppose that all the fi are continuous. It’s sufficient to show that the

pre-image of every basic open neighbourhood U ⊆ X under f is open in A. Note that U is of the form

Ui1 × · · · × Uin ×
∏

i<{i1,...,in}
Xi .

Therefore, we can write that

f −1(U) =
{
a ∈ A : ∀i ∈ {i1, . . . , in}, fi(a) ∈ Ui

}
=

in⋂
i=i1

f −1
i

(U)︸  ︷︷  ︸
...

Which is a finite intersection of open sets (due to the continuity of each fi) and is therefore open itself. �

1.8 Metric Topology

Definition 1.44. Let X be a set. A metric on X is a map d : X ×X → R such that ∀x, y , z ∈ X:

i) d(x, y) > 0 and d(x, y) = 0 ⇐⇒ x = y ,

ii) d(x, y) = d(y , x),

iii) d(x, z) 6 d(x, y) + d(y , z).

Remark The first condition is called positivity and that d(x, y) = 0 is equivalent to x = y is a property

known as the separation of points. The reason for such a name is that every distinct pair of points should

be separated by a positive distance. The second is called symmetry and the final property is the triangle

inequality.
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e.g. Let X = Rn and define for x = (x1, . . . , xn) and y = (y1, . . . , yn),

d2(x, y) =

 n∑
i=1

|xi − yi |2
1/2 .

Definition 1.45. Given x ∈ X and r > 0, Bd(x, r) = {y ∈ X : d(x, y) < r} is the open ball in the

metric d centered at x with radius r .

e.g. Let X = Rn and p > 0. Define the p-metric by dp(x, y) =

 n∑
i=1

|xi − yi |p
1/p .

It isn’t immediately clear that this is indeed a metric. Positivity and symmetry are straight-forward

but the triangle inequality is known as a theorem called Minkowski’s inequality.

x

y

−r

r

Bd∞(0, r)

Bd2(0, r)

Bd1(0, r)

Figure 1.4: An illustration of the metric balls (superimposed) centered at the origin with radius r in R2

with respect to the metrics d1, d2 and d∞.

e.g. L2(R) =

{
measurable f : R→ R :

∫
R
|f |2 <∞

}

∀f , g ∈ L2(R), define d(f , g) =

(∫
R
|f − g|2

)1/2
This map is certainly non-negative and symmetric. The triangle inequality comes from the triangle

inequality on (R, | · |). However, when it comes to the separation of points (in this case, the functions

are the ’points’ in L2(R)), we see that although f and g may differ, d(f , g) could vanish. For instance, if

we let f be identically 1 on R and g be identically 1 on R \ {x} where g(x) = 0, f and g certainly aren’t

equal but d(f , g) = 0.

It’s clear where the problem lies. Functions that differ on a set whose width4 (e.g. a singleton) doesn’t

contribute to the integral aren’t distinguishable by the integral (metric).

4After some careful considerations in building up the theory of size, we refer to this as the measure of a set. Most

introductory books on measure theory go into it well and I’m not well-versed enough to give an explanation here.
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To rectify this issue, we can define an equivalence relation on L2(R) where f ∼ g iff f and g differ

on at most a set of measure 0. Now we can define a new space of equivalence classes of such functions,

denoted L2(R) = L2(R)/ ∼.

Equipping this space with the same map d turns this map into a metric, say d̃ . The problem with

separating functions is now gone. Note that when using this new map d̃ , the inputs are equivalence classes,

e.g. we compute d̃([f ], [g]). However, confusion often does not arise from taking a representative from

each equivalence class and we end up with the original definition of d for the purpose of calculations.

e.g. Let X be any set and d(x, y) = 0 if x = y and d(x, y) = 1 if x , y . Non-negativity, positivity and

symmetry are all immediate from the definition. For the triangle inequality

d(x, z) 6 d(x, y) + d(y , z),

notice that the LHS is always 6 1. Therefore, the RHS 6 LHS iff RHS = 0 which is equivalent to

x = y = z , thereby implying that d(x, z) = 0.

This metric is called the discrete metric on X. The open balls that the discrete metric admits are (for

any x ∈ X) Bd(x, r) = X if r > 1 and Bd(x, r) = {x} if r 6 1.

Definition 1.46. If X is a set and d : X ×X → R is a metric, the metric topology associated to X is the

topology generated by Bd = {Bd(x, r) : x ∈ X, r > 0}. (X,d) is called a metric topological space.

The definition assumes that Bd is a topological basis. Let’s prove it.

i) For every x ∈ X and every r > 0, x ∈ Bd(x, r) so Bd is a cover of X.

ii) Let z ∈ Bd(x, r1) ∩ Bd(y , r2). Although the picture is somewhat misleading from a geometric

perspective, it motivates the idea of what’s going on!

Take 0 < ε < min{r1 − d(z, x), r2 − d(z, y)}. Let ω be an arbitrary point in Bd(z, ε). We want to

show that ω is an element of both Bd(x, r1) and Bd(y , r2) i.e. that d(ω, x) < r1 and d(ω, y) < r2. As a

consequence of the triangle inequality,

d(ω, x) 6 d(ω, z) + d(z, x)

< ε+ d(z, x)

< r1 − d(z, x) + d(z, x) = r1

d(ω, y) 6 d(ω, z) + d(z, y)

< ε+ d(z, y)

< r2 − d(z, y) + d(z, y) = r2

Therefore, Bd(z, ε) is such an element of Bd that contains z and is contained in Bd(x, r1)∩Bd(y , r2).

Thus, Bd is a topological basis.
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x

y

z

d1

d2

ε

Figure 1.5: In the diagram, d1 = d(z, x) and d2 = d(z, y). We want to find an ε such that Bd(z, ε) is

contained in the intersection.

Explicitly, U ⊆ X is open if ∀x ∈ U, ∃r > 0 so that Bd(x, r) ⊆ U. Our regular notion of a space being

open in Rn is a special case of this definition with the metric balls being standard balls. Our definition

needs not for the metric balls to be centered at x a priori5. We could equally well take a metric ball

containing x but centered elsewhere. Then, we can fit a smaller metric ball centered at x inside the prior

ball.

Proposition 1.47. Suppose that (X, d) is a metric topological space and that {xn} ⊆ X is a sequence in

X. Then xn → x as n →∞ iff d(xn, x)→ 0 as n →∞ (as a sequence of real numbers).

Proof. Exercise. �

Thus, in the case of a metric topological space, we can translate questions of convergence to the

more familiar setting of R.

e.g. Let X = Rn be equipped with d2. A set is open if and only if we can squeeze a metric ball about

every point it contains. The metric balls that d2 admits are the standard balls we’re used to seeing in

Rn. Therefore, d2 generates the standard topology on Rn.

e.g. Consider L2(R) equipped with the metric from before. Then we can say that as n → ∞, fn →
f ⇐⇒ d(fn, f )→ 0.

e.g. Let X be an arbitrary set and d be the discrete metric. The open metric balls as before are X and

{x}. Since every singleton is open, the discrete metric generates the discrete topology on X.

5In a way based on theoretical deduction rather than empirical observation.
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Given two metrics on a space, how can we compare the topologies they generate?

Lemma 3 (Metric Version) Suppose that d, d ′ are two metrics on a set X generating the topologies

Td , Td ′ respectively. Then TFAE:

1) Td ′ is finer than Td

2) ∀x ∈ X ∀ε > 0, ∃δ > 0 such that Bd ′(x, δ) ⊆ Bd(x, ε).

X

δ

ε

x

Figure 1.6: An illustration of the metric version of lemma 3.

Remark Note that both metric balls in the lemma are centered at the same point x . From an earlier

remark, if we test only balls centered at the same point, the lemma still holds. This is highly useful in

narrowing down the metric balls we need to check.

e.g. Let X = Rn equipped with the d∞ metric6 defined by d∞(x, y) = max16i6n{|xi − yi |}. Which

topology does this metric generate? To see which metric it generates, we can use the metric version of

lemma 3. Note that

d∞(x, y) 6 d2(x, y) 6
√
n d∞(x, y).

This implies that

Bd∞(x, r) ⊆ Bd2(x, r) ⊆ Bd∞(x, r
√
n).

By the metric version of lemma 3, d∞ and d2 generate the same topology on Rn, the standard topology.

Given a metric, we can talk about the topology generated by the metric, the metric topology. However,

given a topology, can we say that there exists a metric which generates it?

Definition 1.48. Let (X, T ) be a topological space. We say that T is metrizable if there exists a metric

d on X that generates T .

e.g. As we just saw, R equipped with the standard topology is metrizable. Corresponding metrics include

d2 and d∞.

6Check that it is indeed a metric. It’s commonly called the uniform/supremum metric.



CHAPTER 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS 32

1.8.1 Metrizability of Rω

How about Rω? Is it metrizable with respect to the product and (less importantly, post factum) box

topology? We don’t have a metric so we need to construct one. Given x = (xi)i>1, y = (yi)i>1 ∈ Rω,

our map needs to incorporate the coordinates, satisfy the properties of a metric and intuitively output a

small (resp. large) value when x and y are close (resp. distant).

For a näıve attempt at a construction, consider both c(x, y) = supi∈N{|xi−yi |} and p(x, y) =
∑∞
i=1 |xi−yi |.

The problem with both of these is that they might not be finite for every x, y ∈ Rω.

It turns out that with respect to the product topology, Rω is metrizable. However, w.r.t. the box

topology, Rω isn’t metrizable. We state a more general theorem below:

Theorem 1.49 Let {Xi}i∈N be a countable family of metrizable spaces. Then the product space X is

metrizable.

X =

∞∏
i=1

Xi

Remark As a reminder, when we write product space, we implicitly equip the space with the product

topology.

Proof. First of all, we construct a metric on X. For each i ∈ N, Xi is metrizable so let di be the metric

on Xi that generates Xi ’s metric topology. For xi , yi ∈ Xi , define di(xi , yi) = min{di(xi , yi), 1}. By the

homework, di is a metric on Xi that generates the same topology on Xi as di .

For x = (xi)i∈N, y = (yi)i∈N ∈ X, define

d(x, y) =

∞∑
i=1

di(xi , yi)

2i
<∞.

The map d is a metric on X. Properties (i) and (ii) are simple to verify and the triangle inequality is

proven by applying it in each coordinate in Xi as di is a metric.

We could equally have defined the following7 two metrics8

d̃(x, y) = sup
i∈N

di(xi , yi)i

 d
?(x, y) =

∞∑
i=1

di(xi , yi)

1 + di(xi , yi)
2−i .

7For the second metric, the triangle inequality can be proven by noting that x/(1 + x) is convex.
8Note that in d?, the di aren’t necessarily bounded so we consider the quotient di/(1 + di).
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Claim The metrics d, d̃ and d? generate the product topology on X.

Denote the topology generated by d by T ′. Since we can’t suppose that the product topology T on

X is metrizable (as that’s what we’re trying to prove), we’ll need the original version of lemma 3 to

compare their bases. Thus, we need to show that

• for any basic open neighbourhood U in T of x0 = {x0
i
}i∈N, there exists an r > 0 s.t. Bd(x

0, r) ⊆ U,

and

• for any x0 ∈ X and r > 0, there exists a basic open neighbourhood U in the product topology such

that x0 ∈ U ⊆ Bd(x
0, r).

Let U be a basic open neighbourhood of x0 in the product topology. Then U is of the form

U =

∞∏
i=1

Ui

where for each i ∈ N, Ui is a neighbourhood of x0
i

and Ui = Xi for all i < {i1, . . . , ik}. Since each Xi is

metrizable, for each n ∈ {1, . . . , k}, let εn > 0 be such that

B
din

(x0in , εn) ⊆ Uin .

Define

ε < min
16n6k

{
εn

2in

}
.︸         ︷︷         ︸

...

Here, we use that the product topology is equipped to X. If we didn’t have the product topology equipped,

there’d be no constraint on the number of elements we’re taking a minimum of in this set so we could

end up with ε < 0.

Subclaim Bd(x
0, ε) ⊆ U

Let y ∈ Bd(x0, ε). Then for any n ∈ {1, . . . , k},

di(x
0
in
, yin)

2in
6
∞∑
i=1

di(x
0
i
, yi)

2i
= d(x0, y) < ε <

εn

2in
.

i.e. for any n ∈ {1, . . . , k}, y ∈ B
din

(x0
in
, εn) ⊆ Uin and we conclude that y ∈ U.

Conversely, we are to show that every metric ball Bd(x
0, r) contains a neighbourhood (in the product

topology) of x0. We can assume WLOG9 that r < 1 and define K = blog(r/4)c + 1. We construct a

neighbourhood U of x0

U =

K∏
i=1

B
di

(x0i , r/2)×
∞∏

i=K+1

Xi .

9Without loss of generality!
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Let y ∈ U. Then

d(x0, y) =

K∑
i=1

di(x
0
i
, yi)

2i
+

∞∑
i=K+1

di(x
0
i
, yi)

2i

6
K∑
i=1

r

2i+1
+

∞∑
i=K+1

1

2i

<
r

2
+

r

2−blog(r/4)c+1

6
r

2
+
r

2
= r

so U ⊆ Bd(x
0, r). Both topologies are therefore equal by lemma 3 and so X equipped with the product

topology is metrizable, thereby completing the proof. �

1.9 Quotient Topology

The idea of what it means to take the quotient of space in a geometric sense is that one ‘glues together’

points in order to form another object. Abstractly, this notion of ‘gluing’ involves identifying points with

each other by declaring them to be equivalent.

For example, if we take the unit interval [0, 1] and declare the end-points to be equivalent, the

resulting space [0, 1]/ ∼ (which we call the quotient space of [0, 1] under the equivalence relation ∼)

is homeomorphic to the unit circle, S1. A simple case of a slightly more sophisticated construction

(called the wedge sum10) involves gluing two circles at a single basepoint to obtain a new space (denoted

S1 ∧ S1). More examples of such constructions follow after a few key definitions!

Figure 1.7: The wedge sum of two circles,
∧2
i=1 S

1.

Let X be a topological space, ∼ an equivalence relation on X and denote Y = X/ ∼. How do we

endow a topology on Y that’s induced by X?

Definition 1.50. A map f : X → Y is called a quotient map11 if it is surjective and a subset U of Y is

open if and only f −1(U) is open in X.

10It’s also referred to as a one point union.
11Equivalently, f is a quotient map if it is onto and Y is equipped with the quotient topology.
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Definition 1.51. Let X be a topological space and ∼ an equivalence relation on X. The natural quotient

map is

q : X −→ X/ ∼
x 7−→ [x ].

We define a topology on X/ ∼ by declaring that U ⊆ X/ ∼ is open iff q−1(U) ⊆ X is open. We call this

topology the quotient topology. Note that the quotient topology automatically makes the quotient map

q continuous (and open).

Remark The quotient topology12 is the finest topology such that q is continuous. Any other topology

that lets q be continuous is coarser than the quotient topology by definition.

e.g. The following are examples of quotient spaces (and their maps).

1) Let f : X = [0, 1]→ S1 be defined by t 7→ (cos(2πt), sin(2πt)). Define the equivalence relation ∼
on X by 0 ∼ 1 and otherwise no two elements of X are equivalent. Consider the diagram:

X = [0, 1]

[0, 1]/ ∼ S1.
g

f
q

The map f is certainly continuous, onto and injective apart from f (0) = f (1). Also consider the

quotient map q : [0, 1] → [0, 1]/(0 ∼ 1). Thus, f induces a bijection g such that f = g ◦ q. One

can prove that g is continuous iff g ◦ q is continuous13. Since f = g ◦ q, then g is continuous.

Compact-to-Hausdorff Lemma Suppose that X is compact, Y is Hausdorff and f : X → Y is a

continuous bijection. Then f is a homeomorphism.

Proof. This theorem wasn’t actually stated in the lectures and I won’t prove it here. However, a

proof can be found on page 135 under Proposition 13.26 in [2]. �

We’ll also need to observe that any subspace Y of a Hausdorff space X is also Hausdorff. Simply

note that for any two x, y ∈ Y , they are also elements of X so there exist disjoint open neighbour-

hoods U, V in X of x and y respectively. Taking Y ∩U and Y ∩V which are disjoint and open (in the

subspace topology) neighbourhoods of x and y respectively, we conclude that Y is also Hausdorff.

Since S1 ⊆ R2, R2 is Hausdorff and [0, 1]/ ∼ is compact (as the continuous image of a compact

space, as we shall see later), it follows from the prior lemma that g is a homeomorphism.

12Sometimes also called the final topology of the family of maps {q}.
13The proof of this is straight-forward!
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2) Let X = (0, 1] ∪ [2, 3) and Y = X/(1 ∼ 2).

X = (0, 1] ∪ [2, 3)

X/ ∼ (0, 2)
g

fq

We can define q(x) = x when x ∈ (0, 1] and q(x) = x − 1 when x ∈ [2, 3) so that q(1) = q(2)

and subsequently obtain a homeomorphism g.

3) The torus T can be represented by a quotient square, i.e. T = [0, 1]2/ ∼ where ∼ is defined by

(0, y) ∼ (1, y) and (x, 0) ∼ (x, 1) for all x, y ∈ [0, 1].

(0, y) (1, y)

(x, 1)

(x, 0)

T

4) Similarly for the Möbius strip, we can identify sides of a quotient square so that M = [0, 1]2/ ∼
where (0, y) ∼ (1, 1− y) for all y ∈ [0, 1].

(0, y)

(1, 1− y)

M



Chapter 2

Connectedness and Compactness

2.1 Connected Spaces

Definition 2.1. Let X be a topological space. We say that a separation of X is two clopen and disjoint

sets A,B whose union A∪B = X. A set X is disconnected if there exists a separation of X. A separation

is trivial if either A = ∅ or B = ∅. We say that X is connected if every separation of X is trivial.

Remark Note that X being connected is equivalent to X not having any non-trivial clopen subsets.

e.g.

1) Consider (X,P(X)). Suppose that |X| > 1. Then {x} and its complement are clopen, disjoint and

their union is the whole of X i.e. there exists a separation so X isn’t connected. X is connected

iff |X| 6 1.

2) X equipped with the trivial topology T = {∅, X} has no non-trivial clopen subsets so is connected.

3) X = R equipped with the standard topology is connected as it has no non-trivial clopen subsets.

4) Consider X = R` and take an open set [α, β). The complement X \ [α, β) = (−∞, α) ∪ [β,∞) is

closed (by definition) and open because T` is finer than the standard topology on R so (−∞, α) ∈ T`.
Thus, R` is not connected.

5) X = [1, 2] ∪ [3, 4] is not connected. Take A = [1, 2] and B = [3, 4].

6) Consider Q ⊆ R.

Claim Q (with the subspace topology induced from R) is not connected.

Let α < β both be irrational. Then A = (α, β) ∩ Q = [α, β] ∩ Q is clopen so Q is not connected.

In fact, Q is totally disconnected i.e. it has no connected subspaces other than singletons.

37
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7) Consider X = {a, b} equipped with any topology that isn’t discrete.

Claim X is connected.

Proof. Suppose that X isn’t connected i.e. there exists a separation A,B. WLOG, let A = {a} be

clopen. Then {b} = X \ {a} is open so the topology on X is discrete. �

Lemma Let X be a topological space and Y ⊆ X be a subspace. Then a pair of disjoint sets A,B whose

union is Y is a separation of Y if and only if A nor B contain the limit points of the other (in X).

e.g.

1) Let Y = (0, 1) ∪ (1, 2) ⊆ R. Denote A = (0, 1) and B = (1, 2). Then we see that A′ = A = [0, 1]

and B′ = B = [1, 2] so that A′ ∩ B = B′ ∩ A = ∅. Therefore, A,B is a separation of Y .

2) Consider Y = (0, 1) ∪ [1, 2) ⊆ R. Denote A = (0, 1) and B = [1, 2). Since A′ = A = [0, 1] and

A′ ∩ B = {1} , ∅, we conclude that A,B isn’t a separation. Note that in this example, we just

re-wrote Y = (0, 2) which we know is connected.

Proof. Let Y = A ∪ B be a separation. Then

B ∩ A′ = (B ∩ Y ) ∩ A′

= B ∩ (Y ∩ A′)

⊆ B ∩ (Y ∩ A)

= B ∩ AY
= B ∩ A
= ∅.

Similarly, B′ ∩ A = ∅.

For the converse, let A and B satisfy the postulated properties.

Claim A is closed in Y .

A ∩ B = (A ∪ A′) ∩ B = (A ∩ B)︸   ︷︷   ︸
∅

∪ (A′ ∩ B)︸    ︷︷    ︸
∅

= ∅

Therefore,

AY = A ∩ Y = A ∩ (A ∪ B) = (A ∩ A) ∪ (A ∩ B) = A ∪ ∅ = A

so A is closed in Y . By symmetry, B is also closed in Y so Y = A ∪ B is a separation. �

Theorem 2.2 Let {Xi}i∈I be a family of connected topological subspaces of a set X. If their intersection

is non-empty i.e. ∃x0 ∈
⋂
i∈I Xi , then their union

⋃
i∈I Xi is connected.

Proof. Assume (WLOG) that X = ∪i∈IXi and let A,B be a separation of X. We wish to show that any

separation of X is trivial. By symmetry, let x0 ∈ A.
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Claim For each i ∈ I, Xi ⊆ A.

Proof. Since A,B is a separation of X, consider

Xi = (A ∩Xi)︸    ︷︷    ︸
Ã

∪ (B ∩Xi)︸     ︷︷     ︸
B̃

.

Since A and B are disjoint, so are Ã and B̃. Both Ã and B̃ are open in Xi (in the subspace topology).

Thus, we have a separation of Xi . Since each Xi is connected, this separation must be trivial i.e. either

one of Ã and B̃ are empty. Since x0 ∈ Ã, B̃ must be empty i.e. Xi = A ∩Xi meaning that Xi ⊆ A. �

Therefore, X =
⋃
i∈I Xi ⊆ A implying that B = ∅ so X is connected. �

Remarks The collection is one of subspaces so that their union will remain a subset of X and we can

equip it with a topology induced by X. Otherwise, it isn’t clear how to construct a topology on the union.

Furthermore, the conclusion holds even with the less restrictive condition of pairwise intersections being

non-empty. The proof is an exercise.

Theorem 2.3 The continuous image of a connected set is connected.

Remarks

1) Connectedness is a topological invariant. It’s useful to note that if given two spaces, one of which

is connected and the other isn’t, there doesn’t exist a homeomorphism between them (i.e. they

aren’t homeomorphic to each other).

2) If X is an arbitrary connected topological space and ∼ is an equivalence relation on X, the quotient

map q : X → X/ ∼ being continuous and surjective implies that q(X) = X/ ∼ is connected.1

Proof. We can assume WLOG that f : X → Y is surjective (as we can simply restrict the range of f so

that f : X → f (X)). Let Y = A ∪ B be a non-trivial separation.

X Y

f

A

B

f −1(A)

f −1(B)

1Geometrically, the process of “gluing points” together in a connected space can’t disconnect it.
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Note that X = f −1(A) ∪ f −1(B) as every element of X is mapped into Y under f . Also, no element

in X can be mapped simultaneously into A and B so f −1(A) and f −1(B) are disjoint and so form a

separation of X. Since f is surjective, f −1(A) and f −1(B) are non-empty and thusly form a non-trivial

separation of X. This contradicts the connectedness of X. Therefore, Y must be connected. �

2.2 Connected Subspaces of R

Recall the intermediate value theorem from analysis i.e. given a continuous f : [a, b]→ R, if f (a) < f (b)

then for every f (a) < r < f (b) there exists a c ∈ (a, b) such that f (c) = r . We wish to extend

this property to the setting of general topological spaces. Thus, it’s natural to consider the topological

properties of [a, b] on which the theorem depends. It turns out that the connectedness of [a, b] fits the

bill.

Theorem 2.4 (Intermediate Value Theorem) Let f : X → R be a continuous map with X a connected

topological space and a, b ∈ X such that f (a) , f (b). Let r be a number between f (a) and f (b). Then

there exists a c ∈ X such that f (c) = r .

Remarks

1) We were vague in saying that r is a number between f (a) and f (b). This just allows us more

freedom to equally consider when f (a) > f (b) and vice versa. There’s no mystery here!

2) In general, we don’t have a precise 2way of saying that an element of a topological space lies

“between” two others. However, R equipped with the standard topology is a special case of a

linearly ordered set and so we can speak of f (a) < r < f (b) for example.

3)i) Is the connectedness of X essential? Suppose that X isn’t connected. Then there exists a non-

trivial separation X = A ∪ B. The map f : X → {0, 1} defined by

f (x) =

 0, if x ∈ A
1, if x ∈ B

is continuous but doesn’t obey the intermediate value property.

Proof. (IVT). Assume (for a contradiction) that such a c in the statement doesn’t exist i.e. r < f (X).

Since X is connected, its image under f is also connected. As f (X) ⊆ R, its elements either lie to the

left or to the right of r , as illustrated below. Notice that we can write

r f (X)

2For a well-ordered set X, we can endow X with a topology called the order topology. I don’t have a neat resource for

this right now. I’ll update when I find one.
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f (X) = ((−∞, r) ∩ f (X))︸                  ︷︷                  ︸
A

∪ ((r,∞) ∩ f (X))︸               ︷︷               ︸
B

where A and B are open in f (X) in the subspace topology. Therefore, they form a separation of f (X).

Since r is between f (a) and f (b), either (f (a) ∈ A ∧ f (b) ∈ B) or (f (a) ∈ B ∧ f (b) ∈ A). Thus,

f (X) = A ∪ B is a non-trivial separation, contradicting the connectedness of f (X). �

2.3 Path connectedness

Definition 2.5. Given any two points x, y in a topological space X, a path from x to y is a continuous

map f : [a, b]→ X such that f (a) = x and f (b) = y .

f (a) = x

y = f (b)

We say that X is path-connected if for every pair of points x, y ∈ X, there exists a path between them

contained entirely in X.

Remark Since [a, b] and [0, 1] are diffeomorphic via the map [0, 1] → [a, b], t 7→ a + t(b − a), we can

equivalently define a path on [0, 1].

Theorem 2.6 If X is a path-connected topological space, then it is connected.

Proof. Fix a point x0 in X. Then for every x ∈ X, there exists a path fx : [ax , bx ] → X from x0 to x .

Denote the trace of the path by Cx = fx([ax , bx ]). Then X =
⋃
x∈X Cx . Each Cx is connected as the

continuous image of a connected space, namely [ax , bx ]. All the Cx have a common point, x0, so their

union is also connected. �

e.g. The unit ball Bn in Rn is convex3 and therefore path-connected via f (t) = x + t(y − x).

e.g. For n > 1, Rn \ {0} is path connected. For any x, y ∈ X, take f (t) = x + t(y − x). If the image

of f happens to pass through the origin at some point, we can simply take another point a , 0 and

concatenate4 the paths from x to a and from a to y , thus avoiding the origin. This example extends to

Rn \ {x1, . . . , xn}.

3The same holds true for any convex subspace of Rn.
4For the time being, think of this as joining the two paths together. More details are to come later on when we talk

about path connected components.
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Proposition 2.7. The continuous image of a path-connected set is path-connected.

Proof. Let h : X → Y be a continuous map on a path-connected set X. If x, y ∈ h(X), there exist

a, b ∈ X s.t. h(a) = x and h(b) = y . Since X is path-connected, there exists a path f : [α, β]→ X with

f (α) = a and f (β) = b. This implies that h ◦ f is a path from x → y . Since x, y were arbitrary in h(X),

we conclude that h(X) is path-connected. �

e.g. The map f : Rn \ {0} → Sn−1 defined by x 7→ x/‖x‖ is continuous and from the prior example,

Rn \ {0} is path-connected, so Sn−1 is also path-connected.

2.4 Topologist’s sine curve, S

Now we consider a special set, S, which demonstrates that path-connectedness in general is a stronger

property than connectedness. This set is called the topologist’s sine curve. We begin with:

S =

{(
x, sin

1

x

)
: x ∈ (0, 1]

}

x

sin(1/x)

As the continuous image of a path-connected space (namely (0, 1]), S is also path-connected and

therefore connected. Now consider the closure S. The accumulation points of S lie in the set {(0, t) :

t ∈ [−1, 1]} so S = S ∪ ({0} × [−1, 1]). If a space is connected, then so is its closure. (More generally,

if A is connected and B is such that A ⊆ B ⊆ A, then B is connected.) Thus, S is connected.

Claim S is not path-connected. More precisely, (0, 0) can’t be connected by a path to any point (x0, y0)

in S with x0 > 0.

Proof. Suppose that f = (γ1, γ2) : [a, b] → S be such a path. Let c0 = max γ−1
1

({0}) which is the

maximum of a closed set that’s contained in [a, b] so c0 exists. In other words, γ1(c0) = 0 and for all

t > c0, γ1(t) > 0. Further, c0 < b and γ1(b) = x0 > 0. Since f is continuous and [a, b] is connected,

we can apply the IVT and deduce the existence of a sequence tn such that tn → c0 with

γ1(tn) =
1

π
2 + nπ

γ2(tn) = sin

(
1

γ1(tn)

)
= sin

(
π

2
+ nπ

)
.

Thus, we’ve found a sequence of points (x, y) with x arbitrarily close to 0 and y alternating between

−1 and 1. This contradicts that the sequential limit γ2(tn) → γ2(c0) as n → ∞. Therefore, S is not

path-connected. �
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2.5 Connected Components

If a topological space X is not connected, how can we detect which connected subset a point lies inside?

Definition 2.8. For any x, y ∈ X, define ∼ by x ∼ y if there exists a connected subspace C ⊆ X that

contains both x and y .

Is ∼ an equivalence relation?

Proof. Symmetry and reflexivity are clear. For transitivity, suppose that x, y , z ∈ X and that x ∼ y , y ∼
z . This means that there exist connected subspaces C1, C2 of X such that x, y ∈ C1 and y , z ∈ C2. Both

C1 and C2 have y as a common point so their union C = C1∪C2 is connected. Thus x, z ∈ C-connected

so x ∼ z . �

Now we can define the equivalence classes of X with respect to ∼. We call these equivalences classes

the connected components of X. Thus, we may write X as the disjoint union X =
⋃
i∈I Ci where {Ci}i∈I

denotes the collection of connected components of X. We call such a union a connected component

decomposition.

e.g.

1) For a connected space X, its connected component decomposition is trivial, namely X = X.

2) Consider any set X equipped with the discrete topology on X, (X,P(X)). The decomposition of

X into connected components is X =
⋃
x∈X{x}.

Is example 2 the only case of such a decomposition?

3) Consider Q ⊆ R equipped with the subspace topology. The rationals are totally disconnected so

the connected component decomposition is Q =
⋃
q∈Q{q}. Note that the subspace topology is

“very non-discrete”.

Remark Indeed, this decomposition is possible if and only if the space is totally disconnected.

To justify the name of connected components, we present a theorem.

Theorem 2.9 The connected components of X are disjoint, connected subspaces of X such that every

connected subspace Y ⊆ X intersects at most one of these components.

Proof. Since the components of X are equivalence classes, they are disjoint and their union is X. Each

connected subspace A of X intersects only one of them. If A intersected C1 and C2 at points x1, x2

respectively, then x1 ∼ x2 and this can’t happen unless C1 = C2. To show that each component Ci is

connected, fix x0 ∈ Ci . For each x ∈ Ci there exists a connected space Ax containing x and x0. Since

Ax ∩Ci , ∅, Ax ⊆ Ci . Then the union Ci =
⋃
x∈Ci Ax is connected as all the Ax are connected and have

x0 as a point in common. �
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e.g. Let X = (0, 1) \
{

1

n
: n ∈ N

}
=

⋃
n∈N

(
1

n + 1
,

1

n

)
︸       ︷︷       ︸

An

.

Claim The connected components of X are the An.

Proof. All the An are connected so for each An, there exists a connected component C such that An ⊆ C.

Suppose that there exists a connected component C such that for i , j , Ai ∪ Aj ⊆ C. Note that

Ai =

(
1

i + 1
,

1

i

)
=

(
1

i + 1
,

1

i

)
∩X

=

[
1

i + 1
,

1

i

]
∩X

so C contains a non-trivial clopen set and thus can’t be connected. �

Proposition 2.10. The connected components Ci of X =
⋃
i∈I Ci are closed.

Proof. The closure Ci is connected and intersects at most one connected component of X, namely Ci .

Thus, Ci ⊆ Ci so Ci = Ci and so the claim follows. �

Remark This statement in general is false for path-connected components.

2.6 Path-Connected Components

Definition 2.11. For x, y ∈ X, define ∼ by x ∼ y if there exists a path from x to y .

As before, we verify that ∼ is an equivalence relation.

Proof. Let x, y , z ∈ X. For reflexivity, simply take the constant path at x . For symmetry, given a path

f from x to y , consider the reverse path f̃ from y to x defined by f̃ (t) = f (−t). For transitivity, let

x ∼ y and y ∼ z . Thus, there exist paths f : [0, 1] → X and g : [0, 1] → X from x  y and y  z

respectively. We construct a map h : [0, 1]→ X defined by

h(s) =

 f (2s), s ∈ [0, 1/2]

g(2s − 1), s ∈ [1/2, 1].

Both f and g are continuous maps that agree (with value f (1/2) = g(1/2) = y) on the intersection of

the closed intervals A = [0, 1/2] and B = [1/2, 0]. Therefore, the pasting lemma applies and h is a path

from h(0) = f (0) = x to h(1) = g(1) = z .

x

y

z

�

Once again, we can define the equivalence classes of X with respect to ∼ and refer to them as the

path-connected components of X. The path-connected component decomposition of a space is defined

analogously.
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Now we have two types of decompositions of a topological space. Naturally, if possible, we’d like to

relate the two somehow. We already know that if a space is path-connected, then it’s necessarily con-

nected. Thus, a path connected component decomposition is a refinement of its connected component

counterpart.

e.g. Consider Q ⊆ R. Since Q is totally disconnected and we can’t refine the connected component

decomposition any further, it coincides with Q’s path-connected component decomposition.

e.g. The space X = (0, 1) ⊆ R is path connected so its path-connected component decomposition is

trivial.

e.g. For the topologist’s sine curve, S, it’s connected so has a trivial decomposition into connected

components. How about its path-connected decomposition?

Claim S’s decomposition into path connected components is

S = A ∪ B, where A = S, B = {0} × [−1, 1].

Proof. Both A and B are path-connected so either A∪B is a single path-connected component or both

A and B constitute distinct path-connected components. The former isn’t possible because A ∪ B = S

isn’t path-connected. �

e.g. X = S \ ({0} × Q) is connected as S is connected and S ⊆ X ⊆ S.

What are the path-connected components of X?

After removing the rational points {0} × [−1, 1] from S, S remains path-connected so it’s contained

in some path connected component of X (possibly larger than S itself). Had there been a path between

(0, i), where i ∈ (R \ Q) ∩ [−1, 1], and any point in S, there would’ve been such a path in S before we

removed any points. We’ve already ruled out such a case so S is a path-connected component of X.

Claim Every point (0, i) belongs to a different path-connected component.

Proof. Suppose that between any two points (0, i1) and (0, i2), there exists a path p between them. The

path must be contained in X \ S otherwise (0, i1) would be in the same path-connected component as

S. Since p is continuous, by the IVT p must attain a point on {0} × [−1, 1] with a rational second

coordinate. This is a contradiction. �

Therefore, the path-connected component decomposition of X is

X = S
⋃
{(0, i)}i∈(R\Q)∩[−1,1].

Remark Note that removing S from X would totally disconnect it.
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2.7 Compact Spaces

Recall that if A ⊆ Rn is compact and f : A → R is continuous, then f attains both extrema and is

uniformly continuous. We’d like to find a topological generalisation of this notion of compactness we had

in Euclidean spaces.

Definition 2.12. Let X be a topological space and A = {Ai}i∈I be a family of subsets of X.

1) We call A a cover of X if X =
⋃
i∈I Ai .

2) If A is a cover of X and every element Ai ∈ A is open, we call A an open cover of X.

3) A finite subcover of a cover A is a subcollection {Ai}i∈I ′ ⊆ A where |I ′| <∞ and X =
⋃
i∈I ′ Ai .

4) We call X compact if every open cover A of X admits a finite subcover of X.

e.g. The real line R is not compact. It suffices to find a single open cover of R that doesn’t admit a

finite subcover. Consider the open cover A = {(z − 1, z + 1) : z ∈ Z}. Any finite subcollection, say

{(z − 1, z + 1) : z ∈ I ′} ⊆ A, where |I ′| < ∞, will have a maximum Z = max{|z | : z ∈ I ′}. Now note

that ⋃
z∈I ′

(z − 1, z + 1) ⊆ (Z − 1, Z + 1) ( R.

The claim follows.

e.g. X = (0, 1) � R is not compact. If our topological definition of compactness is to be consistent5

with the Euclidean definition (closed and bounded), then (0, 1) better not be compact. We verify this by

explicitly constructing an open cover that admits no finite subcover:

X =
⋃
n∈N

(
1

n + 2
,

1

n

)
Suppose that there exists a finite subcover. This subcollection will have a positive minimum value and

we can always find an x ∈ (0, 1) such that x is smaller than this minimum. Thus, the claim follows.

e.g. X = [0, 1]

Claim X is compact.

Proof. Let A = {Ai}i∈I be an open cover of X. Call X = X0 and divide it in half i.e. X0 = [0, 1/2] ∪
[1/2, 1] and suppose that X0 can’t be covered by finitely many of the Ai . Then, we can’t cover either

[0, 1/2] or [1/2, 1] by finitely many of the Ai . Call the interval that can’t be covered in such a way, X1.

Proceeding inductively, we obtain a sequence {Xi}i∈N0 of intervals with length 2−i that can’t be covered

by finitely many Ai . This sequence is nested i.e. for each i ∈ N0, Xi+1 ⊆ Xi .

5We’ll also see that compactness is a topological invariant so R and (0, 1) being homeomorphic and the real line not

being compact necessarily implies that (0, 1), too, is not compact.
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Lemma (Cantor’s Lemma) For a nested sequence {Xi}i∈N of closed and bounded sets in R, their

intersection is non-empty and
⋂
i∈NXi = {x0}. Equivalently, if Xi = [xi1 , xi2 ], then {xi1}i∈N, {xi2}i∈N are

convergent with the same limit x0 as i →∞.

Since {Ai}i∈I is an open cover of Xi , there exists an i0 ∈ I such that x0 ∈ Ai0 . Since Ai0 is open,

there exists an ε0 > 0 so that for sufficiently large i , Xi ⊆ (x − ε0, x + ε0) ⊆ Ai0 . This contradicts that

Xi can’t be covered by finitely many Ai . Indeed we covered Xi by a single open set Ai . �

e.g. S =

{
1

n
: n ∈ N

}
⊆ R

By the Euclidean definition, S is bounded but not closed (since 0 is a limit point but not in the closure).

Each singleton set is open in the subspace topology on S so take S as its own open cover. This set is

infinite so any finite subcollection won’t cover S. Thus, S isn’t compact.

Remark The topology here in the example above is discrete and (X,P) is compact iff |X| <∞.

e.g. Consider X = S ∪{0}. Given an open cover X =
⋃
i∈I Ai of X, there exists at least one i0 ∈ I such

that Ai0 contains the origin. As Ai0 is open, it in particular contains a neighbourhood of the origin i.e. all

but finitely many elements {
1

n1
, . . . ,

1

nk

}
⊆ S.

For all j 6 k , there exists an ij ∈ I such that 1/nj ∈ Aij . Then X = Ai0 ∪ Ai1 ∪ · · · ∪ Aik is an finite

subcover of our original arbitrary open cover. Thus X is compact.

e.g. Let X be an infinite set equipped with the finite complement topology, Tf . If X =
⋃
i∈I Ai is an

open covering of X, there exists an i0 ∈ I such that |X \Ai0 | <∞ i.e. X \Ai0 = {x1, . . . , xk}. For every

j 6 k , there exists an ij ∈ I such that xj ∈ Aij . Therefore, X = Ai0 ∪ Ai1 ∪ · · · ∪ Aik is a finite subcover.

Remark For any Y ⊆ (X, Tf ), the induced topology will also be a finite complement topology so Y is

also compact.

e.g. We’ve already found that R isn’t compact. It turns out that we can compactify6 the real line by

adjoining a single point (to form a set R = R ∪ {∞}) and constructing a topology O on this set which

is compact and such that O|R coincides with the standard topology on R.

Suppose that X is a topological space and Y ⊆ X is a subspace. Given a topology on X, we’d like to

discuss whether Y is compact. It turns out that an intrinsic open covering of Y (i.e. by sets in Y ) and an

extrinsic open covering of Y (by sets open in X) are equivalent notions.

Let Y =
⋃
i∈I Ai be an open covering of Y . For each i ∈ I, there exists a Bi open in X such that

Ai = Bi = Y . Thus Y =
⋃
i∈I Bi ∩ Y i.e. Y ⊆

⋃
i∈I Bi .

Conversely, given a family of open sets {Bi}i∈I in X satisfying Y ⊆
⋃
i∈I Bi , we can write Y = (

⋃
i∈I Bi)∩

Y =
⋃
i∈I (Bi ∩ Y )︸    ︷︷    ︸

=:Ai

i.e. {Ai}i∈I is an intrinsic open covering of Y .

6This is called the Alexander/one-point compactification of a space.
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This example seems innocent enough but it happens to be a very powerful change of viewpoint when

it comes to proving facts about subspaces!

Theorem 2.13 Let X be a compact topological space and Y ⊆ X be closed in X. Then Y is compact.

Proof. Let U = {Ui}i∈I be an open cover of Y by open sets Ui in X. Then X = (
⋃
i∈I Ui)∪ (X \ Y ) is an

open cover of X. Since X is compact, this open cover admits a finite subcover i.e. ∃I ′ ⊆ I with |I ′| <∞
such that X =

⋃
i∈I ′ Ui . This is certainly a finite open cover of Y . If X \ Y is one of the Ui , it contains

no points of Y so we may certainly throw it away, leaving a finite subcover. Otherwise, we leave {Ui}i∈I ′
alone. Either way, we conclude that Y is compact. �

Is the converse statement true i.e. is a compact subspace Y ⊆ X necessarily closed?

Recall that every subspace (closed or not) of (X, Tf ), where X is an infinite set, is compact.

The next theorem is another step on the way to proving that in a Euclidean space (which are all

Hausdorff), closed and boundedness are equivalent to being compact.

Theorem 2.14 Let X be a Hausdorff topological space and Y ⊆ X be a compact subspace. Then Y is

closed in X.

Proof. We equivalently show that X \ Y is open. Fix x0 ∈ X \ Y . We aim to excise a neighbourhood of

x0 contained in X \ Y and x0 being arbitrary’d mean that X \ Y is open.

As X is Hausdorff, for each y ∈ Y there exist disjoint open neighbourhoods7 Uy , Vy in X of y , x0

respectively. The family {Uy}y∈Y is an open cover of Y (by sets open in X) so Y ⊆
⋃
y∈Y Uy . By the

compactness of Y , there exists a finite subcover {Uy1 , . . . , Uyn} of Y . Set V =
⋂n
i=1 Vyi to be an open

neighbourhood of x0. We claim that V ∩ Y = ∅ i.e. that this is the neighbourhood that we wanted in

X \ Y . Observe that:

V ∩ Y ⊆ V ∩
 n⋃
i=1

Uyi

 =

n⋃
i=1

(
Uyi ∩ V

)
=

n⋃
i=1

Uyi ∩
 n⋂
j=1

Vyj




⊆
n⋃
i=1

(
Uyi ∩ Vyi

)
=

n⋃
i=1

∅ = ∅

�

7A priori, the neighbourhoods depend on x0 and y but we’ve fixed the former so we’ll suppress its dependence.
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e.g.

1) Consider [a, b] ⊆ R. Since R is Hausdorff and [a, b] is closed, [a, b] is compact. This is consistent

with our proof that [0, 1] is compact since [a, b] � [0, 1].

2) [a, b) � (a, b] aren’t compact as they aren’t closed subsets of the Hausdorff space R.

Theorem 2.15 The continuous image of a compact space is compact.

Proof. Let f : X → Y be continuous and X be compact. WLOG, we can restrict f onto its image and

suppose that f is surjective. Let {Ai}i∈I be an open cover of Y . As f is surjective, {f −1(Ai)}i∈I is an

open cover of X. By the compactness of X, this open cover admits a finite subcovering {f −1(Ai)}i∈I ′
with I ′ ⊆ I and |I ′| <∞. Since f is surjective8, f (f −1(Ai)) = Ai for each i ∈ I ′. Thus {Ai}i∈I ′ is a finite

open cover of Y . Thus, Y is compact. �

e.g.

1) Any quotient space of a compact space is also compact.

2) The trace f ([a, b]) of any path f : [a, b]→ X is compact.

e.g. Suppose that X is a product space X = X1×X2 and that X is compact. Since π1, π2 are surjective

continuous maps, both X1 and X2 are compact. This can be extended to a product of arbitrarily many

spaces. We can also conclude that for some i0 ∈ I, the image of the map that excludes exactly one

element of the product

π̃i0 : X →
∏

i∈I\{i0}
Xi

is compact.

Theorem 2.16 (Finite Compact Product) The product of finitely many compact spaces is compact.

e.g. [0, 1]n ⊆ Rn is compact.

Theorem 2.17 (Tychonoff’s Theorem) If {Xi}i∈I is an arbitrary collection of compact topological

spaces, then their product equipped with the product topology is compact.

e.g. [a, b]ω =
∏
n∈N

[a, b] is compact in the product topology. With the box topology, [a, b]ω isn’t a9

compact.

8For a general f : X → Y with A ⊆ Y , we have that f (f −1(A)) ⊆ A.
9In other literature, compact spaces can be referred to as compacts.
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In order to prove the Finite Compact Product theorem, we’ll need a preparatory lemma.

Tube Lemma Let X, Y be topological spaces, Y -compact, x0 ∈ X fixed and N ⊆ X × Y be an open set

in the product topology containing the slice {x0}×Y ⊆ N. Then there exists a tube i.e. a neighbourhood

W of x0 in X such that N ⊇ W × Y .

Y

X
x0

W × Y

N

Proof of the Finite Compact Product Theorem. Assume that X, Y are compact topological spaces. As-

suming the tube lemma, we’ll prove that their product is compact. By induction, we’ll extend to a finite

product.

Suppose that we have an open cover {Ai}i∈I of X × Y . Let x0 ∈ X be an arbitrary point and consider

the slice {x0}× Y ⊆
⋃
i∈I Ai . As {x0}× Y � Y and Y is compact, there exists a finite indexing set I ′ ⊆ I

with

{x0} × Y ⊆
⋃
i∈I ′

Ai

 =: N.

By the tube lemma, N contains a tube i.e. there exists a neighbourhood W of x0 such that W × Y ⊆
N =

⋃
i∈I ′ Ai . So far, we’ve proven that for10 every x ∈ X, there exists a neighbourhood Wx of x and a

finite indexing set I ′x ⊆ I such that Wx × Y ⊆
⋃
i∈I ′x Ai . Since {Wx}x∈X is an open cover of X-compact,

there exists a finite set {x1, . . . , xn} ⊆ X such that X =
⋃n
i=1Wxi . Then

X × Y =

 n⋃
i=1

Wxi

× Y =

n⋃
i=1

(
Wxi × Y

)
⊆

n⋃
i=1

⋃
j∈I ′xi

Aj


the last of which is a finite union of a finite union so this constitutes a finite subcovering. �

10The problem is that there are potentially infinitely many x ∈ X. By the compactness of X, we can narrow this down.
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Proof of the Tube Lemma. Consider A = {U × V ⊆ N : U ⊆ X, V ⊆ Y are open and x0 ∈ U}. This

is an open cover of {x0} × Y (by the definition of the product topology). Since {x0} × Y � Y and Y

is compact, {x0} × Y is also compact so A admits a finite subcover {Ui × Vi}ni=1 of {x0} × Y . Take

W =
⋂n
i=1 Ui i.e. an open neighbourhood of x0. For every (x, y) ∈ W ×Y , there exists an i0 ∈ {1, . . . , n}

such that y ∈ Vi0 and x ∈ W ⊆ Ui0 . Therefore, (x, y) ∈ Ui0 × Vi0 ⊆ N (by the definition of A). �

e.g.

1) [0, 1]n ⊆ Rn is compact.

2) [0, 1]ω ⊆ Rω is compact by Tychonoff’s theorem.

3) [0, 1]ω ⊆ Rω is not compact when equipped with the box topology.

2.7.1 Compact Subspaces of R

Recall that a closed subspace of a compact space is compact and that if Y is a compact subspace of a

Hausdorff space, then Y is closed.

Theorem 2.18 Let A ⊆ Rn. Then A is compact iff A is closed11 and bounded.12

Proof. Suppose that A ⊆ Rn is compact. Since Rn is Hausdorff, A is closed. Any compact space is

bounded in every metric generating the topology on the space (from an assignment). For the converse,

A being bounded means that ∃R > 0 such that A ⊆ [−R,R]n where [−R,R]n is compact as a finite

product of compact spaces. As a closed subspace of a compact space, A is therefore compact. �

Theorem 2.19 (Extreme Value Theorem) Let X be a compact topological space and f : X → R be a

continuous map. Then f attains its extrema i.e. ∃c, d ∈ X s.t. for all x ∈ X, f (c) 6 f (x) 6 f (d).

Proof. WLOG, we may assume that f : X → f (X) is surjective. We’re going to prove that f (X) has

a maximum. Suppose that such a maximum doesn’t exist. Since f (X) is the continuous image of a

compact space, it is also compact. Since f (X) is unbounded above, for every a ∈ f (X) ∃b ∈ f (X) s.t.

b > a =⇒ a ∈ (−∞, b) so we may re-write f (X) as:

f (X) = f (X) ∩ R = f (X) ∩

 ⋃
b∈f (X)

(−∞, b)

 =
⋃

b∈f (X)
(f (X) ∩ (−∞, b)) .︸                             ︷︷                             ︸

...

This is an open cover of f (X) by sets open in f (X). As f (X) is compact, there exists a finite subcover

i.e. ∃b1, . . . , bk ∈ f (X) such that

f (X) ⊆
k⋃
i=1

(−∞, bi).

11Topologically i.e. the complement of an open set.
12With respect to the Euclidean metric.
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WLOG, assume that bk = max16i6k{bi} so that bk ∈ f (X) ⊆ (−∞, bk). This is a contradiction. Thus,

there is such a maximum. The argument for a minimum is similar. Thus, f attains its extrema. �

Recall Cantor’s theorem which states that a continuous real-valued function on [a, b] is uniformly

continuous. We can generalise this to the setting of metric spaces. First come a few definitions and the

concept of a Lebesgue number.

Definition 2.20. Let (X, dX) and (Y, dY ) be metric spaces.

A function f : (X, dX)→ (Y, dY ) is called continuous at x0 ∈ X if for every ε > 0, there exists a δε,x0 > 0

such that dX(x0, x) < δε,x0 =⇒ dY (f (x0), f (x)) < ε.

A function f : (X, dX) → (Y, dY ) is called uniformly continuous on X if for every ε > 0, there exists a

δε > 0 such that for all x, y ∈ X, dX(x, y) < δε =⇒ dY (f (x), f (y)) < ε.

Definition 2.21. Let (X, d) be a metric space and A ⊆ X. The diameter of A is defined to be

diam(A) := sup
x,y∈A

d(x, y).

Lemma 6 (Lebesgue Number) Let (X, d) be a compact metric space and A = {Ai}i∈I be an open

cover of X. Then ∃δ > 0 such that for all A ⊆ X with diam(A) < δ, there exists an i0 ∈ I such that

A ⊆ Ai0 .

Proof. Omitted.13 �

e.g. We’ll consider an open covering of X = R that doesn’t admit a Lebesgue number:

X =

⋃
n∈Z

(n, n + 1)

 ∪
⋃
n∈Z

B 1
|n|+1

(n)

 .︸              ︷︷              ︸
...

(For the radius of the balls, we could’ve taken any function
n→∞−→ 0.)

Given δ > 0, take Un = (n − δ/3, n + δ/3). This is an open set whose diameter is 2δ/3 < δ and for

n >> 0, Un is not contained in any of the members of the covering.

Remark It’s not the case that for a space that isn’t compact, every open cover doesn’t admit a Lebesgue

number. Indeed, some open covers of R do admit Lebesgue numbers (possibly infinite in some cases).

13A plain English statement of this theorem is as follows: for every subset of a compact space with diameter less than a

Lebesgue number, there’s at least one element of the cover that contains it.
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Theorem 2.22 Let f : (X, dX) → (Y, dY ) be a continuous map. If X is compact, then f is uniformly

continuous.

Proof. Let f : X → Y be continuous. We may suppose that f is surjective onto its image. Let ε > 0.

We’re going to construct a δε. Consider the set of metric balls A′ = {BdY (y , ε/2) : y ∈ Y } which is

an open covering of Y . Take A = {f −1(BdY (y , ε/2)) : y ∈ Y }. This is an open cover of X by the

surjectivity of f . As X is assumed to be compact, it has a Lebesgue number δ > 0.

Claim This is the δε we’ve been looking for.

Suppose that dX(x, x̃) < δ i.e. diam({x, x̃}) < δ. By the definition of a Lebesgue number, there

exists a y ∈ Y such that {x, x̃} ⊆ f −1(B(y , ε/2)). This implies that f (x), f (x̃) ∈ B(y , ε/2). By the

triangle inequality, we may conclude that

d(f (x), f (x̃)) 6 d(f (x), f (y)) + d(f (y), f (x̃)) < ε/2 + ε/2 = ε.

�

2.8 Local Compactness

Definition 2.23. A topological space X is called locally compact if for every x ∈ X, there exists a

compact set C ⊆ X that contains x and a neighbourhood of x .

e.g.

1) If X is compact, then X is locally compact (let X = C).

2) X = R is locally compact. Given x ∈ R, simply take C = [x − 1, x + 1].

3) X = Q ⊆ R isn’t compact.

Claim It isn’t locally compact either!

Proof. Take 0 ∈ Q. Subclaim No set C containing 0 and a neighbourhood of 0 is compact.

Suppose that such a set exists i.e. C ⊇ ((−ε, ε)∩Q) is compact. Consider [α, β] ⊆ (−ε, ε) where

α, β ∈ R with |α|, |β| < ε. Then C ⊇ ((α, β) ∩ Q) =: A is closed in a compact space, so A is

compact. Since A is compact in R which is a Hausdorff space, A is closed in R. Thus, A is equal

to it’s own closure in R. However, this contradicts that

AR = [α, β] ) [α, β] ∩ Q = A

�
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4) X = Rω equipped with the product topology isn’t locally compact. Suppose that C is a compact

subset of X containing any open set i.e.

C ⊇
∏

i,i1,...,ik

R×
k∏
j=1

Uij

Take any i < {i1, . . . , ik} and consider the projection πi(C) = R. This contradicts the continuous

image of a compact set being compact. Thus, the claim follows.

5) Note that the topologist’s sine curve S = {(x, sin 1/x) : x ∈ (0, 1]} � (0, 1]. Given (x, sin 1/x) ∈ S,

take [a, b] ⊆ (0, 1] with x ∈ [a, b] so that the image of [a, b] under f : x 7→ (x, sin 1/x) (a continuous

map) is a compact set. Thus, S is locally compact.



Chapter 3

Algebraic Topology

For a thorough treatment of the fundamental group of a topological space and the notions of homotopy

(equivalence), retractions and covering spaces, I highly recommend reading the 1st chapter from [3].1

What follows is a mixture of the lectures and Hatcher’s text.

The main goal of algebraic topology is to classify topological spaces up to homeomorphism through their

algebraic structures. Thus we’re interested in techniques for forming algebraic images of topological

spaces. The mechanisms that create these images are called functors and have the characteristic feature

that they form images of not only spaces, but also of maps. Thus, continuous maps between spaces are

projected onto homomorphisms between their algebraic images.

One of the simplest and most important functors of algebraic topology is called the fundamental group.

It creates an algebraic image of a space from the loops in the space. The fundamental group is defined

in terms of loops and deformations of loops.

3.1 Homotopy

Definition 3.1. Let X and Y be topological spaces and f0, f1 : X → Y be maps. We say that f0 is

homotopic to f1 if there exists a homotopy between them. A homotopy is a family of maps ft : X → Y ,

t ∈ I = [0, 1] ⊆ R, such that the associated map F : X × I → Y given by F (x, t) = ft(x) is continuous

in the product topology.

In particular, we may consider paths with fixed endpoints. Thus, the idea of continuously deforming a

path while keeping its endpoints fixed is made precise by homotopies.

Definition 3.2. A path in a space X is a continuous map f : I → X. A homotopy of paths in X a

family of maps ft : I → X, where t ∈ I, such that the endpoints ft(0) = x0, ft(1) = x1 are independent

of t and the associated map F : I × I → X defined by F (s, t) = ft(s) is continuous. When two paths

f0, f1 are connected via a homotopy ft , they are said to be path homotopic and we write f0 ' f1.

1https://www.math.cornell.edu/˜hatcher/AT/AT.pdf

55

https://www.math.cornell.edu/~hatcher/AT/AT.pdf


CHAPTER 3. ALGEBRAIC TOPOLOGY 56

Proposition 3.3. The relation of homotopy on paths with fixed endpoints in any space is an equivalence

relation. (Thus, we may define the equivalence class of a path under the relation of path homotopy. We

denote the equivalence class [f ] and call it the homotopy class of f .)

Proof. Reflexivity is evident via the constant homotopy ft = f for all t ∈ I. For symmetry, if f0 ' f1

via the homotopy ft , then f1 ' f0 via the homotopy f1−t . For transitivity, suppose that f0 ' f1 via the

homotopy ft and that f1 = g0 with g0 ' g1 via the homotopy gt . Then f0 ' g1 via the homotopy

ht , where ht = f2t over t ∈ [0, 1/2] and ht = g2t−1 over t ∈ [1/2, 1]. These two definitions agree for

t = 1/2 as we’ve assumed that f1 = g0. The associated map H(s, t) = ht(s) is given by

H(s, t) =

 F (s, 2t), (s, t) ∈ I × [0, 1/2]

G(s, 2t − 1), (s, t) ∈ I × [1/2, 1]

and is continuous on I × I by the pasting lemma. �

Definition 3.4. Given two paths f , g : I → X such that f (1) = g(0), there is a composition or product

path f · g that traverses f followed by g and is defined by

(f · g)(s) =

 f (2s), s ∈ [0, 1/2]

g(2s − 1), s ∈ [1/2, 1].

Note that f and g are traversed twice as fast so that their product is a map from the unit interval into X.

It turns out that path concatenation respects homotopy classes i.e. [f ][g] = [f · g]. This is because if

f0 ' f1 and g0 ' g1 via the homotopies ft , gt respectively with f0(1) = g0(0) (so that f0 · g0 is defined),

then ft · gt is defined and provides a homotopy f0 · g0 ' f1 · g1.

3.2 The Fundamental Group (π1)

In particular, suppose that we restrict our attention to paths f : I → X with the same starting and

endpoint, f (0) = f (1) = x0 ∈ X. Such paths are called loops and x0 is called the basepoint of the loop.

The set of all homotopy classes [f ] of loops f : I → X at the basepoint x0 is denoted π1(X, x0).

Theorem 3.5 The set π1(X, x0) equipped with the operation [f ][g] = [f · g] for all loops f , g in X is a

group. We call this group the fundamental group of X at the basepoint x0.
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Now it’s natural to ask how the fundamental group of a space X depends on its basepoint x0 ∈ X.

Since π1(X, x0) involves only the path-connected component of X containing x0, we can only hope to find

a relationship between fundamental groups if their basepoints lie in the same path-connected component

of X.

Definition 3.6. For a path γ : I → X from x1 to x0, we define a change of basepoint map βγ : π1(X, x0)→
π1(X, x1) by βγ([f ]) = [γ · f · γ] where γ denotes the reverse path from x0 to x1.

Remarks

• Note that we have a choice of paths (γ · f ) · γ and γ · (f · γ) but they’re homotopic and we’re only

only interested in homotopy classes so either choice suffices for the purpose of our map βγ .

• The change-of-basepoint map is well defined as ft being a homotopy of loops based at x1 implies

that γ · f · γ is a homotopy of loops based at x0.

Proposition 3.7. The change of basepoint map βγ is an isomorphism.

Thus, for a path-connected space X, the group π1(X, x0) is, up to isomorphism, independent of the

choice of basepoint x0. In this case, we just abbreviate π1(X, x0) to π1(X).

Definition 3.8. A topological space X is called simply connected if it is path connected and has a trivial

fundamental group. What this means is that all loops in the space are homotopic to a constant loop.

Such loops are called contractible.

This last chapter was somewhat rushed and I added details to fill the blanks in. Thus, it’d be wise

to consult your own notes as for what’s examinable. The fundamental group is actually the first in a

sequence of groups πn(X, x0) called homotopy groups. We won’t go into homotopy groups here for

n > 2.
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Congrats on reaching the end and I wish you all the best of luck in the exam.

- Khallil r
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