Introduction to
Python & Algorithms

by Khallil Benyattou

ATL Yy FR
IR

March 3, 2024



Contents

Chapter 1 Overview

1.1

1.2
1.3
1.4
1.5

What is computation(al problem solving)? ..........ccccvviiiinnneeeeieinnnn.

Declarative and Imperative Knowledge .

A Brief History of Computers..........cc.ooviiuiiiiiiiiiiiniiiiniiiniiinecies
Primitives and Languages.........cccoeeueiiiiiiiiiiiiiiiiiiiiieiec e

Different Dimensions of a Programming Language

Chapter 2 Core Elements of a Program

2.1

2.2
2.3
24
2.5

2.6

Data Ty PES ceneineineiee ettt

Relations Between Object Types . Type Checking @])

Variables and ASSIgNMENt ..........ooouviiiieiiniiiieiee e
MOTE Data TYPeS..cuneniniiiieieie et
Mutable and Immutable..........c.ooiiiiiiiiiii e
(076} 115 o) I 2 (o) L TP P PPNt

Multiple Conditions .

EXCEPTIONS . ovniiiiiieii e

Defensive Programming .

Chapter 3 Machine Interpretation of a Program

3.1
3.2
3.3

3.4

A EE T TcTS] o2Vt P PPN

Lifetimes, Creation and Types .

Chapter 4 Problem Solving

4.1
4.2
4.3

Enumerative EXhaustion ........ccooooiiiiiiiiieeee
BiSECtion SEarchl .......co.viniriiii
RECUISION .

The Tower of Hanoi .

Chapter 5 Time Complexity and Order of Growth

5.1
5.2
5.3

5.4
9.5

The Random Access Model
Running Time
Calculating Complexity
Loops . Recursive Algorithms .

ASYMPLOtic NOGATION 1.uvvniiie it e e e e e et e e e e e e e e e eaenas

Efficiency

Chapter 6 Search Methods

6.1
6.2

Linear Search
Aside: How Python Implements Lists

Implementation .

Syntax and SEeMAaNtICS «.....couuuiiuiiiiieiie e

Elements of Fixed Size . Elements of Variable Size (Linked Lists) |D Python’s List

........................ m



6.3

BINary SEArCh......c...iiiiiiiii e

Chapter 7 Sorting Algorithms

7.1
7.2
7.3

7.4

Amortisation ANALYSIS........uiiiiiiiii e
SELECHION SOTE ettt ettt
IMETZE SOOI+ttt ettt ettt e
Complexity Calculation ‘

Amortisation Analysis 2: Electric Boogaloo.............ccouuiiiiiiiiiniiiiiinniiiiiinieineecc

Chapter 8 Hashing

Chapter 9 Classes

9.1

9.2
9.3

Creating and Instantiating ClasSes..........coeuveiiiiiiiniiiiie e
The Method . Instance Methods . Class Variables .

ODbject RePreSEntation «.........cciuuiiiii ettt
Special (Dunder) Methods. .........uuuuiiiiiiiiiiiiiiiiii

Chapter 10 The Pillars of Object-Orientation

10.1

10.2

10.3

Abstraction and Encapsulation .............coooeiiiiiiiiiiii e

Data Hiding .

TNRETTEANICE ..o evee i
Extending Functionality . Overriding . Useful Built-in Functions 1)
POLYINOTPIISIN L. vttt ettt e e

Chapter 11 Miscellaneous Useful Things

11.1

11.2
11.3
11.4
11.5
11.6

Tterables and TEeTaborS. ... ot

Custom Iterators .
Cartesian ProdUCtS .. ..o

Chapter 12 Extra Things That Pop Up

ii



Disclaimer

I wrote these notes for my own personal use, following the general outline of MIT 6.00
(Fall 2008). I've rearranged parts, omitted others and added a significant amount of
information that I learned from several other sources all over the web.

I have, regrettably, failed to reference the aforementioned sources since I didn’t originally
set out to share these notes with others. Sites and videos I can think of that were useful
around the time of writing include (but are certainly not limited to):

% https://stackoverflow.com/
o We stand on the shoulders of giants.

A Learn Python the Hard Way by Zed Shaw
o Good practice for getting the basics down.

D Python Programming Beginner Tutorials playlist by Corey Schafer
D |So you want to be a Python expert? by James Powell

If anybody is trying to sell you these notes:
o FamHattered:

» These notes are freely available for public access and should not, in any circum-
stance, be sold or distributed for profit.

These notes are hosted in only one location, my website:
https://kbenyattou.github.io/notes/

All errors herein are my own.

iii


https://ocw.mit.edu/courses/6-00-introduction-to-computer-science-and-programming-fall-2008/
https://ocw.mit.edu/courses/6-00-introduction-to-computer-science-and-programming-fall-2008/
https://stackoverflow.com/
https://learnpythonthehardway.org/
https://youtube.com/playlist?list=PL-osiE80TeTskrapNbzXhwoFUiLCjGgY7&feature=shared
https://www.youtube.com/watch?v=cKPlPJyQrt4
https://kbenyattou.github.io/notes/

CHAPTER 1

Overview

The goals listed in the MIT course are as follows:

« be able to use the basic tools of computational thinking to solve small scale prob-
lems,

« understand the role that computation can and cannot play in tackling technical
problems,

« learn to read, write and understand programs written by others,
« understand the fundamental capabilities and limitations of computation, and

+ to gain the ability to map scientific problems into a computational framework.

1.1 What is computation(al problem solving)?

The primary knowledge one should take from this course is the notion of computational
problem solving - the ability to break down a problem into a sequence of simple steps
that a computer can understand and execute. Such a sequence is called an algorithm:

An algorithm is an unambiguous sequence of instructions to solve a problem.

To compute is to execute an algorithm. How does one formulate an algorithm? This
depends on the type of instructions you’d like to execute. The language of declarative
and imperative knowledge give us two ways to formulate instructions.

1.1.1 DECLARATIVE AND IMPERATIVE KNOWLEDGE

Declarative (or descriptive) knowledge refers to information (statements of fact)
that describes things, their attributes and their relation to each other.

An example of declarative knowledge in mathematics is the definition of the positive
square root of a non-negative real number: “\/z is the y > 0 s.t. y? = 2”. This
definition offers a description of the square root. It doesn’t give you an idea of how to
compute it.

This can be contrasted with imperative (or procedural) knowledge:



Imperative (or procedural) knowledge is knowledge exercised in the performance of
some task e.g. a sequence of specific instructions that tells you how to do something.

An example, attributed to Heron of Alexandria, for finding an approximation of the
square root of x > 0 is written in the imperative as follows:

Algorithm 1 Heron of Alexandria’s approximation of y/z for 2 > 0.

1: procedure HERONSQRTAPPROX (%)

2 G<+yg > Initialise a guess g > 0
3 while G? &% z do > Loop terminates when G is “close” to x.
4: G+ 3(G+%) > Update G for the next iteration.
5 end while

6 return G

7: end procedure

Line [T]3] enters a while loop that repeats the content indented by 4 spaces underneath
it (line while the condition before the do evaluates to True. Once an iteration
produces a value of G for which G? ~ z, the loop terminates and the subsequent code
is executed — at this point, we’ve found a “suitable” G.

The name given to the idea that lines of code can test whether an expression evaluates
to either True or False and then change where we are in the sequence of operations is
called the flow of control of the algorithm.

Humans are not very fast at computing things. We use computers to execute algorithms.

1.2 A Brief History of Computers

Computers weren’t always the powerhouses that they are today. Naturally, there’s been
an evolution of what we consider a computer to be.

Initially, the idea was to design a circuit that executed a specific algorithm. Such
machines were the earliest computers — fixed program computers. Examples of these
include basic four function calculators and Turing’s codebreaker machine. This used to
be the way that all computers worked. Fixed program computers are useful but in a
very limited way. They don’t fully capture the idea of problem solving.

Instead of designing a circuit to execute a particular algorithm, the more abstract idea of
a circuit that takes in an algorithm and “adjusts its own wiring” to perform the algorithm
was the real breakthrough of computing. This was the advent of the stored program
computer. Treating an algorithm/program as an input makes it indistinguishable from
the data on which the program operates. To this end, programs could produce programs.
This turned out to be an idea that would completely capture the idea of computation.
Computers became “infinitely” flexible.

Once this became clear as the paradigm for computers, people began to think of the com-
puter itself as a program. In particular, as a kind of program known as the interpreter.
The interpreter is a program that can execute any legal set of instructions.



The basic structure of a stored program computer generally looks like the following
diagram:

Control Unit ‘ instr 1

instr 2
Memory <«

ALU ‘ instr n

We feed a sequence of instructions into the stored computer where it’s stored in memory
(and treated as data). The memory is connected to a control unit and an arithmetic
logic unit (ALU). The program counter (PC) to some location in memory, typ-
ically the first instruction in the sequence.

The instructions are typically very simple e.g. take the value of two places in memory,
run them through the multiplier (some piece of circuitry) in the ALU, and then stick
them back to some place in memory. Having executed the first instruction, the program
counter changes and points to another place in memory - the next instruction if our
program is linear, or perhaps another place if a test succeeds/fails. This is how programs
are executed.

Now that we have a rough outline of how a stored program works, we can focus on the
algorithms that are fed into them.

1.3 Primitives and Languages
To describe an algorithm, we need a set of primitive instructions to define and manipulate
data and control the flow of execution. The primitives we choose will determine the range
of algorithms we can express. Thus, this choice is a very important one.
Fortunately, computer scientist Alan Turing showed that with only 6 primitives (each
of which operates on a single bit of information), we can program anything that can be

described by a mechanical process.

It would be painful to use only these 6 atomic primitives to code. Instead, we can
abstract further to create a new set of more complex primitives.

A programming language is a notation for writing programs.

What distinguishes one language from another is largely due to the combining mecha-
nisms defined to manipulate data and execution flow in a program.

We can describe programming languages on 3 notable axes:



1.4 Different Dimensions of a Programming Language

1. High vs Low Level
This is a measure of how close the language is to the guts of the machine.
At the very bottom (low level) of the spectrum, there’s machine code - sequences
of 0s and 1s that the machine understands and executes. A step above is assembly
and is an example of a low level language. Higher level languages abstract away
from the most basic primitives that drive computer interaction.

2. General vs Targeted
Does the set of primitives support a broad range of applications or only a small
set?
MATLAB, for example, is a language targeted at matrix and vector operations.

3. Interpreted vs Compiled
Since computers only understand binary, getting a computer to perform tasks
requires some sort of translator to take source code (instructions that you type) and
turn them into machine code. With compiled languageaﬂ a compiler takes your
program and produces another program written in assembly. For an interpreted
language, the interpreter typically executes commands directly from your source
code.

o Compiled languages are usually faster but aren’t readable by humans. Since
assembly language differs between each individual computer (depending on
its architecture), compiled code can only run on computers that have the
same architecture as them when they were compiled.

o Interpreted languages are generally slower but are easier to debug because
error codes come back in terms of the source code (which we can read very
easily).

Python is a high level, general purpose and interpreted language.

All that follows is in the Python programming language unless otherwise specified.

1.5 Syntax and Semantics

The description of a programming language is usually split into syntax (form) and
semantics (meaning).

The syntax of a programming language describes which strings of characters and
symbols form a valid program.

Typing 3+4 into the interpreter is syntactically correct but 3 4 is not

L Any language can be compiled or interpreted. However, it is well understood that if we call a
language itself interpreted or compiled, we really mean the particular implementation of the language
that we’re referring to.



By analogy with English, the syntax describes which strings of words constitute well-
formed (but not necessarily meaningful) sentences e.g. “All your base are belong to us.”
is syntactically well-formed but it isn’t meaningful:

The static semantics of a programming language describes what syntactically valid
programs mean.

3/'abc' is syntactically correct because it’s in the form value-operator-value but Python
would tell us that there’s no real meaning to this. Dividing an integer by some text is
meaningless. The expression is static semantically incorrect.

Value-operator-value can be compared to noun-verb-noun in English. e.g. “I are big” is
syntactically well-formed but isn’t meaningful.

The semantics of a programming language describe what syntactically valid programs
mean.

In natural language, sentences can be ambiguous. However, in programming languages,
every well-formed program has exactly one meaning. If a program is well formed and
means something, then that is what it means (despite it potentially not meaning what
you intended).

Depending on how well written a program is, various outcomes are possible when it’s
finally executed. A program can run to completion and give you the desired output,
crash, infinitely loop or even run to completion and give you an answer that you didn’t
expect. To combat any undesirable outputs, one needs to develop a way (or style) of
writing code that makes it easy to spot where semantic bugs come from.



CHAPTER 2

Core Elements of a Program

To write a program, we need a way to represent data.

Objects are Python’s abstraction for data.

All data in a Python programﬂ is represented by objects or relations between objects.
Each object has a value, identity and type.

« The type of an object determines the size and layout of the object’s memory, the
range of values that can be stored in the memory and the set of operations that
the object supports.

o The identity of an object can be thought of as its address in memory.

« The value of objects can change or not depending on the type. This partitions
objects into two groups: mutable and immutable.

2.1 Data Types

The most primitive data types include numbers, strings and booleans. Numbers are
there to do numerical things, strings are there to represent textual information and
booleans are there to facilitate conditional logic. All other data structures, no matter
how complex, can be built using those three.

A special type of object in Python is NoneType. This type is reserved for an object None
that has no value. We often use this type of object as a placeholder in code. All other
data types will have a value.

Examples of primitive data types include:

« Strings (str) are Python’s version of char in other languages. We write them
enclosed by apostrophes or speech marks and they represent textual/symbolic
information e.g. 'pirate' is how we write the word pirate in Python.

« Booleans (bool) are logical propositions. There are only two; True or False.
« Integers (int) are whole numbers which are typed as you normally would e.g. 25.

« Floating point numbers (float) are approximationsﬂ of real numbers. We write
them with a decimal point to differentiate them from integers e.g. 5.0 is the float

IPython code itself is an object by virtue of data and programs being indistinguishable.
2Warning: Python represents floating point numbers using the IEEE 754 floating point standard



for the number 5.

« Complex numbers (complex) are numbers in the complex plane like 3 + 2i. In
Python we write 3+2j for such a number where j denotes the imaginary unit

i:=+/—1.

« Literals are notation that Python recognises as syntax for writing an object
directly. They are how we type them e.g. 'pirate' and 25 are string and integer
literals respectively.

The literal of an object determines its value.

We can access the type of an object by typing type () with an object’s literal between the
parentheses e.g. type(3) will return <class 'int'> which tells us that it is an integer.

There are many data types in Python. We can broadly organised into them two groups
- scalar and composite. An object of scalar type can store only a single value such
as an integer, boolean or float. An object of composite data type can store multiple
pieces of related data and is treated as a single datum. Later we shall see examples of
composite data types. For now we simply name them: lists, sets, tuples, frozen sets and
dictionaries.

2.1.1 RELATIONS BETWEEN OBJECT TYPES

Given two objects, it would be useful to have some method of combining them to form a
new object. We'd also need some vocabulary to describe how we type such “sentences”
(statements) into the Python interpreter. To this end, we define the following terms:

« An identifier is a name.

« An operator is an umbrella term for a construct that can manipulate the value
of operands.

o A familiar subgroup of operators is arithmetic operators like + - = and /.
There are also logical (not, or, and etc.), comparison (>=, <, == etc.),
assignment (=), membership (in) and identity operators (is).

» An expression is a representation of a value. They only contain identifiers,
literals and operators (including arithmetic, boolean, function call ( ),
subscription/indexing [ ] and similar operators). Expressions reduce to a
particular value e.g. the expression 3+4 is a representation of the integer 12.

« Statements are everything that can make up a line (or several lines) of code.
Every expression is a statement.

- a variant of scientific notation. Do not test floating point numbers for equality (x==y) because
you’ll have a high probability of getting False instead of True. This is because of errors in trunca-
tion/rounding that arise when numbers are converted back and forth between base 10 and binary (base
2) so that computers can do calculations.



2.1.2 TyYPE CHECKING

We combine objects (operands) using operators to form expressions. When evaluating
expressions, the Python interpreter does what is called type checking - a process designed
to catch static semantic errors between types of objects and operators.

Languages fall on a spectrum from being weakly to strongly typed. This is a measure
of how much type checking occurs before a program is run. Python is closer to being
strongly typed than weakly typed but not as strongly as some may like. For example,
entering 'a' < 3 evaluates to False.

How does Python even compare a string to a number? The answer lies in ASCII values,
a character encoding standard. The < operator in this case compares the lexicographical
ordering of symbols (including numbers) and outputs accordingly.

Some operators in Python are overloaded. An operator is overloaded if its meaning
depends on the types of operands it acts on. For example, the “addition” (+) and
“division” (/) operators:

« Adding integers corresponds to real addition e.g. 2+3 gives 5

« Adding strings corresponds to concatenation e.g. 'a'+'b' returns 'ab’

« Dividing an integer by another non-zero integer corresponds to floor division i.e.
5/2 computes |5/2| which is 2

« Dividing a float by a non-zero integer corresponds to real division i.e. 5.0/2 returns
2.5

Make sure you test out what an operator does before you use it. The results can
sometimes be unexpected. For example, while running some faulty code where the
object you're manipulating changes type, an overloaded operator would accommodate
for this change of type, not throw you back an error and end up returning an output you
did not expect. Thus, it’s useful to exercise type discipline and be wary of switching
types on the fly.

2.2 Variables and Assignment

We’ll now take a short detour to explain the important concept of variables in Python.

« A variable is a name given to a storage area (place in memory) that our
programs can manipulate.

« An assignment statement binds a name to an object. The syntax for an
assignment is

variable_name = initial_value

Each variable has a type which is inherited from its value.



Variables make code more readable and if your code makes multiple references to a name
instead of of an object, you don’t need to change every object literal. You simply need
to change the object that the variable points to.

Unlike other languages, we need not declare the type of a variable in Python. In fact,
the type of a variable changes depending on the current value of the object it points to.
Thus, we say that Python is a dynamically typed language.

x =5
type(x)
< >
x = 'abc'
type (x)
< >

As an aside, when we write a sharp symbol # on a line of code, anything that follows it
will not interact with any of the other code. We call these comments. They are there
to explain the code to the reader.

2.3 More Data Types

Earlier, we gave some brief descriptions of the values primitive data types can take. We
also alluded to some of the operations they support. All data types discussed thus far
are built into the Python language. We call such data types built-in.

Now we move onto some more sophisticated/composite (but still built-in) data types.
For brevity, there are only brief descriptions of the following data types. Any Python
tutorial will have more information.

A collection or container is a grouping of any number (including 0) of items.

There are four data types used for grouping items in Python so that they can be operated
upon in some controlled fashion:

« A list (1ist) is an ordered (indexed) collection of items that is changeable and
and allows for duplicate entries. We create a list with square brackets ["hello",
"world", "hello"]. We can access items in a list L with square brackets. For
example, the first item in L is referred to as L[0], the second is L[1] and so on.

+ A tuple (tuple) is an ordered and unchangeable collection of items. Tuples allow
for duplicate members. For example, (2,2,4,5) is a perfectly valid tuple. A tuple
with a single element is written as (2,) for example.

« A set (set) is a collection of items that is unordered and unindexed. Like math-
ematical sets, duplicates are not allowed. For example, Python interprets the set



{2,3,4,2} as {2,3,4}.

+ A dictionary (dict) is an ordered (for Python 3.7+) collection of key: value pairs
e.g.

pirate_dict = {

"name": "Teach"
"position": "Emperor",
"age": 40

Dictionary items can be accessed similarly to lists but we use keys instead of
integers e.g. example_dict["name"] will refer to the string "Teach". We can change,
add and remove items from a dictionary after it’s been created. Dictionaries do
not allow for two items to have the same key. An important restriction on the
keys you choose is that they must be immutable data types.

2.4 Mutable and Immutable

« A mutable object’s content (value) can be changed without changing its
identity.

« An immutable object’s value cannot be changed after it’s created. Attempting
to modify an immutable object’s value will result in the variable name being
bound to a different object with the desired value.

Recall that the identity of an object can be thought of as its address in memory. The
identity of an object can be revealed by typing id() and placing an object’s literal (or
a variable name) between the parentheses e.g. id('abc') returns 4474752688 on my
system.

We can test the mutability of an object by using id(). For example, on my system:

s = 'abc
id(s)

s += 'xyz'
print(s)
id(s)

x = [1,2]

id(x)

x.append (3)

print(x) L ]
id(x)

We can see that the location in memory of the string variable s changes when we try
to change its value. This is because the string 'abc' has a fixed place in memory and

10



cannot be changed. Thus, the variable name s must point to a different object when
we perform line 3. This means that strings are immutable. However, the identity of the
list object x does not change when we change its value. This is because list objects are
a mutable data type.

Immutable types include bool, int, float, str and tuple.
Mutable types include 1ist as seen above, dict and set.

We can convert an object of one type to another using built-in functions like float (),
int(), str() etc. as long as the conversion is sensible to Python. For example, trying
to convert a list [1,2] into an integer raises an error:

TypeError: int() argument must be a string, a bytes-like object or a number, not
'list’

Now that we’ve familiarised ourselves with how data is represented in Python and the
types of data that exist, we move onto the next fundamental aspect of writing an algo-
rithm - how to control the flow of execution.

2.5 Control Flow

Python offers several control structures that allow for controlling the flow of execution.
These are usually written in code in the form of keywords that Python recognises as a
means to change the order of execution or a way to raise an exception/error and halt
the program entirely.

A keyword is an identifier that is reserved for the language. They cannot be used as
ordinary identifiers. Examples include if, return, while, for etc.

« Python supports logical comparisons like equality a == b, inequality a '= b, in-
equalities like a <= b, a > b etc. We can combine these with if statements to
emulate conditional logic. The keyword elif offers more conditions to test should
the prior (above) tests fail and else will execute the code it encompasses if all
tests fail.

x = 20
y = 40
if x < y:

print("x is less than y")
elif x > y:

print("x is more than y")
else:

print("x is equal to y")

o The while loop is the most basic loop. It repeatedly executes a block of code while
the given condition written immediately after the keyword while is True e.g.

11



a=1

while a <= 10:
print ("Hello")
a += 1

Notice here that the loop terminates when the value of a exceeds 10 because that
is precisely when the condition a <= 10 becomes False. This while loop will print
the string "Hello" 10 times.

« Another type of loop is the for loop. This type of loop iterates over a collection
of items and executes the indented block of code for each item until the entire
collection has been traversed. As an example, if one would like to iterate over a
range of integers, we can use the range () function.

for i in range(0,10):
print(i)

This loop will print the numbers 0 through 9 (inclusive).

2.5.1 MULTIPLE CONDITIONS

In the case that I'd like to check that an object satisfies several conditions, using logical
operators like and or or becomes unwieldly above 3 or 4 conditions. This is where the
all() and any() functions come in handy.

« all(collection) returns True if all items in your collection are True
e.g. all([False,True,True]) returns False.

o any(collection) returns True if any item in your collection is True
e.g. any([False,False,True]) returns True.

To keep my code succinct, I usually pair these with list comprehensions. List comprehen-
sions are a Pythonic way of creating lists. I'll explain what these are in the miscellaneous
section at the very end of these notes.

2.6 Exceptions

These are everywhere in Python. If you've ever written a program, you’ve encountered
one before. For example, trying to find the 12" item test[11] of a list with only 2 items
test = [1,2] yields an indexError. Anything that ends in Error is a type of exception
in Python. In particular, indexError is an example of an unhandled exception; one
which causes a program to crash.

As one would expect, there are mechanisms for handing exceptions in Python. Some-
times programs are written with the intention to raise an exception so we can catch it
and do something useful with it. One way we can do this is via a try-except block of
code:

12



try:
test_block
except:
block_if_error

If test_block doesn’t encounter any errors, the except block is skipped and the program
continues to execute the rest of the program below the block.

We frequently use exceptions when a program takes a user input.

2.6.1 DEFENSIVE PROGRAMMING

The keyword assert followed by an expression e.g. assert 2 + 3 == 5 is an expression
that evaluates to True or False. If it evaluates to True, nothing happens and the program
continues as normal. In the event that it reduces to False, this serves as a way to
terminate the program.

Adding assertions on the actual parameters to which formal parameters are bound acts
as:

« a form of defensive programming to prevent the program from continuing when a
user inputs something nonsensical, or

« as a way for a programmer to check if a value at a certain point in a code is as
they expect for when it sometimes isn’t clear if the code is transforming variables
in an expected way.

13



CHAPTER 3

Machine Interpretation of a Program

3.1 Modules

Whenever one quits the Python interpreter, all the definitions that one has made are
lost. To make up for this, programmers write programs in text editors and save them as
files for the interpreter to run. Such a file is called a script. In Python, such files have
the extension .py and we also call them modules.

A module is a file that contains Python code.

Modules can be imported into other modules using import statements like import math.
The math module is a collection of Python definitions and statements that model math-
ematical operations and objects. Modules are useful for grouping related information
into a single file.

We access information in modules via dot notation. For instance, math.log() is how we
access the command log() which is a model of how one computes the natural logarithm
of a positive real number.

Dot notation offers disambiguation. Consider two different modules named moda and
modb. Suppose that each module contains a variable named elem. We can avoid a
name conflict by directly accessing each from its respective module i.e. moda.elem and

modb.elem

There is a built-in function called dir () that takes a module name as its argument and
lists all the information inside said module. This is very useful.

3.2 Functions

As programs increase in scale, the likelihood for errors also increases and a need for
a clear structure arises. One way of addressing this is with the implementation of
functions.

A function is a self-contained block of code, usually in the form of related statements,
that performs a particular task.

Before we show the syntax for defining a function, we first list a few reasons why they

14



are useful:

« Decomposition/Modularisation - Functions allow us to divide our programs up
into pieces, giving them structure.

« Reusability - Once a function is defined, it can be used as many times as we’d like
(and even in other programs).

« Abstraction - Functions suppress details and allow us to call a function as though
it were a black box - we need only know how to use it (e.g. its name, what it does,
valid parameters one can pass and an expected output) and not what the inner
workings do.

The syntax for defining and calling a function are as follows:

def (formal_parameters) :
"""check it out!! I am an optional docstring to explain how to use the

function"""
some_commands

return something

function_name(actual_parameters)

In the first line of the function definition, one can choose to include an optional string
literal called a docstring. These serve to summarise the behaviour of the function,
document its arguments, what it returns and any exceptions it raises. These are con-
ventionally written within triple quotes and the docstring appears as a popup in an IDE
when one is calling the function.

We now look to a basic example to explain the other terms in a function. This example
takes in a number as input, adds 1 to it and returns the new number. After the function
definition, a variable x is bound to an object of type int with value 3 and the function
is called on this variable and the result is printed out.

def f(x):
ans = x + 1
return ans

x =3
print (£f(x))

o The def keyword lets Python know that we are defining a function and Python
does its magic in the background (which we shall uncover soon).

o The x written in the first line is called a formal parameter - it is simply a name
bound to an object with no value.

o The return keyword tells the interpreter to immediately terminate the function
and passes execution control back to the caller. It also provides a mechanism by
which the function can pass data back to the caller.

o When £ is called, the formal parameter x is bound to an actual parameter or
argument. In this case, the actual parameter is the variable x which refers to the

15



int object with value 3.

Important aside: There are two types of arguments. Consider the fol-
lowing function.

def (first, second):
return first - second

Positional arguments are passed into a function based on the exact order
in which the formal parameters are defined after def.

o Calling difference(2,1) returns 1 and difference(1,2) returns —1.
Keyword arguments are passed into a function and are identifiable by
specific formal parameter names. Unlike positional arguments, the order
in which keyword arguments are passed into a function is irrelevant as long
as you assign values to the appropriate parameter names.

» Calling difference(second=2, first=1) returns —1.

Notice that x is the name given to two different things. How does Python not get
confused?

3.3 Namespaces

In any given program, one will create multiple identifiers (names for objects). Naturally,
there has to be a system in place to keep track of all these names so they don’t interfere
with each other. Python does this with the ideas of namespaces and scope.

A namespace is a mapping from names to objects.

Whenever a variable is defined, Python needs a way to remember both its name (identi-
fier) and the object it’s pointing to. Python does this by storing them in a dictionary (a
set of key:value pairs) where the keys are the currently defined names and the values are
the objects themselves. This dictionary is an example of a namespace and it serves as
a lookup table. Whenever a name is referenced, the interpreter searches the namespace
for the corresponding object. If found, it returns the object. Otherwise, you receive a
NameError.

3.3.1 LIFETIMES, CREATION AND TYPES
Namespaces have different lifespans and are created at different times.

There are 4 types of namespaces in Python:

1. The built-in namespace:

This comprises of all the names of Python’s built-in objects. The list of these
objects can be accessed with dir(__builtins__)

16



2. Global namespace(s):

This contains all names defined at the level of the main program. This namespace
is created when the Python interpreter runs a script (which is known as the main
module). This namespace is not unique and when another module is imported,
the interpreter creates a global namespace for it too.

3. Local namespaces:
A new namespace is created whenever a function executes. The benefit of this
is that variables may be defined and used within a function even if they share

a name with a variable defined in another function or the main program. Such
namespaces are discarded when the interpreter exits the function.

4. Enclosing namespaces:

When two function definitions are nested e.g.

def f():
def g():

we call the namespace generated with £ an enclosing namespace.

3.4 Scope

Despite modules having their own respective global namespaces, not all names can be
accessed from anywhere in the module. This is where the idea of scope comes in.

A scope is a textual region of a Python program where a namespace is directly
accessible (without a prefix).

The location of a name’s assignment in one’s source code determines the namespace it
will live in, and hence the scope of the name’s visibility to one’s code.

At any time in a program that has at least one function defined, there are at least 3
nested scopes:

o The scope of the current function you’re in

o The scope of the module
o The scope of the Python built-ins

When an unqualified (prefix-less) name is used inside a function, Python will search up
to four namespaces (inside-out) in the following order:

1. Local - the local namespace (of the current function),
2. Enclosing - the namespaces of any enclosing def and lambda functions,

3. Global - the global namespace, and finally

17



4. Built-in - the built-in namespace.

This is called the LEGB rule of scoping.

The discussion of namespaces and scope is a nice place to stop before things get too
complicated. We can now begin to focus on problem solving and learning about algo-
rithms. We’ll return to the discussion of implementations and creation of data types in

chapters 6 and 8-9.

18



CHAPTER 4

Problem Solving

4.1 Enumerative Exhaustion
Most programs can be solved with brute force. One of the most basic types of brute force
algorithms is a process called enumerative exhaustion. This is done with a basic for
loop that iterates through a collection (list, tuple, dictionary, set). As one can imagine,

brute force algorithms are not always the most efficient. To this end, we consider a
different type of searching algorithm:

4.2 Bisection Search
The idea of a bisection search is to halve the search space at each iteration of a loop.

e.g. Finding an approximation for the square root of a number .

X

y

float (input ("Input a number to approximate its square root: "))
float (input("What's your margin of error?: "))

guess = x/2
lower = 0O
upper = x

while (abs(x - guess**2) >= y) and (guess <= x):
if guess**2 > x:
upper = guess
guess = (lower+upper)/2
else:
lower = guess
guess = (lower+upper)/2

print (f"The square root of {x} that we found with a tolerance of {y} is
{guess}.")

The built-in function named input() prompts the user for an input. We then convert x
and y to floats so that we can perform float operations on them.

We begin by making an initial guess go which is the midpoint x/2 of the search interval
[0, 2]. If our guess is too high (or too low), we redefine the bounds of the search interval
to remove half of the search space that definitely will not contain our desired output. If
our guess is within the user’s chosen margin of error, we terminate the loop. Otherwise,
we iterate over the loop again using the remaining half of the search interval.

19



Once the loop completes, we print out what is called a formatted string literal (or f-
string for short). This is a succinct way of formatting a string so we can incorporate
variable values directly into the string. We put variable names inside curly parentheses
so they print out mid-string.

When using any search method, we’re relying on the fact that the answer lies in the
region we are searching.

The algorithm above does not work for numbers z € (0,1) because \/z > z in this
interval and our algorithm relies on searching for a root in [0,z]. Take x as 1/4 for
example. We’d be searching in [0,1/4] but /1/4 = 1/2 which isn’t in the search

interval.

4.3 Recursion

Recursion is the way of defining a problem/process (or designing the solution to a
problem) in terms of a simpler version of itself.

Recursion fits in well into the idea of problem reduction.

Consider the exponential function f: NxN — N with base b > 0 defined by f(b,n) = b™.
We can redefine f recursively by writing:

byn)=b"=bxbx--xb=bxb""'=bx f(bn—1
f(b,n) Xbx- X x x f(b,n—1)

(n—1) times

How can we guarantee that this recursive definition doesn’t nest infinitely? There’s
nothing in our above definition to stop the second argument from descending n — 1 —
n—2~ ... —» —oo. To rectify this, we define a base case for our recursion - a point at
which the function is easy to calculate and the recursion terminates once it’s reached.

Since n is a natural number and we’re only interested in multiplying b by itself n times,
the base case for f can be taken when n =0 (so f(b,0) = 1).

The combination of this base case and the recursive step guarantee that the recursion
terminates and so f is defined for all natural numbers n.

1, n =0 base case

bx f(bbn—1), n>0 recursive/inductive case

flb,n) =b" = {

In terms of a loop, we write:

def f(b, n):
if n == 0:
return 1
else:
return b*f(b, n-1)

20



We now consider a popular example of recursion.

4.3.1 THE TOWER OF HANOI

There is a temple in Hanoi. In this temple are 3 tall jewel encrusted spikes and there
are 64 golden disks in total - all of increasing size. The stack starts out on one of the
spikes, starting with the largest on the bottom and uniformly decreasing with size until
the smallest disk on the top. The goal is to move all the disks to another spike but the
caveats are that:

« you can only move on disk at a time, and
« you cannot move a disk that is larger on top of a disk that is smaller.

Label the spikes:

« £ for ‘from’ - the spike we begin at
o t for ‘target’ - the destination spike

o s for ‘spare’ - the spike used for intermediate steps

This problem can be approached recursively. Suppose that there are n disks to move.
The base case is moving a single disk from f — ¢.

The recursive step comes from noticing that the problem can be broken up into a sub-
problem of the same type:

- We first move the stack of size n — 1 from £ — s using the target spike t as an
intermediary.

- Then we move the bottom disk from f — t.

- Finally, we move the stack of size n—1 back from s — t using f as an intermediary.

def (n, £, t, 8):
if n ==
print (f"Move from {f} to {t}")
else:
hanoi(n-1, f, s, t)
hanoi(1, f, t, s)
hanoi(n-1, s, t, f)

As you might imagine, increasing the number of disks, n, increases the number of move-
ments required and so it increases the time taken to solve. A natural question to ask
is how many steps it takes to solve the problem and how does it vary as the number of
disks varies. We begin to formulate the language to describe this in the next section.

21



CHAPTER 5

Time Complexity and Order of Growth

You’ve coded a solution to your problem. Fantastic! You know it works because you’re
a-genius it was an easy problem. You hit enter!

It’s been 2 hours and your laptop can now cook an egg. What went wrong? Your
algorithm actually needed 98763457 years to complete.

A main focus of programming is getting your algorithms to complete in good time. The
program needs to be more efficient. Perhaps you made the same calculation many times
when you could’ve done it just the one time.

Ideally, a program will complete as quickly as possible and be as conservative with
memory consumption as it can. Sometimes this is achieved with a few lines of clever
coding. More often it’s about choosing the correct algorithm to solve your problem.

An obvious starting point is to study how long an algorithm takes to run.

“My machine is faster than yours so it clearly takes 2 minutes instead of the 5 it
took you.”

“We were both looking for the number 3 and my list began with 3 so this algorithm
is very fast.”

Clearly there’s something amiss here.

How long a program takes to run on a single machine with a certain input is dependent
on:

« the speed of the machine,

« the language one has coded the solution in,
 the implementation of the language, and
 the input itself.

Therefore, we should try and find a stable measure (independent of all the factors in
the list above) of how long a program takes to run. The correct question to ask then
seems to be less about the time taken but perhaps in terms of the number of basic steps
needed in relation to the input size.

Thus, we need to define two things:

22



o The input size is a number that represents the size of an object passed into an
algorithm. The input depends on the type of problem (e.g. number of elements
in a list, length of a string) so we need to be clear about specifying what we
mean by input size.

» A step is an operation that completes in constant time.
e.g. arithmetic operations, assignment, comparisons, memory access etc.

5.1 The Random Access Model

Despite not being completely true, for our purposes we’ll be using a model of a computer
known as a random access machine (RAM). In such a machine, instructions are
executed sequentially and we assumeﬂ that the time taken to access any object from
memory at random is constant.

5.2 Running Time

The running time of an algorithm can be approached in three different ways. Take a
linear search (sequentially checking elements in a collection) for example:

Best Case: The minimum running time over all possible inputs.

« Say the first element in the list is 3 and we’re searching for 3. We find it right
away and stop.

Worst Case: The maximum over all inputs of a given size.

« The worst case for linear search is that the element we're searching for is not in
the space.

Expected Case: The average over all possible inputs.

« The expected case seems like the one we should most care about but in practice
it’s too hard to compute. To compute it, we need to know a distribution on the
inputs - are all the inputs equally likely or are they going to depend on other
things? The input distribution depends on the user so we throw that out.

As a result, analysis almost always focuses on the worst case scenario which provides an
upper bound for how long our programs take to run (so there are no surprises).

We aren’t only interested in the running time for inputs of fixed size. More often
than not, programs are designed to scale for very large data sets. We use the word
complexity to describe the relationship between the growth of the input size and any
quantities that change as a result.

In old computers, this model wasn’t accurate because memory was often a tape and reading
something at the end of the tape took much longer than at the start of the tape. Modern computers, on
the other hand, have a memory hierarchy (levels of memory - cache and actual memory) and depending
on whether or not data is in the cache, the retrieval time changes. The idea of processes happening in
parallel is another viewpoint that adds extra detail but for practicality, such details are omitted.

23



We think about complexity in two dimensions - space and time.

o The time complexity of an algorithm is the relationship between the growth of
the input size and growth of operations executed.

» The space complexity of an algorithm is the relationship between the growth
of the input size and growth of space needed.

5.3 Calculating Complexity

Complexity calculations are done inside-out. Namely, if you have nested functions, one
begins from the innermost loop and works their way outwards.

5.3.1 Loors

Consider the exponentiation function implemented with a while loop defined below:
code

def (a,b):
ans = 1
while (b>0):
ans *= a
b =1
return ans

How many steps does this function take to run?

The key part is inside the while loop. Each time the loop executes, 3 steps are per-
formed: a comparison (b > 0) and two arithmetic operations ans *= a and b -= 1. We
go through the loop b times so this is 3b steps in the loop. Outside of the loop, we have
an initialisation and a return keyword so these are 2 more steps, giving a total of 3b+ 2
steps.

5.3.2 RECURSIVE ALGORITHMS

In the case of a recursive algorithm, we can calculate the number of steps it takes to
exponentiate by solving a recurrence relation.

def (a,b):
if b ==
return a
else:
return a*exp_rec(a,b-1)

Let T'(b) denote the number of steps it takes to solve the problem of size b. In T'(b) we

24



have 1 comparison test, a subtraction and a multiplication plus the number of steps it
takes to solve a problem of size b — 1.

T(b)=3+T(b—1)
=34+3+T(b—2)
=3k+T(b—k)
=3(b—1)+T(1) the recursion terminates when b — k =1
=3b—-1

As the input size grows, we see that additive constants don’t contribute greatly to the
growth of the running time. The same goes for constant coefficients. Ideally, we’d like a
(mathematical) language that helps us characterise growth in such a way. To this end,
we introduce asymptotic notation.

5.4 Asymptotic Notation

Asymptotic notation is used to give a quick measure of a function’s f(x) behaviour
compared to a simpler function g(z) as z grows large. The language of asymptotic
notation finds a natural place in describing how the running time (or space requirements)
of an algorithm grows as the input size grows.

For our purposefﬂ we'll let T: N — RT denote the running time of an algorithm and
f: N = RT be the comparison function.

We list below the precise mathematical definitions followed by their informal descrip-
tions.

The notation f € W(g) is to be read as “f is in W of ¢”.

2The general definitions involve letting U be an unbounded subset of RT, f: U — C and g: U — R
be such that g > 0 for all sufficiently large x € U. Then, for example, f is in big-O of g if Jxg,C > 0
st. x> 20 = |f(z)] < Cy(x).

25



* T(n) € O(f(n)) if

Ing € N and 3C > 0 such that n > ng = |T'(n)| < Cf(n).

o T'(n) € Q(f(n)) if

dng € N and e > 0 such that n > ng = ¢|f(n)| < T'(n).

« T(n) € ©(f(n)) if

Ing € N and Jeq, ¢z > 0 such that n > ng = c1f(n) < |T(n)] < caf(n).

« T'(n) € o(f(n)) if

VC > 0 Ing € N such that n > ng = |T'(n)| < Cf(n).

o T'(n) € w(f(n)) if

Ve > 0 Ing € N such that n > ng = cf(n) < |T(n)|.

Table 5.1: An informal description of asymptotic notation.

f€0(g) f grows asymptotically no faster than g
f€Qg) f is bounded below by g asymptotically
f€06(g) f grows asymptotically as fast as g
feolg) f is dominated by g asymptotically
few(g) f dominates g asymptotically

f~y flg—1

In practice, since we're concerned with behaviour for large z, multiplicative and additive
constants are usually subsumed e.g. 10n + 5 € O(n).

Definition 5.4.1 (Asymptotic Equality) We say that f and g are asymptotically
equal, f ~ g, if
|/ ()]

lim —= =1
T—00 g(,r)

To say that f ~ ¢ means both functions grow at the same rate in a stricter sense
than f € ©(g). This notation is usually reserved for when the growth of a function
is well-understood up to some small error terms e.g. Stirling’s Approximation n! ~

V2rn(n/e)™.

26



5.5 Efficiency
Say we have an algorithm that completes in constant time, regardless of input size n.
Such an algorithm’s running timeﬂ T'(n) is said to be in O(1). Some algorithms depend
linearly on the size of the input e.g. for a linear search through a list, T'(n) € O(n).

Table 5.2: A list of common running times T'(n).

(1) Constant
O(log(n)) Logarithmic
O(n) Linear
O(nlog(n)) Log Linear
O(n?) Quadratic
O(n®) fora e Polynomial
O(a™) for a >0 Exponential
O(n!) Factorial

If your input size is large, a general rule of thumb is to avoid doing anything that costs
more than log linear time.

3In practice we use O notation e.g. T € O(f) and suggest that the worst case growth of T is f.
Any other function that grows faster than f can in principle be used. The way O notation is used in
practice mimics the meaning of © slightly more.

27



CHAPTER 6

Search Methods

A very important type of algorithm is one which searches a set of data. These are called
searching algorithms.

6.1 Linear Search

Suppose we’d like to search a collection of integers that is sorted in ascending order.
The following algorithm searches through a list L for an element e and outputs True if
the element is found and false otherwise.

def (L, e):
answer = None
list_length = len(L)
while i < list_length and answer == None:
if e == L[i]:
answer = True
elif e < L[i]:
answer == False
i+=1
return answer

Assuming that list access is a primitive operation (one that completes in a single step),
the complexity of the linear search is linear i.e. T(n) € O(n) where n is the length of
the list L.

However, not all programming languages implement lists in the same way and so list
access may not be constant.

6.2 Aside: How Python Implements Lists

6.2.1 ELEMENTS OF FIXED SIZE
Say we have a list of integers. Let’s say, to allow a fairly large range of integers, each

integer takes up four memory cells in a row. Suppose that the first element is located
at start.

28



start

To access the n'? element, we can see that it begins at the memory location that is at
start + (4*n). Assuming the random access model, it takes a constant time to access
a point in memory given its location.

This works because our list is composed of a single data type of equal size. This is not

true for a general list. Often, we’d like to include a variety of information types in a
list. What if our list contains data structures of differing size?

6.2.2 ELEMENTS OF VARIABLE SIZE (LINKED LISTS)

One of the standard ways to implement a general list is to use what is called a linked
list.

In the first memory cell of each list item, we store a pointer to the beginning of the next
item in the list. We mark this with an x. The remaining memory cells are reserved for
storing the objects themselves. For the final linked list entry, one puts a value None as
the final pointer to signify the end of the list.

One of the trade-offs with a linked list is that list access is not constant. Indeed, to find

the n'? element of such a list, one would have to traverse all pointers leading up to the
element itself. Thus, the complexity of list access is linear. This is not what we want.

6.2.3 PYTHON’S LIST IMPLEMENTATION

Python stores collections in a different way with the key idea being indirection - the
ability to reference something using a name instead of the value itself.

start —» | | |

l l !

value value value

Each chunk of memory contains a pointer to the value of the object, and a pointer to
the next chunk of memory. We can reorder this diagram by taking all the first cells and
sticking them together so our list becomes a list of pointers.

29



start —» ‘ ‘

b

value value

This is a nice setup because it mimics the original list in 6.2.1 where each element has
a fixed size in memory that we could search in constant time.

6.3 Binary Search

An example of an algorithm running in logarithmic time is the bisection search from
4.2. When the output of a bisection search is a precise result in a list, we call it a
binary search.

Take, for example, the problem of finding a particular word in the dictionary. In pseu-
docode, such an algorithm goes as follows:

Algorithm 2 Pseudocode algorithm for finding a word in a book via binary search.

1: procedure BINARYSEARCH(dictionary, word)

2 pick up the dictionary

3 open the current dictionary to the middle page
4: search the page for word

5: if word is in the page then

6 stop and return current page

7 else if word is earlier in the dictionary then

8 open the left half of the dictionary

9 go back to line 2

10: else if word is later in the dictionary then
11: open the right half of the dictionary

12: go back to line 2

13: else

14: quit

15: end if

16: end procedure

30



Cutting the search window in half for each step in an algorithm means that doubling
the input size only increases the depth of recursion by 1. This is characteristic of
algorithms with logarithmic running time&ﬂ T(n) € O(logn). For the binary search to
work, however, the collection needs to be sorted.

IWe omit the base of a logarithm because in asymptotic analysis, everything is modulo a con-
stant multiplier and the change of base rule for logarithms means that different bases differ by a
constant multiple e.g. for constants a, b:

log, (1) (n)-

=1
logy(a) 2

31



CHAPTER 7

Sorting Algorithms

We’ve already seen an algorithm that depends on a list being ordered, the binary search.
Other algorithms, like the linear search, don’t require a sorted input.

Suppose that we could find an algorithm to order a list and that it has a time complexity
of order S(n). Would it be faster to order a list and use the binary search to find an
element, or to abandon sorting it and search it in a linear fashion? We’d ideally like our
sorting algorithm to perform in sub-linear time if the sort and binary search is to have
a better time complexity.

Can we sort a list in sub-linear time? Seeing as we need to access each list element at
least once in order to sort the list, a sub-linear time is not possible. The same goes for
linear time since sorting usually involves iterating over a list and visiting each element
at least a constant number of times for comparison purposes.

Another important question to ask is how many times we wish to search a collection

and whether sorting it once beforehand makes much of a difference to the overall time
complexity.

7.1 Amortisation Analysis
It’s usually the case with searching algorithms that we wish to search a collection several
times. If we can sort our list once and search it many times, the cost of the sort can
be split over the searches and so is not very significant in the overall complexity. This

amortises the cost of the sort.

For k searches, the time complexities are as follows:

sort + k binary searches ‘ O(S(n) + klog(n))

k linear searches ‘ O(kn)

We'll proceed to find the time complexities of a few sorting algorithms and come back
to this table to replace S(n) with a suitable expression and compare these two search
methods.

7.2 Selection Sort

Given an unsorted array A, a selection sort goes through the array and at each index i in
range (0, len(A)-1) of the array, sets A[i] as a pivot and checks the remaining elements
of the array on the right for the smallest number less than the pivot. If such an A[j] for

32



j in range(i+1, len(A)) is found, one swaps A[j] and the pivot A[i]. One then moves
onto the next index and repeats the same comparison process on the rest of the unsorted
list.

def (A):
L = len(A)
for i in range(L-1):
current_min = i
for j in range(i+1,L):
if A[j] < Alcurrent_min]:
current_min = j
if current_min != 1i:
Alcurrent_min], A[i] = A[i], Alcurrent_min]
return A

The order of growth for the selection sort is in O(n?) because the worst case scenario is
performing a linear scan through the list for each of the n elements.

7.3 Merge Sort

Given an unsorted array x, the idea of a merge sort is to breakEl x down into n subarrays
of length 1 (which are sorted by definition) and recombine them in the correct order.
The first order of affairs is to define a function called merge that takes two sorted lists a
and b and combines them into a single sorted list. The method used to define merge is
called the two finger pointing method. Then we can recursively define merge_sort which
is called to merge the left and right “halves” of the array x.

def (a,b):
c=1[1
a_index,b_index = 0,0
while a_index < len(a) and b_index < len(b):
if ala_index] < b[b_index]:
c.append(ala_index])
a_index += 1
else:
c.append(b[b_index])
b_index += 1
if a_index == len(a):
c.extend(b[b_index:]|)
else:
c.extend(ala_index:])
return c

def (x):
if len(x) <= 1:
return x
left,right = merge_sort(x[:len(x)//2]) ,merge_sort(x[len(x)//2:1)
return merge(left,right)

1The space complexity of a merge sort is larger than a selection sort because we need to keep track
of the extra structure.

33



7.3.1 COMPLEXITY CALCULATION

Let T(n) denote the running time of the mergesort algorithm. The running times of the
constituent parts of the algorithm are as follows:

« Dividing an array of length n into 2 subarrays of length = n/2 entails

o calculating the midpoint which takes constant time,

o creating two empty arrays of size |n/2] (or n//2) and n — |n/2| (or n//2),
which is also constant, and

o populating those arrays which has running time ¢yn for some ¢; > 0.

Thus, the running time for the divide step is ¢g+ ¢1n for some constants cg, ¢; > 0.

o The merge function picks up one element from either left or right at a time and
adds it to a new array. Thus, the complexity of merging two sorted arrays of size
A~ n/2 into an array of size n is can + ¢ for some ¢, c3 > 0.

« We have two recursive calls in mergesort which have a running time of T'(n/2).

T(n>:{c ifn=1

2T(n/2) + en+ ¢ otherwise, where ¢/ = ¢; 4+ ¢c3,c=co + ¢4

The tree diagram of time complexities is as follows:

/ T<n) \
T(n/2) T'(n/2)
T(n/4) T(n/4) T(n/4) T(n/4)

N A N
NN N Y ) |

Since each step in the recursion divides the array length by 2, the depth of the recursion
(height of the recursion tree) is how many times we can divide n by 2 (plus the root
node) i.e. logy(n) + 1. Starting from the root n = 0, the n'* row in the tree has 2"
items.

34



T(n)=2-T(n/2)+c +'n
=2%.T (n/2%) + 2cn
=2%.T (n/2%) + 3cn

= 2'°82(") . (n/2'°82(")) 4 Jog, (n) - en
= nT(1) + cnlog,(n)
€ O(nlog(n))

7.4 Amortisation Analysis 2: Electric Boogaloo
Log linear time complexity is the best we can do for a sorting algorithm.
This means that for a single sort, the linear search wins out with a linear time complexity
O(n) compared to nlog(n)+log(n) = (n+1)log(n) € O(nlog(n)) for sorting and binary
searching.
For k searches, the linear search has time complexity in O(k - n), whereas the sort

and binary search wins out with a running time of nlog(n) + klog(n) = (n + k) log(n)
€ O(nlog(n)).

35



CHAPTER 8

Hashing

If a language didn’t have dictionaries, one could build similar functionality using lists:

def (L, k):
for elem in L:
if elem[0] ==
return elem
return None

So why bother with dictionaries? The answer lies in how long it would take to find an
element in a list using such a function. On average, it would take len(L)/2. This isn’t
an efficient lookup time. Dictionary retrieval on the other hand is done in constant time
(irrespective of list size).

Hashing is the method with which dictionaries are implemented in Python. They are
very efficient in search time but the trade-off is that they require space.

We'll begin by assuming that we’re hashing a set of integers (i.e. that we want to build
a set of integers and want to detect whether a particular integer is in the set). Let ¢ € Z.
Define the following map
hash: Z — Z/kZ ={0,...,k — 1}
: 4 — hash(7).

We'll use the integer hash(i) to index into a list of lists e.g. [[a,b,c,d], [e,f,g,hl, [
i,j,k,111. Each of these constituent lists is called a bucket.

We've already seen that we can find the i element of a list in constant time. When we
ask whether an integer z is in this set, we’ll hash it (find hash(z)) and go immediately
to the correct bucket and search the list for the integer.

o The hash function is a many-to-one function.

o When two different elements hash to the same bucket, we have what is called a

« A good hash function has the property that it will widely disperse the values that
you hash.

If the number of buckets is large relative to the number of elements we insert into this
table, then lookup is roughly constant because the lists are shorter. This is the trade-off
between space and time - the larger the space dedicated to a table, the less time it will
take to search it.

36



CHAPTER 9

Classes

We’ve already seen that every object in Python has a type. With only the basic built-in
data types provided by Python, we’d be limited in how we model and manage more
complicated types of data. To this end, Python offers a means to extend our language
and create a new, user-defined data type. The blueprintﬂ for such a type is known as a
class.

+ A class is a user-defined blueprint for a new abstract data type for objects. More
concretely, a class defines a set of data that characterises any object created from
the class. Such data can be split into two categories:

o Attributes are variables associated with a class.

o Methods are functions associated with a class. We use these to interact
with the object (and class) itself.

We access attributes and methods via dot notation (as we did with modules).

« We use classes to create objects. The process of creating an object (or instance)
is called instantiation.

Accordingly, classes allow us to logically group data and functions in a way that’s easy
to re-use and build upon. An important benefit of using classes is that if an object is
passed from one part of a program to another, the new part of the program automatically
has access to the functions associated with that type of object. This property is a
fundamental idea for object-oriented programming.

We call them abstract data types because we define an interface that explains what the
methods do at the level of the user and not how they do it. This is how built-in types
work. For instance, we knew how to create dictionaries and use them but it wasn’t
until the last section that we understood how the dict type works with hashing. This
is because the people who wrote Python provided an interface which explained how to
use dict.

Some classes are so useful that somebody along the line decided that they should be part
of the Python language itself, have efficient implementations, and that nobody should
have to reimplement them. Examples of these include 1ist, dict and set. These are
called built-in classes.

1By analogy with car manufacturing, the class would be the design blueprints for a type of car, the
creation step would be the building process, and the object is the end result - an instance of a car that
abides by the blueprints.

37



w

9.1 Creating and Instantiating Classes

A class is created with a class statement which uses the keyword class. This is syn-
tactically similar to def for functions. The indentation works the same too. Below, we
create an empty class:

class
nmn

optional docstring: this class is actually empty"""
pass

To instantiate a class, we pass it as a Variableﬂ The syntax is reminiscent of a function
call.

Coordinate ()
w = Coordinate()

<
]

9.1.1 THE __1viT__ METHOD

We can manually assign attributes to objects with statements like v.first_coord = 2.
You can imagine that with many objects, manually assigning attributes would repeat a
lot of code. Instead, we can define a method within our class definition to initialise our
objects with attributes. We use a special method for this called __init__.

class :
def __init__(self, x, y):

self.x =

self.y =

When an object of type Coordinate is created, the __init__ method is the first thing
that is run and initialiseﬁ our object. Methods are defined just like functions outside
of classes but with one key difference - they have an extra parameter, the placeholder
self. You can use any name you’d like for this placeholder but we conventionally use
self to refer to a particular instance of the class. We access self using dot notation, as

you can see when we initialise the x and y coordinates in our object.

The variables x and y are specific to each object/instance. These are what we call
instance variables.

Since we now have an __init__ method in place, we can create new objects of type
Coordinate with their desired coordinate attributes as follows:

Coordinate(3,4)
w = Coordinate(0,0)

<
]

2We can also pass instances into functions and do everything else that we with basic data types.
More on this later.
3Such a method is called a constructor.

38



The __init__ method clearly takes 3 parameters. Where is self here? Well, Python
implicitly understands that self is the object v. Thus, we need not declare it directly.
This is a level of abstraction that makes classes more user-friendly.

9.1.2 INSTANCE METHODS

We can define other methods similarly. For example, we define the Euclidean distance
between two Coordinate objects below:

def (self, other):
x_diff_sq = (self.x - other.x)**2
y_diff_sq = (self.y - other.y)*x*2
return (x_diff_sq + y_diff_sq)**0.5

« other is a parameter that refers to another instance of the class (another object).

» euc_dist takes two objects of type Coordinate and returns the Euclidean distance
between them deﬁnedEI for vectors with n-coordinates by:

d(v,w) = (Z(vl - wz)2>

i=1

We can call euc_dist in two equivalent ways. Python understands both of the following
calls:

print (v.euc_dist(w))
print(Coordinate.euc_dist(v,w))

9.1.3 CLASS VARIABLES

What we’ve defined so far are instance variables - specific to each instance of the class.
Classes also allow us to define variables that are shared by all objects of the same type.
These are known as class variables. They are defined inside a class but outside of any
methods in the class.

e.g. As an example, if one wanted to keep track of how many points are in our space,
we could use a class variable that increments by +1 every time a new object is created.
We do this by incrementing it within the __init__ method because that’s automatically
called when a new object is initialised.

class :
num_of_points = 0
def __init__(self, x, y):

n
4Note that a1 + -+ - + an =: Z‘“
i=1

39



Coordinate.num_of_points += 1

We use dot notation to retrieve the class variable from the class itself. Not the particular
instance. This is an important distinction.

9.2 Object Representation

Now we know how to initialise a class and define a method that interacts with objects
created from the class. Let’s say that you're debugging a geometry program and you
want to print out a coordinate v. The console returns this:

<__main__.Coordinate object at 0x105£73580>

When print is used on a class object, Python calls a special method called __str__ on

the object. This particular default representation of our object v is not very informative
and we’d like to define some ways to meaningfully represent our object.

In general, there are two types of representation of an object:

o __str__is a more user friendly representation of the object.

o __repr__ is generally defined to return an unambiguous representation of the

object. Namely, we define it to return a string literal of the exact string you
would need to type into the console to create an instance of the object.

str__ is called automatically when we call print () on an object.

_repr__ is called automatically when we call repr() on an object.

By re-defining __str__ and __repr__, we override their previous implementations:

class :
def __init__(self, x, y):
def __str__(self):
return "<" + str(self.x) + "," + str(self.y) + ">"
def __repr__(self):
return f"Coordinate ({self.x},{self.y})"

v = Coordinate(3,4)
print(v)
repr(v)

The output is as follows:

40



>>> <3,4>
>>> 'Coordinate(3,4)'

9.3 Special (Dunder) Methods

So far we’ve been seeing a lot of methods that are surrounded by double underscores.
We call them dunderf| methods for short. In fact, we’ve seen a few more that have
been hiding in plain sight, working in the background of high level syntax.

« When adding two objects together, the top level syntax + corresponds to the special
method __add__. For strings, addition + corresponds to string concatenation.

o Another method we’ve seen is len. Typing len('test') returns 4 and what’s
going on behind the scenes is that a corresponding special method named __len
is being called on the str object 'test'.

Now that we’ve seen a few examples of special methods, a pattern has begun to emerge.
Every time we want to implement some custom behaviour on a Python object, we do
it by implementing a __function__ which ties to some top level syntax/function and we
implement it in terms of that thing itself.

Take our Coordinate example.
class :

def __init__(self, x, y):

def __add__(self, other):

return Coordinate(self.x + other.x, self.y + other.y)

When we call + on two Coordinate objects, our code delegates back to __add__ and
__add__ is implemented by calling + on the components of the coordinates.

When implementing a corresponding special method, it’s good practice to look to the
official documentation to see any caveats and conventions we should abide by. For

example,

There are many more examples of dunder methods in the standard library.

51 prefer to call them data model methods because the first or second result in a search engine
by searching ’data model python’ is a link to the official documentation that lists such methods and
tells you what they do.

41



CHAPTER 10

The Pillars of Object-Orientation

10.1 Abstraction and Encapsulation

Encapsulation is the idea of bundling together similar attributes and methods that
operate on those attributes. A benefit of encapsulation is that it hides the complexity
of code and allows one to prevent access to implementation details. Abstraction is a
way to show only implementation details that are relevant to the user. In this sense,
encapsulation enables us to implement one’s desired level of abstraction.

Encapsulation is also a means to an end known as data hiding.

10.1.1 DATA HIDING

Directly accessing variables of a class is generally discouraged and for good reason:

Imagine that you got a message saying “IDLE has changed, please download
a new version” and it had a new implementation of 1ist that caused all your
programs to stop working. You’d be pretty mad. This won’t happen. Why?
This is because your programs do not directly depend on how the developers of
IDLE chose to implement the built-in type list. You’ve only programmed to
the specification of these types, not their implementation. This means that the
implementer can implement a built-in type however they please as long the code
meets the specification that the user sees.

The minute a user goes in and directly accesses (and potentially alters) variables of the
class, they’ve used things that do not appear in the specification laid outﬂ for them and
if the implementer changes something in the implementation, the program might break.
To prevent this from happening, we can restrict, from outside, direct access of certain
attributes/methods inside an object.

To “hide” an attribute, name it with a double underscore prefix. This will indicate that
the attribute should not be directly accessed from outside of the class definition. Python
isn’t great at data hiding at all and doesn’t have mechanisms to hide information like
other languages.

Instead of accessing variables directly, one can define methods to retrieve and adjust
class attributes. These are known in Python as getters and setters. In the context of
our Coordinate class, we can define a getter to return the first coordinate and a setter
to renew the value of the first coordinate:

LA docstring that explains how to use the class is one such example.

42



def (self):
return self.x

def (self, newx):
self.x = newx

Notice that the getter doesn’t pass any parameters. This is a benefit of object-orientation.
Procedural code, on the other hand, more often has functions passing multiple param-
eters.

10.2 Inheritance

In the event that we’d like to create two data types that share some base-level function-
ality but differ in extra information, we’d likely be repeating a lot of code in our classes.
In this case, the idea of inheritance in object-orientation comes in handy and we can
create another class from which our two similar classes can inherit. More formally:

Given a parent (or base) class with some functionality (methods and attributes), we
can create a child class (subclass) that inherits all of the base class’ information. This
is the idea of inheritance in object oriented programming.

This idea helps to cut down on repeated code, is convenient for projects as they grow in
size, and sets up a hierarchy of classes. The syntax to create a subclass from a parent
class is:

class (ParentClass) :
pass

10.2.1 EXTENDING FUNCTIONALITY

If we’d like to extend our subclass to contain more information (attributes) than its
parent class, instead of redefining the __init__ method with all the parent’s attributes,
we can use the super () method to let the parent class handle the inherited attributes:

class :
def __init__(self, name):
self.name = name

class (Person) :
def __init__(self, name, year_group):
super () .__init__(firstname)
self.year_group = year_group

43



10.2.2 OVERRIDING

Overriding a method inherited from a parent class is as simple as re-defining the method
with the same name under the derived class.

10.2.3 USEFUL BUILT-IN FUNCTIONS

Python has two built-in functions that give us information about inheritance. They
return booleans as their output:

» isinstance(x,y) checks to see if an object x is an instance of a class y

« issubclass(x,y) checks to see if the first input x is a subclass of a second class y

10.3 Polymorphism

Polymorphism means multiple forms. We’ve already seen polymorphism in operators
in the form of overloaded operators that take on a different meaning depending on the
objects they relate. For classes, in particular, it works similarly. Take the following
example of two methods called perimeter that are wrapped in two different classes.

class :
def __init__(self, width, length):
self.w = width
self.1 = length

def (self):
return 2*(self.l + self.w)

def __str__(self):
return "a rectangle of side lengths " + str(self.l) + " and " +
str(self.w)

class :

pi = 3.14159

def __init__(self, radius):
self.r = radius

def (self):
return 2+ (Circle.pi)*(self.r)

def __str__(self):

return "a circle of radius " + str(self.r)

Running the following code will take advantage (by virtue of cutting down on code) of
the same name being used for two different methods that are associated with different
classes:

rec = Rectangle(1,2)
circ = Circle(4)

44



for shape in [rec, circ]:
print (f"The perimeter of {shape} is {shape.perimeter()}")

The output will be:

The perimeter of a rectangle of side lengths 2 and 1 is 6
The perimeter of a circle of radius 4 is 25.13272

45



CHAPTER 11

Miscellaneous Useful Things

11.1 Iterables and Iterators

We’ve already seen several times that all of Python’s built-in collections like lists, dic-
tionaries and tuples can be iterated over with a for loop. Now that we have an under-
standing of classes, we can begin to explain how for loops work.

An object is iterable if it can be looped over. More formally, an object is iterable if it
supports a special method called __iter__.

We've seen examples of iterables like lists, tuples, strings, dictionaries etc. To check if
an object is iterable, we can list out all of its methods and attributes by calling dir () on
the object itself. For example, calling dir(1ist) in the interpreter yields the following:

["__add__', '__class__', '__contains__', '__delattr__', '__delitem__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__getitem__', '__gt__', '__hash__', '__jiadd__',
'__dmul__', '__init__', '__init_subclass__"', '__iter__', '__le__"',
'“len__', '__1t__', '__mul__', '__ne__', '__new__', '__reduce__"',
'__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__',
'__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append',
'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']

Note that __iter__ can be found as the first entry on the fourth line. Thus, a list object
is iterable.

Akin to how we’ve seen top-level functions like len calling __len__ in the background,
the Python interpreter recognises the keyword for and calls the special method __iter__
on the object. What __iter__ does is return an object called an iterator:

An object is an iterator if it has some way to remember its current state and supports
a method (called __next__) that can retrieve its next value.

We can call __next__ using the top level syntax next (object_name). This will return the
next element in the object. Once there are no more elements to traverse over, __next__
will raise a StopIteration exception.

46



We know that lists are iterable. Are lists also iterators?

Notice that dir(1ist) above does not list a __next__ method. Therefore, a list is iterable
but not an iterator.

11.1.1 CUSTOM ITERATORS

Studying iterables and iterators for their own sake is fun and all but we can actually add
the iterator protocol to our own custom classes. Not only can we add this behaviour,
but also customise the behaviour.

class 2

"""Blueprint of an iterator object for looping over a sequence in

reverse."""

def __init__(self, data):
self.data = data

self.index = len(data)

def __iter__(self):
return self

def __next__(self):
if self.index ==
raise Stoplteration
self.index = self.index - 1

return self.data[self.index]

As a brief summary of the above code, the __iter__ method has to return an iterator (an
object that supports the __next__ method). We can simply define a __next__ method
in Reverse and have the __iter__ method in Reverse return self (so that initialising

Reverse will create an object that we can call __iter__ on to return an object that
supports __next__).

That was a mouthful.

11.2 Cartesian Products

from collections import product
a=[1,2]

b = [3,4]

prod = product(a,b)

print (1ist(prod))

>>>  [(1,3), (1,4), (2,3), (2,4)]

47



11.3 map, filter and reduce

These are three important functions that share the general syntax function_name (function,
sequence).

o The map function takes a sequence and applies a function to each element of the
sequence.

a = [1,2,3,4]

b = map(lambda x: x**2, a)
print(list(a))

>>> [1, 4, 9, 16]

o The filter function takes a sequence and filters out elements of the sequence
depending on a rule given by a function.

a=1[1, 2, 3, 4, 5, 6]

b = filter(lambda x: x%2 == 0, a)
print(list(a))

>>> [2, 4, 6]

+ The reduce function (from functools) takes a function that has two arguments
and repeatedly applies it to elements of the sequence and returns a single final
value.

from functools import reduce
a=1[1,2, 3, 4, 5, 6]

product_a = reduce(lambda x,y: x*y, a)
print (product_a)

>>> 720

11.4 List Comprehensions

List comprehensions condense a lot of syntax into a fairly easy-to-read expression in
order to create a list of objects. The disadvantage is that it doesn’t translate well into
other languages. A typical list comprehension looks like:

[expression for variable in iterable if conditions]
Using functions, we can emulate a list comprehension with:
list (map(expression, filter(condition, iterable)))

We need to use 1ist() on the object created by map() because it’s an iterator (an object
representing a stream of data, returning the data one element at a time), not an iterable.

48



As an example, consider the following list comprehension.
example_list = [n**2 for n in range(1,5) if n\/2 == 0]

What this particular list comprehension does is:

o Creates the list [1,2,3,4].

o The filter function creates an iterator whose elements satisfy the condition that
the element is divisible by 2, leaving 2 and 4.

« It then applies the function n — n? to each element of the iterator and creates a
list out of them.

11.5 Arbitrary Arguments

So far we’ve only seen functions with a fixed number of arguments. Python has a way
of permitting functions that can take on an arbitrary number of values.

o If you mask a parameter with * then you can pass any number of positional
arguments to your function.

« If you mask a parameter with ** then you can pass any number of keyword argu-
ments to your function.

def (a, b, *args, *+kwargs):
print(a,b)
for arg in args:
print (arg)
for key in kwargs:
print(key, kwargs[keyl)

In tutorials and other literature, *args is used for arbitrary positional arguments
and *+kwargs for arbitrary keyword arguments. You can preface any formal pa-
rameter name, e.g. *weights if you'd like to pass an arbitrary number of positional
arguments for weight to a function.

In the example above, *args is a tuple and *+kwargs is a dictionary.

Now suppose that we call foo(0, 2, 3, 4, six = 6, eight = 8). The arbitrary posi-
tional arguments are 3 and 4 and the arbitrary keyword arguments are six = 6 and
seven = 7. What is returned is as follows:

49



11.6 Tuples

A tuple can be unpacked into variables e.g. details = (40, "Teach", "Emperor") can be
unpacked into age, name, position = details. Using a * before a variable name creates
a list out of the elements between its enclosing values (i and j in the example below):

a = (0,1,2,3,4)

i, *j, k = a

print (i)

print(j) [ ]
print (k)

Lists are generally larger (size-wise) than tuples and tuples are faster (more efficient) to
iterate over. However, tuples are immutable.

50



CHAPTER 12

Extra Things That Pop Up

« Generators (some kind of analogue to iterators?)

« Composition (something to do with classes being composed of other classes like a
human class consisting of body parts classes that have their own attributes and
functions?)

« Parallel processing and multi-threading (genuinely no idea beyond the name)

51



Fin

This is the summary at the end of the MIT course. Looks like a decent summary.

* You should now have a sense of how to represent knowledge with data structures.

« Be familiar with good computational metaphors e.g. using iteration, loops and
using recursion as a good way to break down problems into simpler problems of
the same type.

o Understand abstraction: the idea of capturing a computation, burying it inside a
procedure so that you now have a contract with the computer that you need not
worry about the underlying mechanics/procedures as long as it delivers the answer
it says it should.

« Be able to use classes and methods as a way to modularise systems and to capture
combinations of data and functions that operate on said data in an elegant way.

« Be exposed to classes of algorithms (search and sort) and their complexity.

52



	Overview
	What is computation(al problem solving)?
	Declarative and Imperative Knowledge

	A Brief History of Computers
	Primitives and Languages
	Different Dimensions of a Programming Language
	Syntax and Semantics

	Core Elements of a Program
	Data Types
	Relations Between Object Types
	Type Checking

	Variables and Assignment
	More Data Types
	Mutable and Immutable
	Control Flow
	Multiple Conditions

	Exceptions
	Defensive Programming


	Machine Interpretation of a Program
	Modules
	Functions
	Namespaces
	Lifetimes, Creation and Types

	Scope

	Problem Solving
	Enumerative Exhaustion
	Bisection Search
	Recursion
	The Tower of Hanoi


	Time Complexity and Order of Growth
	The Random Access Model
	Running Time
	Calculating Complexity
	Loops
	Recursive Algorithms

	Asymptotic Notation
	Efficiency

	Search Methods
	Linear Search
	Aside: How Python Implements Lists
	Elements of Fixed Size
	Elements of Variable Size (Linked Lists)
	Python's List Implementation

	Binary Search

	Sorting Algorithms
	Amortisation Analysis
	Selection Sort
	Merge Sort
	Complexity Calculation

	Amortisation Analysis 2: Electric Boogaloo

	Hashing
	Classes
	Creating and Instantiating Classes
	The [style=pystyle]init Method
	Instance Methods
	Class Variables

	Object Representation
	Special (Dunder) Methods

	The Pillars of Object-Orientation
	Abstraction and Encapsulation
	Data Hiding

	Inheritance
	Extending Functionality
	Overriding
	Useful Built-in Functions

	Polymorphism

	Miscellaneous Useful Things
	Iterables and Iterators
	Custom Iterators

	Cartesian Products
	[style=pystyle]map, [style=pystyle]filter and [style=pystyle]reduce
	List Comprehensions
	Arbitrary Arguments
	Tuples

	Extra Things That Pop Up

