
Introduction to
Data Science

by Khallil Benyattou

りっぱ

立派

March 3, 2024

Contents

Chapter 1 Optimisation

1.1 The Knapsack (Backpack) Problem ... 1

1.2 Greedy Algorithms ... 2
Brute Force Implementation (5).

1.3 Dynamic Programming ... 6

Chapter 2 Graphs

2.1 Constructing Graphs... 9

2.2 Depth First Search ... 12

2.3 Breadth-First Search... 13

Chapter 3 Random Walks

3.1 Drunkards In A Field.. 14

Chapter 4 Monte Carlo Simulation

4.1 Confidence Intervals.. 20

Chapter 5 Harnessing Randomness

5.1 Random Stats Knowledge ... 26

Chapter 6 Modelling Experimental Data

6.1 Measuring Fit... 29

6.2 Polynomial Linear Regression .. 29

6.3 Fit Comparison .. 30

6.4 Cross-Validation ... 32

6.5 Finding the Right Model ... 33

6.6 Mini Project... 34

Chapter 7 Introduction to Machine Learning

7.1 Feature Representation ... 36

7.2 Unsupervised Learning.. 37
Clustering Overview (37). Hierarchical Clustering (38). K-Means Clustering (39).

7.3 Supervised Learning.. 40
k-Nearest Neighbours (40).

7.4 Metrics For Evaluating Our Learning... 42

7.5 Testing A Classifier... 42

7.6 Logistic Regression ... 43

Chapter 8 Stock Simulation

i

Disclaimer

I wrote these notes for my own personal use while closely following the lectures of MIT
6.0002 (Fall 2016). There are some bits missing (diagrams I haven’t generated yet)
but I’ve managed to create some of them with TikZ diagrams.

� If anybody is trying to sell you these notes:

• I am flattered.

• These notes are freely available for public access and should not, in any circum-
stance, be sold or distributed for profit.

These notes are hosted in only one location, my website:

https://kbenyattou.github.io/notes/

All errors herein are my own.

ii

https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/
https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/
https://kbenyattou.github.io/notes/

Chapter 1

Optimisation
The main part of this course is on computational models. How do we use computation to
understand the world in which we live? A model can be thought of as an experimental
device that can help us explain things that have already happened or predict what
things will be like in the future. Science has had an increasing reliance on computation to
supplement traditional experimentation. We’ll discuss 3 kinds of models: optimisation,
statistical and simulation models.

Optimisation problems have a function that we wish to maximise (or minimise) while
abiding by a (possibly empty) set of constraints.

Some classic optimisation problems are:

• Shortest path problems

• The travelling salesman - Given a number of cities and costs to travel from city to
city by aeroplane, what’s the least cost round trip you can find?

• Bin packing - Filling up some container with objects of varying size and shape.
(Very important in shipping)

• Sequence alignment - These frequently crop up in biology and natural language
processing. For example, aligning DNA sequences.

It’s useful to have an inventory of previously solved problems. This is because when
solving new problems, we can reduce them by mapping them onto old problems that
other people have already found solutions for. Most optimisation problems do not have
fast solutions. We’ll begin by focusing on the knapsack problem.

1.1 The Knapsack (Backpack) Problem

The knapsack problem is usually formulated in terms of a burglar who wishes to steal
items of the greatest possible value from a house under the constraint that everything
he steals must fit in their backpack.

There are two variants of the knapsack problem:

• The continuous knapsack problem allows for fractions of items to be taken.

This version of the problem is very easy to solve with a greedy algorithm: Take as
much of the highest value item as you can until your bag either runs out of space
or you’ve taken all of the highest value item. In this case, move onto the next
highest value item and repeat until the bag is full.

• The discrete ”0/1” knapsack problem is more interesting. In this version, you have
the choice to either take the entirety of an item or leave it behind. You aren’t

1

allowed to take, for example, 3/5 of a television.

The discrete knapsack problem is more interesting because any choice you make will
non-trivially affect all future choices.

Formalisation of the Discrete Knapsack Problem

• Each item is represented by a pair <value, weight>

• The knapsack can accommodate items with a total weight of no more than w

• A vector L of length n will represent the set of available items. Each element of
the vector is an item.

• A vector v of length n will represent whether each item has been taken or not with
a 1 or 0 respectively

Thus, we’re looking for a v that
maximises

n−1∑
i=0

v[i] ∗ L[i].value

subject to the constraint that

(
n−1∑
i=0

v[i] ∗ L[i].weight

)
⩽ w

The obvious method is via brute force. Enumerate all possible combinations of items
(generate the power set ℘(L) of L i.e. the set of all possible subsets), remove all combina-
tions whose total weights exceed the weight constraint and choose any one combination
with the largest value. Since the power set of a set L has size 2len(L), this is clearly
not very practical. So is there another candidate for an algorithm that would give us
a solution in less than exponential time? Sadly not. The knapsack problem and many
other optimisation problems are inherently exponential. However, there are some good
solutions.

1.2 Greedy Algorithms

In pseudocode, a greedy algorithm takes the following form:

Algorithm 1 A greedy knapsack algorithm.

1: while knapsack is not full do
2: put “best” available item into the knapsack
3: end while

The algorithm depends on how we define the “best” available item.

Greedy algorithms make a sequence of local optimisations. Take, for example, a greedy
algorithm that describes how to climb a hill: “If you can increase your altitude, do it.
If you can’t, stop the process.”

2

+

According to our greedy algorithm, if we start at ◦ we make our way to the top of the
left hill making locally optimal decisions. This peak is a local maximum. If we start
at +, we make our way to the top of the hill on the right - a global maximum. This
is the problem with greedy algorithms. By making locally optimal choices, there’s a
possibility that we get stuck at a local maximum and don’t maximise our function.

Implementation for the Discrete Knapsack Problem

We begin by defining a new abstract data type for each item. This gives us an easy way,
via methods like .get_name(), to retrieve attributes like the item’s name etc.

class Possession:

"""Each possession has a name (str), value (float) and weight (float).

These can be accessed with the .get_name() and .get_value() methods"""

def __init__(self, name, value, weight):

self.name = str(name)

self.value = float(value)

self.weight = float(weight)

def get_name(self):

return self.name

def get_value(self):

return self.value

def get_weight(self):

return self.weight

def __str__(self):

return str(self.name) + "\t" + str(self.value) + "\t" +

str(self.weight)

So that the items in the list can be printed out

def __repr__(self):

return "<" + str(self.name) + ", " + str(self.value) + ", " +

str(self.weight) + ">"

We build the list of items with the following code:

def item_selection(names, values, weights):

"""Assumes all inputs are lists of equal size"""

selection = []

for i in range(len(names)):

selection.append(Possession(names[i],values[i],weights[i]))

3

return selection

names = ["wine", "beer", "pizza", "burger", "fries", "cola", "apple",

"donut"]

values = [89, 90, 95, 100, 90, 79, 50, 10]

weights = [123, 154, 258, 354, 365, 150, 95, 195]

L = item_selection(names, values, weights)

We leave the choice of how to define the “best” next item up to the user in the form of
a formal parameter called keyFunction.

def greedy_algorithm(selection, max_weight, keyFunction):

total_value = 0

total_weight = 0

selectionCopy = sorted(selection, key=keyFunction, reverse=True)

print(f"{selectionCopy}\n")

optimal_choices = []

for i in range(len(selectionCopy)):

if selectionCopy[i].get_weight() + total_weight <= max_weight:

total_weight += selectionCopy[i].get_weight()

total_value += selectionCopy[i].get_value()

optimal_choices.append(selectionCopy[i])

print(f"The total value of the items stolen is {total_value}.\nThe bag

has a maximum capacity of {max_weight} of which {total_weight} has been

used.\nThe items chosen are:")

for choice in optimal_choices:

print(f"\t{choice}")

Finally, we initialise a value for the maximum available weight and call the algorithm
with the user’s chosen keyFunction. In this case, we use Possession.get_value to arrange
the items’ values in descending order:

max_weight = 1000

print(f"Using the greedy algorithm (by descending value) to allocate

{max_weight} calories of items.")

greedy_algorithm(L, max_weight, Possession.get_value)

Pros of greedy algorithms:

• Easy to implement.

• Computationally efficient (n log n time complexity).

Cons:

• These algorithms don’t actually solve the problem.

• Our “solution” may or may not even be a good approximation to an optimal
solution.

4

1.2.1 BRUTE FORCE IMPLEMENTATION

One particular brute force implementation uses a search tree. We’ll search the tree we
construct in a depth-first manner. Namely, we explore one path totally until moving
onto the next.

e.g. The order in which the nodes on the tree below are visited is [10, 13, 4, 6, 12,

8, 1]:

10

13

4 6

12

8 1

Below is an example of an appropriate search tree for the knapsack problem with 3
items.

[]

[g]

[g,s]

[g,s,b] [g,s]

[g]

[g,b] [g]

[]

[s]

[s,b] [s]

[]

[b] []

For this tree, if a node has children it will have two and the left node will represent
’taking the item’ and the right node will mean that we’ve left the item.

The code for such a greedy algorithm is as follows:

def maxval(items, remaining_weight):

if items == [] or remaining_weight == 0:

result = (0, ())

elif items[0].get_weight() > remaining_weight:

In this case, only explore the right branch because the current

item cannot be added

result = maxval(items[1:], remaining_weight)

else:

next_item = items[0]

Consider the left branch's value

value_with_item, solution_with_item = maxval(items[1:],

remaining_weight - next_item.get_weight())

value_with_item += next_item.get_value()

Consider the right branch's value

value_without_item, solution_without_item = maxval(items[1:],

remaining_weight)

Compare the branches

if value_with_item >= value_without_item:

result = (value_with_item, solution_with_item + (next_item,))

5

else:

result = (value_without_item, solution_without_item)

return result

def testmaxval(items, max_weight, printItems = True):

print(f"Use search tree to allocate {max_weight} calories")

val, taken = maxval(items, max_weight)

print(f"Total value of items taken = {val}")

if printItems:

for item in taken:

print(" ", item)

The computational complexity of the brute force depth-first method depends on the
number of nodes generated in the tree. For n items to choose from, there are n+1 levels
in the tree and each level i contains 2i nodes. In total, there are 2n+1 − 1 nodes so this
algorithm has a time complexity of O(2n+1) for an input of length n.

An obvious optimisation is to not explore parts of the tree that violate the constraint.
This, however, doesn’t change the worst-case complexity.

So is this all hopeless? Are we doomed to an inherently exponential solution to such
optimisation problems? In theory, yes. In practice, there’s an idea called dynamic
programming that can cut the time taken down a lot.

1.3 Dynamic Programming

Take the fibonacci sequence as a motivation idea. Defined recursively, we have that
fib(0) = 1,fib(1) = 1 and fib(n) = fib(n− 1)+ fib(n− 2) for integers n > 1. The growth
in time taken to compute a result is roughly proportional to the growth in value of the
result.

Consider the recursive call tree of fib(6). We compute fib of 3 three times and each of
these creates four additional calls of fib. It’s bad enough to do something once. To do
the same thing over and over again is wasteful. No matter how many times we compute
fib(3), we will get the same result. To avoid doing the same work over and over again,
we can store the answer and look it up when it’s needed. This is the key idea behind
dynamic programming. We trade time for space with this method. There are two ways
of storing values:

• A top-down solution involves storing the results from subproblems in a list. This
technique is called memoisation.

• A bottom-up solution involves starting from the bottom (smallest possible value)
and calculating values in order while holding temporary values in variables. This
technique is called is called tabulation.

Examples of these two are below:

def top_down_fib(n, memo={}):

if n == 0 or n == 1:

return 1

6

elif n in memo:

return memo[n]

else:

memo[n] = top_down_fib(n-1, memo) + top_down_fib(n-2, memo)

return memo[n]

def bottom_up_fib(n):

if n == 0 or n == 1:

return 1

else:

a, b = 0, 1

for i in range(n):

a, b = b, a+b

return b

The time complexity of the bottom-up approach is O(n) and its space complexity is
constant (in O(1)) because we only use two variables to track the intermediate results.

The time complexity of the bottom-up approach is also O(n) because we only solve each
subproblem once. However, its space complexity is linear (in O(n)) because we store
our results in an array of size n+ 1.

This is a tremendous improvement on the exponential time complexity of the recursively
defined fibonacci function:

def recursive_fib(n):

if n == 0 or n == 1:

return 1

else:

return recursive_fib(n-1) + recursive_fib(n-2)

When can one use memoisation?

The problems it can help with (by finding an optimal solution) have two things:

• Optimal substructure: when a globally optimal solution can be found by com-
bining optimal solutions to local subproblems e.g. fib(x) can be found by solving
for fib(x-1), fib(x-2) and then combining them.

• Overlapping subproblems: when finding an optimal solution involves solving
the same problem multiple1 times e.g. computing fib(x) many times.

Merge sort was an example of a problem with optimal substructure but we’d expect
that most of the time, it wouldn’t have overlapping subproblems unless the list repeated
itself in parts. Dynamic programming can’t be used to improve merge sort. Oh well.
Nothing is a silver bullet.

The knapsack problem does have optimal substructure because we’re comparing the
take and not take branches. It doesn’t have overlapping subproblems for the

pizza,beer,burger

1You can create a memo for a problem without overlapping subproblems but every time you look
in the memo it’s empty because you’re only solving each subproblem once.

7

search tree because we never have the same contents. We’d get no speed-up. However, a
different menu with more than 1 beer would give us the same problem to solve more than
once. However, you don’t need multiple copies of the same item to have overlapping
subproblems e.g.

8

Chapter 2

Graphs
We now broaden the class of models to talk about graphs.

Definition 2.0.1 A graph G = (V,E) is a collection of nodes or vertices V (that
have information associated with them) and edges E that connect nodes.

• If its edges are unidirectional, a graph is called directed (or a digraph).
Otherwise, it’s undirected.

• If there’s an edge from a node n to a node m, we call n the source (or parent)
node and m the destination (or child) node.

• If a value (or weight) is associated with each edge in a graph, the graph is called
weighted.

Trees are a special type of directed graph in which any pair of nodes is connected by a
single path. There are no loops. We used a decision tree to solve the discrete knapsack
problem.

In computer science, we mostly use Australian trees - they’re upside down. The roots
are the top and the leaves are at the bottom.

Graphs are useful because not only can we use them to model all sorts of networks based
on relationships (like computer networks, transportation grids, financial networks etc.)
but we can also use them to infer things about these structures:

• Finding sequences of links between elements: Is there a path from A to B?

• Finding the least expensive path between nodes

• Partitioning a graph into sets of connected elements

• Finding the most efficient way to separate sets of highly connected sets (sub-
graphs). An example of this is the min-cut/max-flow problem.

2.1 Constructing Graphs

We begin by creating custom data types for nodes and edges. These will be later
implemented into a digraph data type. For the time being, we simply initialise a name
for each node.

class Node:

def __init__(self, name):

9

self.name = name

def getName(self):

return self.name

def __str__(self):

return self.name

An edge is a connection between a source node and a destination node. We add the
functionality to retrieve these nodes. We hold off on adding a weight (float) to each
edge for now.

class Edge:

def __init__(self, src, dest):

self.src = src

self.dest = dest

def getSource(self):

return self.src

def getDestination(self):

return self.dest

def __str__(self):

return self.src.getName() + "->" + self.dest.getName()

There are several ways to model a digraph. Take the following digraph for example:

0 1

2

34

5

We can model a graph using what is known as an adjacency matrix. If we think of
the source and destination nodes as two separate lists src and dest, then the rows and
columns of our adjacency matrix A = (aij) are indexed by src and dest respectively.
If an edge from a parent node src[i] to a child node dest[j] exists, then aij = 1.
Otherwise, aij = 0.

10

0 1 2 3 4 5


0 0 1 0 1 0 0

1 0 0 0 1 0 0

2 0 0 0 0 0 0

3 0 0 1 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 1 0

Notice that the adjacency matrix for our digraph is not symmetric. A more special
type of graph is an undirected graph. The adjacency matrices of undirected graphs are
symmetric1 because if there’s an edge from src[i] to a child node dest[j] i.e. aij = 1,
then there is also an edge in the other direction aji = 1.

For an adjacency matrix, if the number of edges is particularly small compared to the
number of nodes then the matrix is mainly 0s and so we have a very inefficient way of
storing only a few values. To this end, we consider an adjacency list instead.

0 7−→ [1,3]

1 7−→ [3]

2 7−→ []

3 7−→ [2]

4 7−→ []

5 7−→ [4]

We represent an adjacency list as a mapping from source nodes to a list of destination
nodes for which edges from the source node exist.

In Python, we can use a dictionary to formalise this structure - the source nodes will
serve as keys in the dictionary and the lists will be the values.

class Digraph:

def __init__(self):

We initialise an empty dictionary to store the edges

self.edges = {}

def addNode(self, node):

if node in self.edges:

raise ValueError("Duplicate node")

else:

self.edges[node] = []

def addEdge(self, edge):

src = edge.getSource()

dest = edge.getDestination()

if not (src in self.edges and dest in self.edges):

raise ValueError("Node not in graph")

self.edges[src].append(dest)

1A matrix A = (aij) is symmetric if and only if it is equal to its transpose i.e. for every i and j,
aij = aji.

11

def childrenOf(self, node):

return self.edges[node]

def hasNode(self, node):

return node in self.edges

def getNode(self, name):

for n in self.edges:

if n.getName() == name:

return n

raise NameError(name)

def __str__(self):

result = ""

for src in self.edges:

for dest in self.edges[src]:

result = result + src.getName() + "->" + dest.getName() +

"\n"

return result[:-1] #omit final newline

2.2 Depth First Search

• Start at an initial node

• Consider all edges that leave that node (in some order)

• Follow the first edge and check to see if we’re at the goal node

↑ If not, repeat the process from the new node

• Continue until either you’ve found the goal node or run out of options

◦ When you run out of options, backtrack to the previous node and try the
next edge, repeating the process.

The code for a breadth first search is as follows:

def DFS(graph, start, goal, path = [], shortest_path):

path += [start]

if start == goal:

return path

else:

for child in childrenOf(start):

if child not in path:

The following condition shortest_path == None means that

we don't yet have a solution

if shortest_path == None or len(path) <= len(shortest_path):

new_path = DFS(graph, child, goal, path, shortest_path)

if new_path != None:

If there is a solution, set it to shortest_path

shortest_path = new_path

else:

print(f"{child} has already been visited")

return shortest_path

12

2.3 Breadth-First Search

• Start at an initial node

• Consider all edges that leave that node (in some order)

• Follow the first edge and check to see if we’re at the goal node

↑ If not, try the next edge from the current node

• Continue until either you’ve found the goal node or run out of options

◦ When you run out of edge options, move to the next node at the same distance
from the start, and repeat.

◦ When you run out of node options, move to the next level in the graph (all
nodes one step further from the start), and repeat.

Since we’re searching the graph level by level, if we find a solution then we know that
it’s the shortest path.

The code for a breadth first search is as follows:

def BFS(graph, start, goal):

initial_path = [start]

We need some way to keep track of the paths we're yet to explore and

we use a queue for this

path_queue = [initial_path]

This while loop condition says that as long as I have a path to

explore and I'm yet to find a solution, proceed with the loop's
contents:

while len(path_queue) != 0:

temp_path = path_queue.pop(0)

last_node = temp_path[-1]

if last_node == goal:

return temp_path

else:

for next_node in graph.childrenOf(last_node):

new_path = temp_path + [next_node]

path_queue.append(new_path)

return None

13

Chapter 3

Random Walks
Why are we looking at random walks?

Random walks are important in:

• There are many people who believe that movement in stock prices are best-
modelled by a random walk

• Modelling physical processes like diffusion (heat, molecules etc.)

Random walks are also good illustrations of how to use simulations to understand the
world around us (and a good excuse to practise classes and plotting).

3.1 Drunkards In A Field

Say you have a drunk in a field that we model as Z2 and he can only move randomly in
4 directions (up, down, left and right). Is there an interesting relationship between the
number of steps our drunkard takes and the distance he is from the origin at the end of
those steps?

Suppose he takes only 1 step. The drunkard is then, irrespective of the direction he
steps in, always 1 step away from the origin. WLOG, let’s assume the first step he takes
is right. After 2 steps, his possible locations are (0, 0), (1, 1), (2, 0) and (1,−1).

. . .

Figure 3.1: Possible locations (in red) after two steps assuming the first is east.

On average, our drunkard is (1 +
√
2)/2 ≈ 1.207 steps away - a little further away from

the origin after two steps than one.

14

How about after 1000 steps? I refuse to calculate it directly so we resort to a simulation.
We’ll structure it exactly the same way in which we’ve been structuring our simulations.
We’ll model a walk with k-steps, repeat the process n-times and report back the average
distance from the origin of the n-walks.

We begin by defining an umbrella class of drunks, under which we’ll create special types
of drunkards that behave differently.

class Drunk:

def __init__(self, name):

self.name = name

def __str__(self):

return f"{self.name}"

Let’s say that a regular drunk is equally likely to move in any of the four compass
directions but a homing drunk has a tendency to move east. Perhaps his home nation
lies to the east. The homing drunk defines a biased random walk.

class RegularDrunk(Drunk):

def takestep(self):

possiblesteps = [(0,1), (0,-1), (-1,0), (1,0)]

return random.choice(possiblesteps)

class HomingDrunk(Drunk):

def takestep(self):

possiblesteps = [(0,1), (0,-1), (-0.9,0), (1.1,0)]

return random.choice(possiblesteps)

Now we define a class that we can use to report and modify the location of a drunkard.
There are the usual getters and setters and we also include a method to return the
distance between two locations.

class Location:

def __init__(self, x, y):

self.x = x

self.y = y

def make_move(self, dx, dy):

return Location(self.x + dx, self.y + dy)

def distance(self, other):

xdiff = self.x - other.x

ydiff = self.y - other.y

return (xdiff**2 + ydiff**2)**(0.5)

def get_x(self):

return self.x

def get_y(self):

return self.y

15

def __str__(self):

return f"<{self.x}, {self.y}>"

We need a way to keep track of the drunkards and their locations in the field. To this
end, we define our field as a dictionary mapping drunkards (these are immutable data
types so we can use them as keys) to their locations.

class Field:

def __init__(self):

self.drunkards = {}

def add_drunkard(self, drunk, location):

if drunk in self.drunkards:

raise ValueError(f"{str(drunk)} is already in the field")

else:

self.drunkards[drunk] = location

def move_drunkard(self, drunk):

if drunk not in self.drunkards:

raise ValueError("Drunk is not present.")

dx, dy = drunk.nextstep()

self.drunkards[drunk] = self.drunkards[drunk].make_move(dx, dy)

def get_location(self, drunk):

if drunk not in self.drunkards:

raise ValueError("The drunk is not in the field.")

return self.drunkards[drunk]

Finally, we define one function to calculate the displacement at the end of a single k-step
walk and another to average n trials of a single k-walk.

def walk(f, k, drunk):

for i in range(k):

f.move_drunkard(drunk)

return f.get_location(drunk)

def averagedistance(f, n, k, drunk):

start = Location(0,0)

total_distance = 0.0

for i in range(n):

total_distance += walk(f, k, drunk).distance(start)

return total_distance/n

Plot where they end up and maybe a relationship between steps and distance. sqrt(n)
for reg and 0.05 for homing

16

Table 3.1: Recorded displacements for both a regular and a homing drunk over n = 100
trials.

k Regular Homing
1 1.000 1.020
2 1.307 0.775
10 2.762 2.445
100 7.115 10.089
1000 28.103 49.967

17

Chapter 4

Monte Carlo Simulation
Sometimes the combinatorics of probability are too complicated. Instead, one can repeat
an experiment many times and calculate the average rate at which an event occurs.
This is the idea of Monte Carlo Simulation, invented by Ulam and implemented by von
Neumann.

Definition 4.0.1

• Monte Carlo Simulation is a technique used to approximate the probability of
an event by running the same simulation multiple times and averaging the results.

• A program is deterministic if whenever it’s run on the same input, it produces
the same output. Many aspects of the world can only be accurately modelled by a
stochastic process.

• A process is stochastic if its next state can depend upon on some random
element.

Given an experiment, the population can be thought of as the universe of all possible
examples (the outcome space). We take this population and sample it by drawing
a proper subset. Then we make an inference about the population by running some
statistics on the sample.

How can we guarantee (or at least reasonably suppose) that our inferences are represen-
tative of the population? By sampling the population at random.

A sample chosen at random tends to exhibit the same properties as the population.

If the sample isn’t chosen at random, it would be unreasonable to suggest that our
inferences are meaningful.

e.g. Flipping Coins

Suppose that you flip a coin once and it lands on heads. How confident are you that
the next flip yields heads? Probably not very.

Now suppose that you’ve flipped a coin 100 times. They all land on heads. At this point,
you’re probably suspicious. This may not be a fair coin or it’s weighted in some way
that is (very, very) biased. Your best guess for the 101st flip based on prior observations
is clearly heads.

Suppose instead that out of 100 flips, you get 52H and 48T. The best guess for the
probability of the 101st flip landing on heads is 52/100. How confident are you in this
guess? You shouldn’t have much confidence compared to when the coin landed on heads

18

100 times in a row. Why is this? The answer lies in the variability (or variance) of the
observations. With 52H and 48T, the next flip could really go either way. Thus, the key
observation here is that:

As the variance grows, we need a larger sample to have the amount of confidence.

roulette example

19

4.1 Confidence Intervals

This is a sticking point for a lot of
people and I don’t personally think
the presentation of the LLN in this
course is a
statistically/mathematically rigorous
one.

Will revisit and add a better version
when I get to it in my own studies.

Me

Theorem 4.1.1 (The Law of Large Numbers) In repeated independent tests with
the same actual probability p of a particular outcome in each text, the chance that the
fraction of times that outcome occurs differs from p converges to 0 as the number of
trials → ∞.

This law is misunderstood and it’s so frequently misunderstood that we give it a name,
the Gambler’s Fallacy. People believe that if deviations from the expected outcome
occur, they’ll be evened out in the future. For example, you may have heard in a baseball
game that the commentator says something like “He’s struck out 6 times, he’s due for
a hit this time (because he’s usually a pretty good hitter)”

A very famous example comes from an eventful night at a Monte Carlo casino. At a
roulette table, black appeared 25 times in a row. This is an extremely unlikely event
with a probability of 1/. This prompted people to gather around and bet a lot of money
on red showing up. They all believed that “surely the next will be red” to “even out”
the ridiculous sequence of black appearing. However, they failed to understand that the
26th roll is independent of all prior rolls.

P
(
{26th is red

∣∣ 25 blacks in a row}
)
= P

(
{26th is red}

)
=

1

2

The house always wins and it definitely won on that night.

The Gambler’s Fallacy isn’t entirely off the mark. An idea often confused with it is
called:

Theorem 4.1.2 (Regression to the Mean) Following an extreme event, the next
random event is likely to be less extreme.

By less extreme, it is not meant that the next outcome will compensate or correct prior
observations - only that the next event will be less extreme. To see the distinction
between the two, consider 20 roulette spins, the first 10 of which are red.

• The Gambler’s fallacy would suggest that the next 10 spins will have fewer than 5

20

reds (below the mean, to even out the unusually high amount of reds in the first
10 spins)

• Regression to the mean, on the other hand, would suggest that the next 10 spins
will have less than 10 reds and be closer to the mean. This outcome is less extreme.

Whenever one is sampling, we’re never guaranteed to get perfect accuracy. It’s always
possible that you’ll get a weird sample. Alternatively, you may get the exact right
answer.

We need to be able to differentiate between what happens to be true and what we know
in a rigorous sense (or have real good reason to believe it) is true. The brings up a
fundamental question in computational statistics - How many samples do we need to
look at before we can have justifiable confidence in our answer?

Our confidence, as seen earlier, will depend on the variance of our observations.

Definition 4.1.3

• The variance of a random variable X is a measure of the spread of our data
and is defined as

Var(X) =
∑
x∈X

(x− µ)2

|X|

◦ µ is the mean of our data set

◦ We normalise the variance by dividing by the number of members of our
data set. We do this to avoid making conclusions like “this set has high
variance by virtue of having many members”

◦ Squaring means that we don’t care about whether the distance from the mean
is positive or negative. We only care about the spread. However, we could’ve
considered |x− µ| if the sign was all we cared about. Instead, squaring gives
outliers extra emphasis.

• The standard deviation σ of a random variable X is given by the square root
of the variance of X.

The standard deviation on its own is a meaningless number. We need to think about
it in the context of the mean. For example, σ(X) = 100 and µ = 100 means that the
standard deviation is very large. On the other hand, if σ(X) = 100 and µ = 109, we
can clearly see that σ is relatively small.

When trying to estimate an unknown value from a random variable, we can use the
mean. However, it’s more informative to consider more information in the form of a
confidence interval. A confidence interval is a pair (range, confidence) where the range
is a collection of values likely to contain an unknown value x and the confidence is a
percentage likelihood that x ∈ range.

We calculate confidence intervals with the empirical rule. The empirical rule requires
two assumptions under which it will always hold:

• The mean estimation error is zero (so one is just as likely to guess as high as low

21

i.e. there’s no reason to be systematically off in one direction or another) so there’s
no bias in our errors.

• The distribution of errors in estimates is normal i.e. follows a Gaussian distribution

A distribution captures the notion of the relative frequency with which some random
variable takes on different values. There are two kinds of random variable:

• Discrete random variables are drawn from a finite set of values e.g. a coin flip
has the outcome space {H,T} and we can fully describe our distribution with
p({H}) = a, p({T}) = b.

• Continuous random variables are drawn from a set of reals between two numbers.
Take [0, 1] as an example. We couldn’t possibly enumerate the probability for each
number in this interval because there are infinitely many of them, each of which
has measure 0. Thus, the probability of a particular x occurring is 0. Instead,
we define a probability density function that gives the probability of a random
variable lying between 2 values e.g. p(X ∈ [a, b]).

e.g.

p(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)

This is the probability density function of a Gaussian distribution with mean µ and
standard deviation σ. We also call this a Normal(µ, σ) distribution.

import pylab

import random

num_samples = 1000

dist = []

for i in range(num_samples):

dist.append(random.gauss(0,100))

graph = pylab.hist(dist, bins=100, weights = [1/num_samples]*len(dist))

pylab.xlabel('x')
pylab.ylabel('Relative Frequency')
pylab.show()

print(f'Fraction within ~200 of the mean = {sum(graph[0][30:70])}')

22

What do the values of p represent? Plotting the pdf of a Normal(0, 1) distribution
between -4 and 4 gives a peak to the graph at 0.4. If we changed the values of µ and σ
appropriately, the peak of the y-axis will exceed 1. This means that the values of p are
definitely not probabilities. Instead, p is the derivative of the cumulative distribution
function and so we integrate p between certain values to find the probabilities of events.

some calculations verifying the empirical rule for the roulette example

The empirical rule works for the roulette example (20:00 in the video) but the roulette
example is uniformly distributed (each outcome is equally likely in a single spin) and not
normally distributed. Why is this the case? This is because we were reasoning about
the return of several spins, not a single spin. As soon as we end up talking about the
mean of multiple events, we can apply something called the central limit theorem.

23

Theorem 4.1.4 (Central Limit Theorem) Given a sufficiently large sample:

• The means of the samples in a set of samples {µ1, . . . , µn} (called the sample
mean) will be approximately normally distributed.

• This normal distribution will have a mean that is close to the mean of the
population.

• The variance of the sample means will be close to the variance of the population
divided by the sample size.

24

Chapter 5

Harnessing Randomness
Randomness can be very useful for computing quantities that are not inherently random.
For example, the value of π can be approximated using areas. Buffon and Laplace
proposed an algorithm for computing π. Consider a square S of side-length 2 and a
circle C of radius 1 inscribed inside the square. Buffon proposed “shooting a bunch of
arrows at random at the square.” Ignoring those that land out of the square, we can
compute the ratio:

arrows that land in C
arrows that land in S

≈ area(C)
area(S)

=
π

4

Re-arranging implies that

π ≈ 4× arrows that land in C
arrows that land in S

Thus, we can define a function:

import random

def shootarrows(num_arrows):

in_circle = 0

for arrow in range(1, num_arrows + 1):

x = random.random()

y = random.random()

if (x*x + y*y)**(0.5) <= 1:

in_circle += 1

return 4 * (in_circle/float(num_arrows))

This method can also be adapted to perform numerical integration i.e. estimating the
area of a region R enclosed by a curve f and the x-axis. The method goes as follows:

• Pick a region E ⊇ R whose area is easy to calculate,

• Generate a random set of points that fall in E,

• Let F be the fraction of points that fall within R,

• Return the area of E multiplied by F to get an estimate for R.

I’ll stick to a non-negative function f(x) = sin(x) over [0, π]. Then R =

∫ π

0

sin(x) dx.

import random

import math

def num_int(f, a, b, p):

'''f is a non-negative function over a region [a,b], where a and b are

the endpoints of integration. p (an integer) is the number of points

used for the estimation'''

25

inside_region = 0

enclosing_area = (b-a)*1

for arrow in range(1, p):

x = random.uniform(a,b)

y = random.random()

if y <= f(x):

inside_region += 1

return (inside_region/p)*enclosing_area

Running this code for 10, 100, 1000 and 10000 points gives the following:

>>> for i in [10**d for d in range(1,5)]:

>>> print(num_int(lambda x: math.sin(x), 0, math.pi, i))

2.5132741228718345

2.0420352248333655

2.001194520336698

1.9782608939654929

You can see the approximations gathering around 2 which is a promising sign because
we can verify the area using basic1 integration. Sometimes it might not be so straight-
forward to see if our algorithm is an accurate representation of reality. Oftentimes we
can only tell if our simulation is reproducible instead of accurate.

5.1 Random Stats Knowledge

Inferential statistics is concerned with making inferences about a population (of things)
by examining one or more random samples drawn from that population.

We used Monte Carlo simulation to generate many random samples to compute con-
fidence intervals. This is all good and well when doing simulations but what happens
when you’re trying to do something real like taking an election poll by sampling the
population?

1 ∫ π

0
sin(x) dx = − cos(x)

∣∣∣π
0
= −((−1)− 1) = 2

26

Definition 5.1.1

• The empirical rulea states that for a normal distribution, independent of the
mean and standard deviation, the number of standard deviations from the mean
required to encompass a fixed fraction of the data is constant.

• The standard error of the mean is defined as

SE =
σ√
n

where n is the size of the sample and σ is the standard deviation.

aThe empirical rule is also called the 68− 95− 99.7 rule.

27

Chapter 6

Modelling Experimental Data
One way to understand experimental (physical, biological, social etc.) data is by fitting
a model to it. We intend for the model to explain the underlying mechanism and allow
us to make predictions about the behaviour in new settings.

It’s always a good start to plot the data we have to see if there’s an obvious relationship
between the independent and dependent variables. Say we’re investigating Hooke’s Law:
the relationship between the displacement of a spring and the weight placed on it.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

Weight (N)

D
is
p
la
ce
m
en
t
(m

m
)

Figure 6.1: Plotting spring displacement against weight.

Experiments naturally carry errors as we can see above but it would be ideal if we could
find a curve (model) that best fits the data and accounts for the uncertainty in our
measurements.

A straight line would fit the first part of the data fairly well but the displacements
plateau after around 0.7N (when the spring reaches its elastic limit).

A polynomial1 would fit somewhat better. To this end, we’ll be capitalising on a method
polynomial linear regression - a special type of regression that models the rela-
tionship between a dependent variable and an independent variable as an nth degree
polynomial.

In order to find a curve that fits the data, we first need a way to measure how closely

1Why not another type of function? As a result of the Weierstrass approximation theorem, the set
of polynomial functions is uniformly dense in C([0, 1],R) i.e. dense with respect to the metric defined
by the uniform norm ∥ · ∥∞.

28

our model predictions would match the observed data.

6.1 Measuring Fit

We can define functions to quantitatively measure the “difference” between the observed
points and the points predicted by our curve. These are known as objective functions.
A curve that best fits the data will ideally minimise the objective function (so this can
be framed as an optimisation problem). The most commonly used objective function is
called least squares and it turns out to be the function that is used for one of Python’s
polynomial linear regression algorithms.

Let2

• x represent the range of values that the independent variable takes,

• y be the corresponding observed values of the dependent variable, and

• p represent the corresponding data points that our model/curve predicts.

We define the least-squares function by:

len(y)−1∑
i=0

(y[i]− p[i])
2
.

For different sets of data, a different summand might be more appropriate. For example,
we could measure the horizontal distance h, the vertical distance v or the closest distance
s from the observed points to the curve ℓ of best fit. s is usually helpful in classification
techniques.

ℓ

s

h

v

Figure 6.2: Different ways to measure fit.

For our spring example, h doesn’t make much sense because the horizontal axis mea-
sures our independent variable. Since we’re trying to predict the displacement given a
particular mass, our uncertainty/error in measurement is precisely v.

6.2 Polynomial Linear Regression

Since polynomials are entirely defined by their coefficients p(x) =
∑n

i=0 aix
i, the task of

minimising our objective function reduces to determining a set of appropriate coefficients

2All three lists are ordered and their length are equal.

29

{ai}0⩽i⩽n. The in-built function polyfit from the polyval module can be used to find
these coefficients.

Let’s consider the simplest case of fitting a degree 1 polynomial to some data. The set of
all possible lines we can consider is {ℓ(x) = ax+b : (a, b) ∈ R2}. We can shift perspective
slightly and instead consider a surface whose height at each point (a, b) is the value of
the objective function at ℓ(x) we note that the set of all possible lines ℓ(x) = ax+ b can
be represented as a surface above the x− y plane whose height above the point (a, b) is
the value of the objective function.

Since our objective function is a sum of squares, our surface always has a concave shape.
The polyfit method implements a linear algorithm starting at some point in the surface
and “walks downhill” (following ∇f) until it reaches the bottom3. This point is where
the objective function is minimised and polyfit returns the coefficients of our model
in an array. Then we can use polyval to create an array of predicted values given our
model and the independent variable’s range of values.

linear_model = pylab.polyfit(xvals, yvals, 1)

linear_prediction = pylab.polyval(linear_model, xvals)

pylab.plot(xvals, linear_prediction, 'r--', label = "Linear Model")

6.3 Fit Comparison

Now that we have a way to generate models using polynomial linear regression, it’d be
a good idea to develop some tools to decide on which polynomial best fits our data.

Sometimes there’ll be a theory, like Hooke’s law, that helps contextualise how good our
model is. In the event that we don’t have a theory, we can use our objective-function
to compare the mean squared error (or MSE) of our fits:

MSE(p) =
1

len(y)

∑
i

(y[i]− p[i])2.

def MSE(observed, predicted):

error = 0.0

for i in range(len(observed)):

error += (observed[i] - predicted[i])**2

return error/len(observed)

As a measure of goodness of fit, the mean squared error isn’t scale independent so
comparing numbers like 12000 and 1500 is somewhat meaningless. To address this, we
can use a quantity known as the coefficient of determination. We denote it by R2

3This point is unique due to the concavity of our surface.

30

and define it as follows:

R2 = 1−

∑
i

(y[i]− p[i])2∑
i

(y[i]− µ)2
where µ =

1

len(y)

∑
i

y[i].

This ratio is scale-independent and is defined to measure which portion of the variabil-
ity in the data is accounted for by the model. For a model obtained via polynomial
linear regression, R2 ∈ [0, 1]. If the model completely accounts for the variation in the
observations, then the numerator of the fraction is 0 i.e. R2 = 1. On the other hand, if
R2 = 0 then there is no relationship between the values predicted by the model and the
way the data is distributed around the mean.

To simplify the calculation of R2, we can multiply the numerator and denominator by
1

len(y) :

R2 = 1− MSE(p)

Var(y)

The coefficient of determination should not be the only metric by which you choose a
model. There’s one glaring danger that we’ll elaborate on by considering the following
mystery set of data.

−10 −5 0 5 10

0

20

40

60

80

100

120

Independent Variable

D
ep

en
d
en
t
V
ar
ia
b
le

y

p1(x)

p2(x)

p16(x)

Figure 6.3: Our mystery set of data along with best-fit plots of orders 1, 2 and 16.

The line p1 clearly accounts for variation above and below the line but it’s a very poor
fit for the data. The quadratic model p2 looks a lot better by eye and follows the data
reasonably well. How about higher order models? There’s no underlying theory for
this mystery set of data so we can rely on R2. Let’s calculate them for the following 3
models:

Order 1: 0.0047933537856069

31

Order 2: 0.9440861459030232

Order 16: 0.9961232940782585

The line p1 is truly shambolic. The order 16 polynomial p16 has the highest value of R2

but it’s not drastically better than the quadratic model p2. Does this make it the best
model to use?

We’re building models to explain the underlying phenomenon and to make predictions.
Can you name any physical processes that have a 16th order variation? I’d be hard-
pressed to find one. Looking more closely, the higher value of R2 for p16 is a result of
the model fitting to not only the underlying trend but also the noise/uncertainty in the
measurements. This is what we call overfitting.

It turns out that the mystery data was generated by taking a quadratic polynomial and
adding noise ω that follows a normal distribution with µ = 0 and σ = 8.

Z ∩ [−10, 10] ∋ x 7−→ (x2 + ω) where ω ∼ N(0, 8)

This begs the question of whether or not4 there’s a better way to decide how complicated
a model we need than simply eyeballing our data.

6.4 Cross-Validation

So far, we’ve only been seeing how well our models have performed on the (training)
data from which they were learned. At the very least we’d like a small training error but
as we’ve already seen, this isn’t sufficient to get a great model. We’d also like our model
to work on other datasets generated by the same process. To this end, we can generate
models from one dataset and test them on another. This is known as cross-validation.

We expect the testing error to be greater than the training error. Let’s verify this for
two randomly generated datasets generated using the same quadratic process with noise
as before.

Degree 1 model:

Learned from dataset 1, tested on 1

R^2 = 0.0047933537856068575

Learned from dataset 1, tested on 2

R^2 = -0.04280359897546249

Learned from dataset 2, tested on 2

R^2 = 0.01507240473346294

Learned from dataset 2, tested on 1

R^2 = -0.047073424270508424

Degree 2 model:

Learned from dataset 1, tested on 1

R^2 = 0.9440861459030232

Learned from dataset 1, tested on 2

R^2 = 0.8733121831961159

Learned from dataset 2, tested on 2

4Spoiler: There is. Keep reading.

32

R^2 = 0.9353443579003733

Learned from dataset 2, tested on 1

R^2 = 0.8884947292270357

Degree 16 model:

Learned from dataset 1, tested on 1

R^2 = 0.9961232940782585

Learned from dataset 1, tested on 2

R^2 = 0.8360920085887131

Learned from dataset 2, tested on 2

R^2 = 0.9745480042571426

Learned from dataset 2, tested on 1

R^2 = 0.8720430891997337

In all cases, we can see that the training error is less than the testing error. We also note
that the value of R2 for p16 makes a sharper decline than the quadratic model when we
train it on one dataset and test it on another. On the other hand, the quadratic fares
slightly better.

Thus, cross-validation seems to be a useful method of exposing overfitting for a model.

A small note on polyval: In the case of perfect data (with no measurement errors/noise),
increasing the degree of the polynomial to fit the data has no effect on the coefficients
returned. In the event of data with noise, after a certain point, adding higher order
terms to our model approximates the noise, potentially overfitting to the training data.
Despite R2 increasing in this case, the predictive ability of our model has the potential
to decline. The ideal would be to find a balance between:

• an insufficiently complex model that won’t explain the data,

• and an overly complex model that overfits to the training data.

6.5 Finding the Right Model

So how do we actually go about finding an appropriate model?

One could begin with a linear model, look at the R2 values and see how well it accounts
for the data. Then increase the order and repeat the process that until you find a point
at which the model does a good job of both fitting the data and predicting new data.
Keep increasing the order and the metrics will eventually fall off, leaving you with a
good idea of an appropriate model complexity.

In the event that you don’t have a theory (like Hooke’s Law) to guide you, using cross-
validation is useful.

• If the dataset is small, we can use “leave-one-out” cross-validation.

• If the dataset is larger, we can use “k-fold” cross-validation (or repeated random
sampling).

33

6.6 Mini Project

The lecturer said one could model the variation of mean daily high temperature over
many years.

• Get means for each year.

• Plot them.

• Try and fit models to them:

◦ For each dimensionality (linear, quadratic, cubic etc.):

∗ Train on one half of the data, test on the other half. Record R2 on the
test data.

∗ Report the average R2 for each dimensionality.

34

Chapter 7

Introduction to Machine Learning
One could certainly argue that all programs learn something. In the traditional sense
of programming, a program takes in data and learns the result of computing what it
was instructed to do. Machine learning takes a slightly different approach and what the
program learns is how to optimise itself to better achieve a certain purpose.

An early definition of machine learning can be attributed to Arthur Samuel1 back in
1959:

“[Machine learning is] a field of study that gives
computers the ability to learn without being ex-
plicitly programmed.”

How can we have the computer learn without being explicitly programmed? One way
to think of this is to compare how we traditionally program and what is typical from
machine learning algorithms.

Traditional Programming
data

program

computer output

Machine Learning
data

output

computer program

Traditional programming involves writing a program and inputting it to the computer
so that it can take data and produce some output. Machine learning algorithms, on
the other hand, entail giving the computer some output (examples of what I want the
program to produce) like labels on data or characterisations of different classes of items.
In turn, we want the computer to create a program that one can use to infer new
information about things. This creates a nice loop in red and grey.

There are 5 essential questions that must be decided on in all machine learning methods:

1Computer pioneer that wrote the first self-learning program which played checkers.

35

1. What is the training data and how we are going to evaluate the success of the
algorithm?

2. How will we represent each example i.e. what are the right features?

3. Which definition for measuring distances (similarity) between these examples will
we use?

4. How can we build more detailed methods of measuring clustering/similarities to
find an objective function to minimise to find the best cluster to use?

5. What is the best optimisation method to use to learn the model?

7.1 Feature Representation

Vectors will be our chosen structure for storing information about examples. They are
ordered and allow for interesting manipulations by matrices (linear maps). Feature
engineering comes down to deciding which features that we’d like to include in fea-
ture vectors. As an example, somebody’s birth month is irrelevant to predicting their
upcoming exam scores but their historical performance is very relevant. With more
features, the danger of overfitting increases which leads to drawing less meaningful con-
clusions. Another way of saying this is that we want to maximise the ratio of useful to
irrelevant input (the signal-to-noise ratio).

Once a feature has been represented in a vector, the next thing that must be decided
on is how to measure similarity between examples. This comes in the form of deciding
on a metric (distance measuring function) on our vectors. Such functions allow us to
assign differing weights to certain features based on their relative importance.

On the topic of relative importance, if the dynamic range of some features are
much greater than others they will tend to dominate distance measures. For
example, say we’d like to cluster people in a room given:

• their gender which we assign 1 for male and 0 for female,
• whether they are bespectacled (1) or not (0), and
• their weight in kilograms.

If we choose to measure distance using the Euclidean metric, their weight in
kilograms would completely dominate our results. To counter this, we can scale
our feature via z-scaling. For a set of features X = {xi} we can rescale it by
replacing it with

Y =

{
xi −X

σ(X)

}
.

This rescaled set has a mean Y = 0 and standard deviation σ(Y) = 1.

Alternatively, we can perform a linear interpolation on X. Rename our smallest
and largest features to 0 and 1 respectively, and scale the remaining values linearly
in (0, 1).

This gets all of our features in the same ballpark so we can compare them.

A commonly used metric is called the Minkowski metric. Given two feature vectors v =
(v1, . . . , vn) and w = (w1, . . . , wn) of equal length, and p > 0 we define the Minkowski

36

metric dp by

dp(v, w) =

(
n∑

i=1

(vi − wi)
p

)1/p

.

If p = 2, we have what is the usual Euclidean metric for measuring the straight line dis-
tance between two points in space. Different values of p offer different ways of measuring
the “distance” between features.

Data can be either labelled or unlabelled. This partitions machine learning algorithms
into two very broad classes.

7.2 Unsupervised Learning

Unsupervised learning concerns itself with trying to group unlabelled data into “nat-
ural” groups/clusters. The most popular technique for this is known as clustering.

7.2.1 CLUSTERING OVERVIEW

Clustering at its heart is an optimisation problem. The goal is to find a set of clusters
that minimises an objective function under some constraints. The objective function
should measure the dissimilarity of examples within a cluster and this depends on the
choice of distance metric. One such measure is called variability:

Definition 7.2.1 • We define the variability of a cluster C by the sum∑
e∈C

(d(mean(C), e))
2

where mean(C) is the Euclidean mean of the feature vectors in a cluster and is
carried out component-wise.

• The dissimilarity of a set of clusters C is defined by the sum of each cluster’s
variability: ∑

C∈C

variability(C).

If we divided the variability by the size of C, we’d have the variance. By not normalising,
we penalise big and highly diverse clusters more than smaller, highly diverse clusters.

So is our clustering problem simply about minimising the dissimilarity measure of a set
of clusters? Place each example in its own unique cluster. Now the variability is 0 and
the dissimilarity of the set of clusters is 0. Minimised!

Clearly this is a terrible solution and we require some constraints. We can either declare a
minimum distance between clusters or an upper limit on the number of possible clusters.

There are two popular methods for unsupervised learning:

37

7.2.2 HIERARCHICAL CLUSTERING

Suppose that we begin with n-items.

1. Define n clusters and place each item in a single cluster.

2. Merge the two closest clusters into a single cluster.

3. Continue the process until all items are collected into a single cluster of size n.

Typically, we stop this process at some point before completion. This is called agglom-
erative (bottom-up) hierarchical clustering. The results of hierarchical clustering are
often presented as a dendrogram.

Depending on the distance measure used, different results are obtained. We refer to
these measures as linkage metrics. There are several different kinds. Let A and B be
two clusters.

• Single-linkage:
One defines the distance between two clusters as the distance between the closest
pair of objects, where only pairs consisting of one object from each cluster is
considered i.e.

D(A,B) ..= min
a∈A, b∈B

d(a, b)

D(A,B)

• Complete-linkage:
One calculates the distance between all pairs with each object in a different cluster
and returns the greatest distance i.e.

D(A,B) ..= max
a∈A, b∈B

d(a, b)

D(A,B)

38

• Average-linkage:
The distance between two clusters is defined as the average of the distances between
all pairs of items, with each pair being made up of an item in each cluster i.e.

D(A,B) =

∑
a∈A, b∈B

d(a, b)

|A| ∗ |B|

Advantages of hierarchical clustering:

• You get the entire history of the process with dendrograms.

• It’s a deterministic method (so doesn’t depend on any random elements).

• The method is flexible with respect to the chosen linkage criterion.

Disadvantages of hierarchical clustering:

• The final result may not be optimal because the algorithm is inherently greedy in
the sense that locally optimal decisions at each point don’t necessarily lead to a
globally optimal solution.

• It’s potentially really slow, in the order of O(n3) for the naive approach. For
single-linkage, there do exist algorithms with quadratic complexity but this is still
not very good.

A much faster greedy algorithm for clustering is known as the K-means algorithm. It
is most useful when you know how many clusters you would like at the end, as opposed
to the hierarchical approach.

7.2.3 K-MEANS CLUSTERING

Suppose that we begin with n-items. The goal of K-means clustering is to partition our
items into k clusters in way that minimises the dissimilarity of the clusters and that
each example is in the cluster whose centroid is the closest to that example. We execute
it as follows2:

1. Randomly choose k examples as initial centroids.

2. While True:

◦ Create k clusters by assigning each example to its closest centroid.

◦ Compute k new centroids by averaging the examples in each cluster.

◦ If none of the centroids are different from the previous iteration:

∗ break and return the current set of clusters

There are some issues with k-means clustering but we also list ways to ameliorate them:

• Choosing k poorly can lead to strange/unexpected results.

◦ We can use a-priori knowledge about the application domain to inform our
choice of k e.g. if you know there are 5 variants of bacteria

2There should also be a condition that raises an error if one of our clusters is empty.

39

◦ We can also search for a good k by trying different values and evaluating the
quality of the results. Alternatively, we can run a hierarchical clustering on
a subset of the data to get a sense of the structure underlying the data, get
a k and then try k-means with that value of k.

• The results can depend quite heavily upon the initial centroids because, unlike hi-
erarchical clustering, k-means is non-deterministic as our initial choice of centroids
is random.

◦ To avoid unlucky centroids, one could try and select centroids that are dis-
tributed evenly over the space.

◦ A common practice for any randomised greedy algorithm involves trying mul-
tiple sets of randomly chosen centroids and choosing the best results by min-
imising dissimilarity of the clusters.

7.3 Supervised Learning

Supervised learning concerns itself with looking for a rule to predict the label asso-
ciated with unseen input based on labelled examples which are in the form of (feature
vector, label) pairs. Supervised learning can be divided into two categories:

• Classification: Predicting a discrete value (label) associated with a feature vec-
tor.

• Regression: Predicting3 a real number associated with a feature vector.

7.3.1 k-NEAREST NEIGHBOURS

One of the simplest ways to classify unseen examples is to build up a distance matrix
of the labelled data, find the nearest existing example to the unseen one, and predict its
label.

x y z()
x 0 d(x, y) d(x, z)
y d(y, x) 0 d(y, z)
z d(z, x) d(z, y) 0

Figure 7.1: The distance matrix of the set of examples {x, y, z} for the metric d.

A downside of the nearest neighbour approach is that if the data is particularly noisy,
you can get the wrong label by matching the unseen example to a noisy data point
e.g. for character recognition, this would manifest as matching the character ‘0’ to a
particularly poorly rendered ‘9’.

To counter this, we can consider a (usually odd) number of nearest neighbours to our
new example and “let them vote” as illustrated below:

This is called the k-nearest neighbours approach.

3We did this with polynomial linear regression.

40

Figure 7.2: The nearest neighbour to our unseen point in grey is red but taking the 7
nearest neighbours lets the black points outvote the reds.

Downsides include:

• Efficiency: The time taken increases with larger values of k

• If k is too large, our result ends up being dominated by the most prevalent label
in the training data set e.g. the black points above.

How does one choose k? We can do something similar to the k-means clustering example.
Namely, we can split our training data into two parts and do cross-validation.

As a general rule, machine learning algorithms generally have a parameter (like k) and
we can find an optimal parameter by searching the data and performing cross-validation
on it.

Advantages of k-nearest neighbours include:

• There’s no theory required.

• It’s easy to explain the methods and results.

• The learning is fast and there’s no explicit training in the sense that we need only
remember the values in the distance matrix.

Disadvantages of k-nearest neighbours include:

• The process is memory intensive and predictions can take a long time because we
need to make a lot of comparisons.

• There are better algorithms to find approximate KNN than brute force.

• We aren’t getting any information on what generated the data (as we aren’t finding
a model like with polynomial linear regression).

41

7.4 Metrics For Evaluating Our Learning

The accuracy of our predictions is not a particularly meaningful measure when there’s
a great class imbalance e.g. A model for predicting that you don’t have a rare disease
(with an occurrence rate of 0.01%) has an accuracy of 0.999 but it’s totally useless as a
model.

Other metrics include:

• Sensitivity (or recall) is a measure of how good the model is at identifying the
positive cases and is defined by

sensitivity =
true positives

true positives + false negatives

• Specificity (or precision) is defined by

specificity =
true negatives

true negatives + false positives

• If we say that somebody is positive for a test, what is the probability that they are
actually positive? This is given by the positive predictive value and is defined
by

ppp =
true positives

true positives + false positives

• and the negative predictive value is just ppp with positive replaced by negative.

e.g. Consider the scenario where a clinic is running a screening test for breast cancer
and they’re trying to find the people who should have a more extensive examination.
We’d like our model to most emphasise sensitivity since we’re sending people on for
future tests and we don’t want to miss somebody who has cancer.

e.g. Say we’re deciding on who is so sick that we should do open heart surgery on them.
We’d want a high specificity because the risks of surgery are high. We don’t want to be
operating on people who don’t need it.

As you can see, depending on the application we end up having to choose a balance of
these statistics.

7.5 Testing A Classifier

Before building a classifier, it’s important to have a protocol in place for testing one.
There are two popular methods for this:

• Leave-One-Out:
Typically used when one has a small number of examples. Consider a set of n-
examples. For each example, remove it, train on the remaining n − 1 and then
test on the example you initially removed. Then average the results of this loop.

• Repeated Random Sampling:
This is typically used when one has a large set of examples and it’s possible to
split the data, say, 80: 20. We train on the larger subset and test on the smaller.

42

7.6 Logistic Regression

The final section of these notes is based on logistic regression. A logistic model is used
to model the probability of an event4 that can only take on some finite set of values
(usually 0 or 1 e.g. survived/died).

Logistic regression finds weights for each feature that we’ll use to make predictions. The
weights can be thought of as the coefficients in linear regression.

• A positive weight implies (almost) that the variable is positively correlated with
the outcome (e.g. having scales is positively correlated with an animal being a
reptile).

• A negative weight implies a negative correlation.

• The absolutely magnitude is related to the strength of the correlation.

There is an optimisation process used to calculate these weights from the training data.
It’s quite complex and uses a logarithmic function. Hence, log istic.

To actually use it, we can import the sklearn.linear_module module. Inside of this
module, there’s a class called LogisticRegression which has 3 methods:

• fit(sequence_of_feature_vectors, sequence_of_labels)

returns an object of type LogisticRegression

• coef_

returns the weights of the features

• predict_proba(feature_vector)

returns the probabilities of different labels

The following code builds a logistic regression model which is simply a set of weights
for each of the features.

def buildModel(examples):

featureVecs, labels = [], []

for e in examples:

featureVecs.append(e.getFeatures())

labels.append(e.getLabel())

LogisticRegression = sklearn.linear_model.LogisticRegression

model = LogisticRegression().fit(featureVecs, labels)

return model

Applying the model entails building a vector of features associated with a test set, mak-
ing a prediction for them with model.predict_proba and then calculating the true/false
positives/negatives given a probability:

def applyModel(examples):

testFeatureVecs = [e.getFeatures() for e in testSet]

probs = model.predict_proba(testFeatureVecs)

truePos, trueNeg, falsePos, falseNeg = 0, 0, 0, 0

4We don’t use linear regression for this purpose. Linear regression can return numbers outside of
the range [0, 1] which is nonsense in a probabilistic setting.

43

for i in range(len(probs)):

if probs[i][1] > prob:

if testSet[i].getLabel() == label:

truePos += 1

else:

falsePos += 1

else:

if testSet.getLabel() != label:

trueNeg += 1

else:

falseNeg += 1

return truePos, trueNeg, falsePos, falseNeg

What we get out of logistic regression is a probability of something having a label so
we then need to build a classifier given a threshold. Then it can all be combined into a
single function e.g.

def lr(trainingData, testData, label, prob):

model = buildModel(trainingData)

results = applyModel(model, testData, label, prob)

return results

To access the classes we can use model.classes_.

Features are often correlated with one another so you can’t interpret them one at a time.
There are two main ways of doing logistic regression:

• L1 - focuses on finding some weights and driving them to zero which is useful for
highly dimensional problems relative to the number of examples.

e.g. If you have 100 variables and 1000 examples, you’re very likely to overfit. L1
is designed to avoid overfitting. If you have two correlated features, L1 may
drive one to zero making it look unimportant.

• L2 - spreads the weight across the variables so if you have a bunch of correlated
variables, it might look like none of them are important.

Determining the probability that best suits one’s needs can be done by varying p for a
single model and accumulating a bunch of results for the metric you’re interested in.

44

Chapter 8

Stock Simulation
The main impetus for me going through the introductory MIT computer science courses
was to simulate stock behaviour. The graphs look cool and it seemed like there was a
bit of statistics to it (something I haven’t learned much of so why not). Now it’s finally
here:

There are two basic strategies for investing in the stock market:

• You could own stocks in all companies listed on the stock market. In this case,
the investments you make depend on the health of the stock market as a whole.
This is called having an indexed portfolio.

◦ They don’t require a lot of thought.

◦ They have a low expense ratio i.e. you don’t need to hire somebody brilliant
to manage your portfolio.

• The other option is what I typically think of when it comes to stocks. You hire
somebody intelligent and pay them to pick winners for you and outperform the
stock market. This is called a managed portfolio.

Since the goal is to simulate the market, we need some assumptions upon which we build
our model. We’ll assume that the market is informationally efficient1 i.e. “current
prices of stocks reflect all publicly known information and are therefore unbiased.” This
is what is known as the efficient market hypothesis.

This effectively means that the market is memoryless. It doesn’t matter what the stock
price was yesterday. Today it’s priced given the best known information and so tomorrow
it’s equally likely to increase or decrease in value relative to the whole2 market. Under
this hypothesis, no stock is more or less likely to outperform the market because all
known information is already incorporated into the price...

That sounds off. Some stocks are certainly more volatile than others and can be modelled
by different distributions. The model we’ll choose for a stock is a random walk. Then
we can build up a custom market class as a collection of stocks and methods.

Several things are incorporated into modelling a stock:

• The initial price

• Some way of storing the price history of a stock

• A way of keeping track of the most recent change in value

1If people thought a stock was underpriced, they would’ve bought more of it and the stock price
would’ve already risen and been accounted for in the model.

2It’s well known that over periods of multiple decades that the market has a tendency to go up so
there’s an upward bias to the stock market (seemingly contrary to media portrayal).

45

• Some way of capturing the behaviour of a stock’s price movement according to
how volatile it is.

◦ We can simulate a stock’s movement by pulling random samples from a dis-
tribution. For example, we can choose a volatility constant (that can be
thought of as a percentage move per day) and create a distribution which
whenever called returns a selected value between ±volatility.

• Implementing a way to change the price of a stock

• A method for plotting the history of a stock’s movements

class Stock:

def __init__(self, price, distribution):

self.price = price

self.history = [price]

self.distribution = distribution

self.lastchange = 0.0

def setprice(self, newprice):

self.price = newprice

def getprice(self):

return self.price

def makemove(self, marketbias, momentum):

oldprice = self.price

basemove = self.distribution() + marketbias

self.price *= (1.0 + basemove)

if momentum:

self.price += momentum*random.gauss(.25,.25)*self.lastchange

if self.price < 0.01:

self.price = 0.0

self.history.append(self.price)

self.lastchange = self.price - oldprice

def showhistory(self):

pylab.plot(self.history)

pylab.title('Stocks')
pylab.xlabel('Day')
pylab.ylabel('Points')

There are some important points to make about makemove:

• The price adjustment in line 17 is multiplicative as opposed to additive because
stock price changes are not independent3 of stock price. As an example, a Google
stock priced at 300 points is much more likely to move 10 points than a stock
priced at 5 points.

• Some modellers believe in the idea of momentum in the stock market i.e. what’s
more likely to happen today is what happened yesterday. This brings up an
interesting question on whether or not stock prices are memoryless (also known as

3This is informed by looking at historical data. The amount a stock moves tends to be proportional
to the price of the stock and, interestingly enough, the percentage moves for expensive and inexpensive
stocks don’t differ much.

46

Poisson4).

4A Poisson process is one in which past behaviour has no effect on future behaviour.

47

	Optimisation
	The Knapsack (Backpack) Problem
	Greedy Algorithms
	Brute Force Implementation

	Dynamic Programming

	Graphs
	Constructing Graphs
	Depth First Search
	Breadth-First Search

	Random Walks
	Drunkards In A Field

	Monte Carlo Simulation
	Confidence Intervals

	Harnessing Randomness
	Random Stats Knowledge

	Modelling Experimental Data
	Measuring Fit
	Polynomial Linear Regression
	Fit Comparison
	Cross-Validation
	Finding the Right Model
	Mini Project

	Introduction to Machine Learning
	Feature Representation
	Unsupervised Learning
	Clustering Overview
	Hierarchical Clustering
	K-Means Clustering

	Supervised Learning
	k-Nearest Neighbours

	Metrics For Evaluating Our Learning
	Testing A Classifier
	Logistic Regression

	Stock Simulation

