
Introduction to
Machine Learning

by Khallil Ebrahim Benyattou

すこ

少しずつ

January 20, 2026

This page intentionally left almost blank.

3

Contents

Chapter 1: Introduction
1.1 Paradigms 6
1.2 Tasks and Models 6

Chapter 2: Supervised Learning
2.1 Probability to Model Uncertainty 10

Probabilistic Model.

2.2 Loss and Risk 12

Chapter 3: Regression
3.1 Setup 16
3.2 Estimating the Regression Function 16
3.3 Linear Regression 18

Extra Assumptions.

3.4 Ordinary Least-Squares (OLS) 22
Convex Optimisation; Is there always a solution to the normal equations?.

3.5 Iterative Methods 27
Gradient Descent; Stochastic Gradient Descent.

3.6 Locally Weighted Linear Regression 29
3.7 Normality Assumptions (Ordinary Linear Regression) 31

Consequences of joint conditional normality of our errors; Maximum Likelihood Estimation.

Chapter 4: Classification
4.1 Linear Classifiers 37

Aggregation/Scoring T ; Threshold f .

4.2 The Single-Layer Perceptron 38
Setup; Surrogate perceptron problem; Classical perceptron.

4.3 Logistic Regression 47
The Model.

4.4 Newton’s Method 50
Newton-Raphson.

Chapter 5: Generalised Linear Models (GLMs)
5.1 The Exponential Family 54

Examples of Exponential Family Distributions.

5.2 Multi-class Classification (Softmax Regression) 56
GLM Approach.

Chapter 6: Generative Learning Algorithms
6.1 GDA for Binary Classification 59

Link Between GDA and Logistic Regression; Extra Note on GDA.

Chapter 7: Support Vector Machines
7.1 Separable Case - Optimal Margin Classifier 63
7.2 The Dual Representation via Lagrange Multipliers 65
7.3 Kernels 66

CONTENTS 4

Chapter 8: Regularisation and Bayesian Statistics
8.1 Bias and Variance 67
8.2 Regularisation 68

Bayesian Statistics (Maximum a-Posteriori Estimation).

Chapter 9: Extra Notes
9.1 Statistics Server 71

Chapter A: Differentiation
A.1 Fréchet Derivative 72
A.2 Matrix Calculus 74

Chapter B: CS229 Problem Sheets
B.1 Problem Sheet 0 75
B.2 Problem Sheet 1 80

Chapter C: Calculations
C.1 GDA Maximum Likelihood Estimates 81

5

CHAPTER 1

Introduction

[The] human perception system is rife
with all ways of getting it wrong. [...] All
it takes is a few sketches that are cleverly
done and your brain can’t figure it out!
So, we are poor data-taking devices.
That’s why we have such a thing as
science. Because we have machines that
don’t care what side of the bed they woke
up (on) in the morning. [...] They’ll get
the data right.

Neil deGrasse Tyson, 2009
@ Cosmic Quandaries

An algorithm is an unambiguous sequence of instructions designed to complete a task. For
simple tasks, it’s relatively easy to manufacture an appropriate (and perhaps even optimal) algo-
rithm. For more complicated tasks, it’s often more practical to help the computer “learn” how to
develop its own algorithm. I define learning as the process of turning information into knowledge
and understanding.

Machine learning (ML) is the name given to the study of computer algorithms that improve
automatically through experience (data).

An early definition of ML can be attributed to Arthur Samuel (1901–1990) — a pioneer of
artificial intelligence research:

[Machine Learning is] a field of study that
gives computers the ability to learn
without being explicitly programmed.

Arthur Samuel, 1959

One of the first examples of a computer learning a task without being explicitly programmed
was Samuel’s own work on simulating the game of checkers. The computer even ended up surpassing
Samuel himself. Nowadays, it isn’t so surprising that computers are able to surpass human-level
performance (on narrow tasks) but it was a real doozie back in the day.

A formal definition of the types of algorithms studied in machine learning is attributed to
computer scientist Tom Mitchell:

A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P , if its
performance at tasks T , as measured by
P , improves with experience E.

Tom M. Mitchell, 1997

e.g. For the task T of playing checkers, one could define the performance measure P as the
percentage of games won against opponents, and the training experience E could be measured by
the number of games simulated by the computer against itself. More concretely:

https://www.youtube.com/watch?v=CAD25s53wmE&t=3556

Introduction 6

Experience E presents itself in the form of data. Data are observations. Thus, machine learning
is a subfield of computer science that focuses on the study of algorithms that can learn from data
and make predictions.

So far we’ve been very general and it helps to establish some form of taxonomy in the field of
machine learning.

1.1 Paradigms

At a high level, a paradigm in machine learning is the broader philosophy or theoretical framework
under which an algorithm is trained to solve a particular task. The paradigm one works in is
informed by the type (structure and availability) of (training) data that has been collected and
the nature of the feedback the algorithm receives i.e. how, if, or when the algorithm is informed
about its performance. The broadest paradigms1 are:

• Supervised learning

◦ Type of data: A static (fixed) collection of labelled2 data.
◦ Feedback: Explicit and correct labels to compare our algorithm’s predictions against.

• Unsupervised learning

◦ Type of data: Static, unlabelled data.
◦ Feedback: No explicit feedback and the algorithm must come to its own conclusions

about the pattern or structure of the input data.

• Semi-supervised learning

◦ Type of data: Static — a combination of labelled and unlabelled data.
◦ Feedback: Explicit labels for a portion of the data (as in supervised learning) but the

algorithm is designed to (often) infer patterns about the unlabelled data from the labelled
data.

• Reinforcement learning is based on an agent-environment interaction framework driven
by reward maximisation (or penalty minimisation).

◦ Type of data: Dynamic — a set of observations (states, actions and transition proba-
bilities) and rewards (and discounts for future reward value) that evolve over time.

◦ Feedback: Rewards or penalties over time (immediate or delayed) based on the agent’s
sequential actions.

1.2 Tasks and Models

Suppose like before, that we are given a set of data and a task to accomplish within a particular
paradigm of machine learning. The task is to investigate some real-life/natural phenomenon e.g.
a binary classification task on e-mail data organises e-mails into two distinct groups — spam and
not spam.

Oftentimes, such problems are particularly complex. To this end, it’s beneficial to make some
assumptions (influenced by either knowledge a priori or through exploratory data analysis) about
which features/components are relevant, and how they relate to each other:

1There are more emerging paradigms but these are the broadest ones.
2The data presents itself as a set of (feature vector, label) pairs.

Introduction 7

In general parlance, a model is a mathematical, logical or physical representation of a process,
concept or item. We use models to idealise complex phenomena and extract important information.
The value of a model is that it approximates reality in a way that’s useful.

All models are wrong, but some are useful.

George Box (probably)

Simpler and less flexible models tend to be easier to interpret. The tradeoff of a simple model
is that it’s less likely to capture enough of a phenomenon’s inherent complexity — the resulting
errors in calculation are called bias. There’s an important balance to strike between flexibility and
interpretability.

The term machine learning model is perhaps the most ambiguous term available to man. I’ll
try to be specific:

• A probabilistic model is the name given to the assumptions made about a process that
generates training data.

• A training/learning algorithm is the procedure that uses the training data to learn a
suitable function.

• I reserve the term (machine learning) model to refer to the learned function that has
been output by a training algorithm.

Mathematics and statistics are natural languages to formalise a model.

A mathematical model is a description of a system using mathematical concepts and language.
A statistical model is a type of mathematical model which embodies a set of statistical as-
sumptions3 concerning the generation of sample data. Statistical models differ from other
mathematical models by being non-deterministic. Thus, in a statistical model, some of the
variables don’t have specific values and instead have probability distributions — these vari-
ables are stochastic.

Formally, a statistical model can be thought of as a pair (Ω,P) where Ω is a set of possible
observations (the outcome/sample space) and P is a set of probability distributions on Ω. The
thinking behind this definition is that there exists a true probability distribution P0 that dictates
the generation of the sample data that’s been collected. P is typically (always?) parameterised
in some way so we can write P = {Pθ : θ ∈ Θ}. This collection contains a distribution that
adequately approximates P0.

P

P0

A statistical model (Ω,P = {Pθ : θ ∈ Θ}) is called parametric if Θ has finite dimension i.e.
Θ ⊆ Rk where k ∈ Z+. k is called the dimension of the model. A model is called non-parametric
if Θ is infinite-dimensional.

3Usually specified as a mathematical relationship between random variables and non-random variables.

Introduction 8

Most of the recent economic value
generated by machine learning is through
supervised learning but there are
important use-cases for unsupervised
learning.

Andrew Ng (2018)

We begin with supervised learning ↓

9

CHAPTER 2

Supervised Learning

Supervised learning is the paradigm of machine learning under which we use labelled training data
to employ an algorithm that outputs a machine learning model which can correctly classify an
unseen input, or predict an outcome based on said input.

The labelled training data is a set of n ∈ Z (object, label) pairs

T ..=
{
(x(i), y(i))

}n
i=1

We call this set the training set. Each pair (x(i), y(i)) is called a training example:

• Each x(i) is an input vector of dimension p which contains information about each object:

x(i) =

x
(i)
1
...

x
(i)
p

 .

◦ In many applications, there is typically some form of feature-extraction that is performed
on the original data variables. This results in a feature vector:

ϕ(x(i)) =

 ϕ1(x
(i))

...
ϕM (x(i))

 ,

where each feature ϕj(x
(i)) is the result of evaluating the jth basis function ϕj at x(i).

Each ϕj can be non-linear so this allows for greater flexibility in modelling.

• y(i) is called the label or response corresponding to x(i).

Let’s say the input vectors x(i) live in a space X and the labels y(i) live in Y. Then, T ⊆ X × Y.

The goal of a supervised learning algorithm is to use a set of training data T to learn a function
h : X → Y that predicts the value of y ∈ Y corresponding to a given input feature vector x ∈ X .
Such a function h has historically been called a hypothesis.

A successful (and if we’re lucky, optimal) h will exhibit the following two properties:

• For each example (x(i), y(i)) ∈ T , the prediction h(x(i)) is a “good” estimate for the true label
y(i).

• The estimate h also generalises well in the sense that its output h(x) for some unseen vector
x ∈ X is a “good” predictor for its corresponding expected value of y ∈ Y given x.

A supervised learning problem is called

• a regression problem if Y = R, or

• a classification problem if the output label y can only take on a discrete number of values
i.e. Y = {c1, . . . , cK} for K <∞. In this case, h is typically called a classifier.

Supervised Learning 10

2.1 Probability to Model Uncertainty

Supervised learning is interesting because the response may not be a deterministic function of the
inputs. In such a case, one can employ a statistical model that makes assumptions about the nature
of the data-generating phenomenon under investigation.

A good first step is always to plot the data T to see if there’s some obvious relationship between
the inputs and their respective responses. From this, we can build up some picture of what a good
hypothesis h relating them could look like.

Example 2.1.1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Weight (Newtons)

D
is

pl
ac

em
en

t
(m

m
)

Figure 2.1: Plotting the relationship between the displacement of a spring and the weight placed
on it to investigate Hooke’s Law. The weight values live in X , and displacement in Y.

From the above data, we could conceivably use some form of positive square root (or even some
linear transformation of a logarithmic) function for h. There are many such candidate functions h
and we may call their collective H a hypothesis class.

Let’s say we chose to use the collection of linear transformations of positive square root functions
H = {a + b

√
x+ c where x ⩾ c : a, b, c ∈ R}. We may write each hypothesis as h(a,b,c)(x) and so

the triple (a, b, c) parameterises H.

Definition 2.1.2 In general, we write

H ..= {hθ : θ ∈ Θ}

for the parametric hypothesis class depending on a parameter θ ∈ Θ.

The choice of H limits the scope of functions that we can search through (via the parameters)
in order to find the best hypothesis that approximates the true relationship between inputs and
responses. It’s clear to see that this choice has far-reaching consequences for all subsequent analysis.

Going back to the plotted data, we also observe that the data-collection method is almost never
perfect, so there will be some random error in the observed values. This can be seen in the figure
by the data being distributed somewhat randomly about a positive linear trend (represented by
the straight line) which plateaus at around 0.6 Newtons. Incorporating such uncertainty is another
motivator for the use of a statistical model, written in the language of probability.

Supervised Learning 11

2.1.1 PROBABILISTIC MODEL

We require a few definitions to properly state the assumptions being made.

Definition 2.1.3

• Let (Ω,F ,P) be a probability space. This will model the randomness governing the phe-
nomenon from which we wish to sample our data.

• Let (E, E) be another measurable space. A random element is an (F , E)-measurable map
X : Ω → E i.e. ∀B ∈ E , X−1(B) ∈ F . Such maps mathematically formalise the process of
drawing a single observable (number, vector etc. e.g. height) corresponding to an outcome
(e.g. the drawing of a student from a class).

◦ If (E, E) = (R,BR), then X is a real-valued random variable.
◦ If (E, E) = (Rn,BRn), then X is a real-valued random vector.

• A random sample of size n is a collection of random variables Xi : (Ω,F)→ (E, E) defined
on the same probability space (Ω,F , P̃) that are mutually P̃-independent1, and identically
distributed with distribution P s.t. P̃ = ⊗nP. We denote this by

Xi
i.i.d.∼ P.

Let (X, Y) : Ω → X × Y be the random element representing the process of observing one input-
output pair (x, y) from an outcome realised by the underlying phenomenon (which is governed by
Ω). Henceforth, I am going to let P denote the distribution governing the underlying phenomenon,
and so the push-forward measure (X, Y)♯P (which I will denote by P(X,Y)) is the true distribution
governing the observation of input-output pairs (x, y).

�

The assumption we will repeatedly make throughout is that our training set T is a realisation of
a random sample

(X(1), Y (1)), . . . , (X(n), Y (n))
i.i.d.∼ P(X,Y).

This is called the random design setup.

In particular, each (X(i), Y (i)) : Ω → X × Y is a random element and its realisation in our
training set is (x(i), y(i)).

1The reason for using P̃ is a technical one which involves a suppression of notation. We wish for our underlying
probability measure P̃ to be able to support statements about several random variables so it’s defined on a σ-algebra
on Ω, and Ω can be thought of as the n-fold product of the outcome space Ω of each single run of the experiment
(which we represent by Xi). Accordingly, we redefine Xi to be defined on Ω̃ as the indicator of the ith component.
Thus, when we write Ω in our definition, we are writing it as a placeholder for Ω̃. For more on this, see Chapter
13 from [1].

Supervised Learning 12

2.2 Loss and Risk

Notation 2.2.1 Let (Ω,F ,P) be a probability space, and X : Ω → R
be a random variable i.e. X is F-measurable.

• I use ordinary parentheses for the expectation of X

E(X) =

∫
Ω

X(ω) dP(ω),

• and square parentheses for random variables e.g.
◦ The conditional expectation E[X | G] of X given a sub-σ-

algebra G ⊆ F . Any random variable Z is called a conditional
expectation of X given G if Z is G-measurable, and satisfies
the averaging property i.e. for every B ∈ G:

E(1BZ) = E(1BE[X | G]).

◦ The conditional probability of A ∈ F given G is denoted by
P[A | G]

◦ I write Var[X | G] to represent the conditional variance (as
seen later).

By virtue of the randomness in our assumptions so far, making (almost) any choice of hypothesis
will yield predictions h(x(i)) that fall short from their respective observed labels y(i) for x(i) i.e. we
incur a loss.

Definition 2.2.2 The loss2 of a particular hypothesis h ∈ H associated with a particular training
example (x(i), y(i)) is made precise as a non-negative real-valued function Lh : X × Y → [0,+∞)

(x(i), y(i)) 7−→ Lh(x
(i), y(i)) ..= L(h(x(i)), y(i))

which quantifies how good our hypothesis is at predicting y(i) from x(i). The function L that maps
from Y × Y → [0,+∞) is sometimes also called a loss function.

In statistics, it’s common practice to average the losses over an entire population:

Definition 2.2.3 The deterministic number R(h), called the statistical risk, defined by the
following expected value

R(h) ..= E(L(h(X), Y)) ..=

∫
Ω
L(h(X(ω)), Y (ω)) dP(ω)

=

∫
X×Y

L(h(x), y) dP(X,Y)(x, y)

captures how bad our hypothesis is on average in predicting the label of an unseen input.

Remarks 2.2.4

• The expectation is calculated with respect to the true distribution of the data i.e. under the
assumption that we know P(X,Y).

• We think of the statistical risk as the composition R(h) = E(Lh ◦ (X, Y)). Note that the
domains and codomains match up properly.

◦ (X, Y) : Ω→ X × Y
◦ Lh : X × Y → [0,+∞)

So Lh ◦ (X, Y) : Ω→ [0,+∞) is a measurable function (assuming that h and L are appropri-
ately measurable) that we can take the expectation of.

2Sometimes a problem requires one to maximise −L, in which case −L is called a reward, or profit function.
Each subfield has its own terminology but the same idea persists.

Supervised Learning 13

• A natural follow-up question to ask is: Given this knowledge of the joint distribution of
(X, Y), what is the minimal achievable expected loss, and at which hypothesis is it attained?

A function that minimises the statistical risk would be the best hypothesis h available with respect
to the given loss L. We denote this minimiser by h∗ and give it a name:

Definition 2.2.5 The Bayes predictor h∗ is the optimal solution to minhR(h).

By the tower law of conditional expectation,

R(h) = E(E[L(h(X), Y) |σ(X)])

and the inner expression (the conditional expectation) is a σ(X)-measurable random variable. By
the Doob-Dynkin3 Representation Theorem, there exists some measurable4 rh : X → R s.t.

E[L(h(X), Y) |σ(X)] = rh(X).

The map rh is called the conditional expectation function, and we define it pointwise by

rh(x) = E[Lh(h(X), Y) |X = x]

where the output is understood via the disintegration theorem associated with the conditional law
of Lh ◦ (X, Y) given X. Slightly more detail about the reasons for this are below:

WILDLY AMBITIOUS ATTEMPT TO SUMMARISE CONDITIONAL PROBABIL-
ITY

• σ-algebras can be thought of as information pertaining to random variables.
A random variable X being F-measurable means that the information in
F is enough to completely characterise X.

• The conditional expectation of X given a sub-σ-algebra G ⊆ F is “the” best
G-measurable approximation of X. (We remark that it’s only unique P-a.s.
because an integral-based equation is its defining property.)

• We define the conditional probability of A ∈ F given G by the conditional
expectation of 1A given G. The random variable 1A encodes whether or
not A occurs. This r.v. may or may not be something we can determine
from the information G alone. If we can’t, then we turn to P[A | G] as the
best G-measurable approximation to A.

◦ P[A |G] can be thought of as encoding the updated belief about A
given the partial information G, from which we can reproduce (via
the defining property of conditional expectation) the probabilities
P(A ∩B) for B ∈ G i.e.

P(A ∩B) = E(1B1A)

= E(1BE[1A | G])
= E(1BP[A | G])

=

∫
B

P[A | G](ω) dP(ω).

• We can extend this concept to every A ∈ F , and define the conditional
probability on F given G as the map κ : F × Ω → [0, 1] defined for every
A ∈ F by

ω 7−→ κ(A,ω) ..= P[A | G](ω).

• If we look to the other half of this map, fixing ω ∈ Ω, we would like to have
a probability measure for each ω. The historical reasoning for this seems
to be that we can use κ to model a stochastic process where each ω can be
considered a starting “state” and so κ(·, ω) would be a probability measure
that we can use to model how we arrive at the next state.

3A more detailed version of this theorem is Theorem A.42 from A.42 [2, p. 587].
4Indeed, suppose that (X , E) is the measurable space that X : Ω→ X maps into. Then the function here is more

precisely defined as rh : Im(X)→ R and is E|X(Ω)-BR-measurable, where E|X(Ω) is the trace σ-algebra of E on X(Ω).

Supervised Learning 14

• A technical problem arises. For every κ(·, ω) to be a probability measure,
we demand countable additivity of each map. If we demand countable
additivity from κ(·, ω) = P[· | G](ω) for every ω, then we have potentially
uncountably many null sets to exclude for all of these equalities to hold.
Such a union may be non-null. To rectify this, we define what is known as
a regular conditional probability on F given G as a map for which:

◦ For every ω ∈ Ω, the map κ(·, ω) is a probability measure on (Ω,F).
◦ For every A ∈ F , the map κ(A, ·) is a version of P[A | G](ω).

• Given that an r.c.p. on F given G exists, we may re-write the defining
property of κ(A, ·) in the suggestive form

E(1B1A) = E(1Bκ(A, ·))

=

∫
B

κ(A,ω) dP(ω)

=

∫
B

∫
Ω

1A

(
ω′)dκ(·, ω)(ω′) dP(ω)

which expresses that the conditional expectation κ(A, ·) = P[A | G](·) =
E[1A | G](·) is equal P-a.s. to the Lebesgue integral of 1A with respect to
the probability measure κ(·, ω).

• This can be extended from indicators 1A to any X ∈ L1(Ω,F ,P) and so
we have

E[X | G] =
∫
Ω

X(ω′) dκ(·, ω)(ω′) for P-a.e. ω ∈ Ω.

• Now we focus on the case where G is generated by a random variable
Y : (Ω,F) → (E, E) i.e. G = σ(Y). By the Doob-Dynkin represen-
tation theorem, since κ(A, ·) = P[A |σ(Y)](·) = E[1A |σ(Y)](·) is σ(Y)-
measurable, it factors through Y to give a re-parameterisation of κ : F ×Ω
to κY : F × E → [0, 1].

• This regular conditional probability on F generated by Y (i.e. given G =
σ(Y)) is a map κY : F × E → [0, 1] satisfying the following:

◦ For every y ∈ E, κY (·, y) is a probability measure on F
◦ For each A ∈ F , the mapping y 7−→ κY (A, y) is

∗ an E-measurable function satisfying for P-a.e. ω ∈ Ω:

κY (A, Y (ω)) = P[A |σ(Y)](ω),

∗ and is PY -integrable, satisfying the following disintegration for-
mula for all A ∈ F and D ∈ E :

P
(
A ∩ Y −1(D)

)
=

∫
D

κY (A, y) dPY (y).

• This disintegration formula can be re-written in a way that generalises
handily for any integrable random variable X and D ∈ E :∫

Y −1(D)

X(ω) dP(ω) =
∫
D

(∫
Ω

X(ω′) dPy(ω′)

)
dPY (y).

• From this, there’s a bit more re-writing (noticing that the LHS is an expec-
tation of X against the indicator 1Y −1(D), and so we may use the defining
property of conditional expectation to write∫

Y −1(D)

E[X |σ(Y)] dP(ω) =
∫
D

(∫
Ω

X(ω′) dPy(ω′)

)
dPY (y).

• By the Doob-Dynkin theorem, the integrand on the LHS can be written as
a function hY of Y . Indeed, this hY is the pointwise conditional expectation
function and that reveals itself by a change of variables to get the above
equality in terms of integrals with respect to PY !

Definition 2.2.6 We call the assignment hY the pointwise conditional
expectation function of X given Y = y, and we also denote it by

y 7−→ hY (y) ..=
∫
Ω

X(ω′) dPy(ω′) =.. E[X |Y = y].

Supervised Learning 15

The rest of the development of theory about Bayes predictors and Bayes risk.
uneasy

Need to re-write this bit:

Of course in practice we don’t know the joint distribution P(X,Y) of our population so we can’t
compute R(h) directly, but we do have access to our training data T drawn i.i.d. from a random
sample assumed to have the true distribution.
Instead, we use our aforementioned random sample to define an estimator called the empirical
risk:

R̂(h) =
1

n

n∑
i=1

L(h(X(i)), Y (i)).

The (X(i), Y (i)) are still i.i.d. with distribution PX×Y but now we have the possibility of using the
realisations of the random sample (i.e. the training data T) to compute the empirical risk

R̂(h) =
1

n

n∑
i=1

L(h(x(i)), y(i))

which is just the average loss on the training set.
uneasy

16

CHAPTER 3

Regression

Let X = Rp and Y = R = (−∞,+∞).

Regression is a term used as a shorthand for regression analysis — a series of statistical techniques
developed to investigate the relationship between a collection of (one or more) independent/pre-
dictor variables (the regressors) X1, . . . , Xp, and a1 real-valued dependent/response variable (the
regressand) Y .

3.1 Setup

As established in the previous section, we assume that there is some true joint distribution between
predictors and response, represented by (X, Y) ∼ PX×Y . Since our goal is to optimally predict the
response Y given the predictors X, we let f : X → Y denote a deterministic function s.t.

f(X) = E[Y |X].

Since X and Y are random variables2, there will naturally be some error between the prediction
f(X) and Y . We denote this error by the random variable3

ε ..= Y − f(X) = Y − E[Y |X].

It immediately follows that we may re-write this equality in the familiar form

Y = f(X) + ε,

but more importantly it follows that

E[ε |X] = E[Y − f(X) |X]

= E[Y |X]− E[f(X) |X]

= E[Y |X]− f(X)

= E[Y |X]− E[Y |X]

= 0.

This property E[ε |X] = 0 is called strict exogeneity. It means that our errors have zero mean
conditional on the regressors X.

3.2 Estimating the Regression Function

Since we don’t know PX×Y , we can’t calculate E[Y |X] directly. Instead, we must estimate f by
choosing a hypothesis4 h from a (suitable) class of candidate functions H called the hypothesis
class. Then we shall use our sampled data T to optimise h in a way that best approximates
E[Y |X].

1Strictly speaking, this would be a multivariable univariate regression — variable refers to predictors, and variate
refers to responses.

2Does Y need to be L1 for the conditional expectation to exist?
3Can this error be thought of as the randomness in Y , on average, that isn’t captured by X?
4We will use this function to make predictions for unseen examples x ∈ X .

Regression 17

For regression, a common choice5 of loss function is the squared/quadratic loss L(h(X), Y) =
(h(X)− Y)2. For quadratic loss, the statistical risk of h is R(h) ..= E

(
(Y − h(X))2

)
and is called

the mean squared error (MSE for short). The assumptions that Y and h(X) ∈ L2 are required
for this minimisation problem to be meaningful.

A function that minimises the MSE would be the best hypothesis available under quadratic
loss. This minimiser is denoted by

h∗ ..= argmin
h

E
(
(Y − h(X))2

)
.

Does such a function exist, and if so, which form does it take? By conditioning on X, we can
rewrite the MSE using the law of total expectation

E
(
(Y − h(X))2

)
= E

(
E
[
(Y − h(X))2

∣∣∣X = x
])

.

It suffices to minimise the argument of the expectation on the RHS pointwise because given X = x,
h(X) is equal to some constant h(x) =.. c so we concern ourselves with:

h∗(x) = argmin
c

E
[
(Y − c)2

∣∣∣X = x
]

This argmin is actually equal to the conditional expectation E[Y |X = x] of Y given X = x.

There are three ways to verify this:

1. Add and subtract E(Y |X) from the statistical risk expression and
expand.

2. Observe that

L2(Ω,P) ..= {random variables Y : Ω→ R

such that E
(
|Y |2

)
< ∞} is a vector space and when equipped

with the inner product ⟨X,Y ⟩ = E(XY) becomes a Hilbert space.
Then we can use the theory of orthogonal projections to prove that
E(Y |X) ..= E(Y |σ(X)) (where σ(X) is the sigma-algebra generated
by X) is equal to πσ(X) (P-almost surely) where

πσ(X) : L
2(Ω,A,P)→ L2(Ω, σ(X),P)

is the projection map defined by

∥Y − πσ(X)(Y)∥ = inf{∥Y − Z∥ : Z ∈ L2(Ω, σ(X),P)}

where σ(X) is a sub-algebra of A. In summary, this is a fancy way
to say that the geometry of Hilbert space tells us that minimisation
in said space becomes a problem of orthogonal projection.

3. A differentiation argument.

This minimiser h∗(x) = E[Y |X = x] coincides with f , and so the terms regression function
and conditional expectation function (CEF) are synonymous.

As stated at the top of this section, we don’t know the (joint and hence) conditional distribution
of Y given X. We can get around this by modelling the regression function as some simple functional
form h and then use the training data to minimise the empirical risk instead. In the case that the
regression function h is parametric i.e. h = hθ, we can search for

argmin
θ

1

n

n∑
i=1

(
y(i) − hθ(x

(i))
)2

.

This is an example of parametric learning. Below we discuss a particular choice of H consisting
of “linear” hypotheses.

5Why quadratic loss in the first place? It feels a bit like the choice was justified in hindsight (which I don’t take
issue with but I can’t really figure it out).

• Develop the method
• Realise that convergence issues happen in the algorithms you devise and then
• go back to alter the loss to have properties that make things more convenient e.g. convexity.

Regression 18

3.3 Linear Regression

So far there’s been no restriction on how to represent the hypothesis h i.e. H is a very broad class
of functions. We’d like to, in some meaningful way, limit the family of hypotheses over which we’ll
learn. Making assumptions about the functional form of h will restrict H. This section will assume
that h is a linear hypothesis — the simplest form.

A linear hypothesis takes the form of an affine function

hθ(X) = θ0 + θ1X1 + · · ·+ θpXp,

where we collect the unknown quantities θj , called the parameters (or weights) of our model,
into a vector

θ =

θ0...
θp

 ∈ Rp+1.

The linearity of our hypothesis refers to linearity in the coefficients θj .

Example 3.3.1

• hθ(X) = θ0 + θ1X
3 is linear in θ =

[
θ0 θ1

]⊤ ∈ R2,

• but hθ(X) = θ0 + sin(θ1)X is not linear in θ. �

Such a function hθ is also called a linear predictor, or a discriminant function. For notational
convenience, one can define an intercept term X0 = 1 so that h may be re-written as

hθ(X) = ⟨θ,X⟩ ..=

p∑
i=0

θiXi = X⊤θ,

where X = (X0, X1, . . . , Xp) is defined by X(ω) =


1

X1(ω)
...

Xp(ω)

 ∈ Rp+1, and we call θ0 a bias term.

A nice way to interpret a linear hypothesis is by the expression ∂jh(X) = θj i.e. holding all
other predictors fixed, θj represents the effect on h of a one unit increase in Xj . This behaviour
characterises a linear-response model.

A linear response model is suitable for situations where the response variable can vary, to
a good approximation, indefinitely in either direction. More generally, a linear-response model
works for any quantity that only varies by a relatively6 small amount compared to the variation
in the predictive values e.g. human height.

These assumptions aren’t suitable for some types of response variables and this will be discussed
later under GLMs as a flexible generalisation of linear regression.

Here I collect the above assumptions to define a linear regression model for the conditional expec-
tation of Y given X.

6The same as linear approx in analysis: ∆x ≈ 0 =⇒ ∆y = f(x+∆x)− f(x) ≈ 0.

Regression 19

Let (X, Y) ∼ PX×Y . A (population-level) linear regression model is a regression model

Y = f(X) + ε = E[Y |X] + ε s.t. E[ε |X] = 0

that assumes linearity of the conditional mean i.e. that the conditional expectation of Y given X
is a linear hypothesis h i.e. that there exists a vector of parameters θ =

[
θ0 · · · θp

]⊤ s.t.

E[Y |X] = hθ(X) = X⊤θ.

On the sample-level, we introduce more assumptions that allow us to relate how our data

T = {(x(i), y(i))}n1
is related to the population. As usual, we assume that our training set is a realisation of a random
sample

(X(1), Y (1)), . . . , (X(n), Y (n))
i.i.d.∼ PX×Y .

We can think of these as identical copies of (X, Y) so the population assumptions hold for each
(X(i), Y (i)). The linearity assumption can be written in matrix-form to summarise the n equations
into one.

For the sake of simplifying notation, we’ll collect the predictor random vectors into a single
random vector (of random vectors)

X = (X(1), . . . ,X(n)) : (Ω,F)→ ((Rp+1)n,B(Rp+1)n).

A realisation of X is given by

X(ω) =

X
(1)(ω)

...
X(n)(ω)

 =

x
(1)

...
x(n)


Statistics textbooks present X(ω) in a more presentable form by identifying this vector of column
vectors (Rp+1)n with a matrix in Rn×(p+1). Doing so allows one to succinctly represent linearity
over all the training examples (a system of n equations) as a matrix equality. I’ll denote the map
that makes such an identification7 by Φ so a realisation of X(ω) is identified with the matrix

X ..= Φ(X(ω)) =

(x
(1))⊤

...
(x(n))⊤

 =

1 x
(1)
1 · · · x

(1)
p

...
...

...
...

1 x
(n)
1 · · · x

(n)
p

 .

This matrix X whose rows are the input features of each example in T is called the design matrix
of our model. When I need to speak about conditioning on a random variable I will refer to X, and
when I wish to speak of systems of equations (like I will immediately below) I will refer to X. On
the level of random variables, we have that

Φ(X) = Φ(X(1), . . . ,X(n)) =

(X
(1))⊤

...
(X(n))⊤

 .

The rest of the notation is straight-forward. Simply collect the responses and errors into their
own respective random vectors Y and ε, and denote their realisations by labels y and residuals ϵ:

Y =

Y
(1)

...
Y (n)

 , y =

y
(1)

...
y(n)

 , ε =

ε
(1)

...
ε(n)

 , and ϵ =

ϵ
(1)

...
ϵ(n)

 .

7I believe no information is lost by this identification because the σ-algebras generated by both are the same,
just re-labelled, and so the ensuing conditional expectation calculations would be the same given either σ(X) or
σ(Φ(X)).

Regression 20

It follows that

Φ(X)θ =

(X
(1))⊤θ
...

(X(n))⊤θ

 .

Finally, we may write all n equations as8

Y = Φ(X)θ + ε,

and so a realisation T of the experiment that these random variables formalise can be represented
by the system:

y = Xθ + ϵ.

3.3.1 EXTRA ASSUMPTIONS

2. Strict exogeneity: The errors have 0 mean conditional on the features i.e. for i = 1, . . . , n:

0 = E
[
ε(i)
∣∣∣σ(X(1), . . . ,X(n))

]
.

3. The rank of the n× (p+ 1) regression matrix, X, is p+ 1 with probability 1.

4. Constant conditional second moment of errors given predictors:
An assumption that the variances of all the error terms are equal (or similar):

E
[
(ε(i))2

∣∣∣σ(X(1), . . . ,X(n))
]
= σ2 > 0.

5. No correlation between observations:

E
[
ε(i)ε(j)

∣∣∣σ(X(1), . . . ,X(n))
]
= 0 for i, j = 1, . . . , n where i ̸= j

Assumption 3 is left stated in the form Hayashi does (with respect to fixed design i.e. in the
situation where one has the design matrix X after observing the random sample). I’m not yet
sure what the random regressors version of the statement is.

uneasy

Definition 3.3.2 Let A be an m× n matrix with real entries.

• The column space of A, denoted by colspace(A), is the subspace of Rm spanned by the
columns of A.

• The column rank of A is the dimension of the column space of A. Equivalently, the column
rank is equal to the size of the largest linearly independent subset of its columns.

Analogous definitions hold if one replaces ‘column’ with ‘row’. It doesn’t really matter which we
use because:

Theorem 3.3.3 The row rank and column rank of a matrix A are equal. Thus, we simply refer
to the rank of a matrix.

Furthermore, rank(A) ⩽ min(m,n).
8Not only is this succinct but by vectorising the data in a programming language, we also benefit from linear

algebra being well-optimised in built-in language packages/modules like numpy in Python. Such packages, in general,
yield faster results than basic for-loops.

Regression 21

Remarks 3.3.4

• Since we are assuming that our sample is i.i.d., the strict exogeneity assumption is sometimes
written as conditioning on only one of the X(i) instead of on the whole of σ(X(1), . . . ,X(n)).
It turns out that these are equivalent.

Proof. Let Gn ..= σ(X(1), . . . ,X(n)). Then σ(X(i)) ⊆ Gn, and by the tower property:

E
[
ε(i)
∣∣∣Gn] = E

[
E
[
ε(i)
∣∣∣σ(X(i))

] ∣∣∣Gn] = E(0 | Gn) = 0

For the reverse implication, assume that E
[
ε(i)
∣∣Gn] = 0 and run the above argument back-

wards to conclude that E
[
ε(i)
∣∣σ(X(i))

]
= 0. ■

Economists prefer to write “| Gn” because it inspires notation like E(ε |X) (found in Hayashi
[3]) which is read as “Fix the realised design matrix. Then the errors have mean zero."

• When we combine assumptions 2 and 4, we get conditional homoskedasticity of our error
terms:

Definition 3.3.5 The assumption of constant conditional variance

Var
[
ε(i)
∣∣∣σ(X(1), . . . ,X(n))

]
= σ2 > 0

of our errors given the predictors X is called conditional homoskedasticity.

Proof. For short, let σ(X(1), . . . ,X(n)) =.. Gn. Then,

Var
[
ε(i)
∣∣∣Gn] = E

[(
ε(i) − E

[
ε(i)
∣∣∣Gn])2 ∣∣∣∣Gn]

= E
[
(ε(i))2 − ε(i)E

[
ε(i)
∣∣∣Gn]+ E

[
ε(i)
∣∣∣Gn]2 ∣∣∣∣Gn]

= E
[
(ε(i))2

∣∣∣Gn]− E
[
ε(i)E

[
ε(i)
∣∣∣Gn] ∣∣∣Gn]︸ ︷︷ ︸

E[g(X) | Gn]=g(X)

+E
[
E
[
ε(i)
∣∣∣Gn]2 ∣∣∣∣Gn]

= E
[
(ε(i))2

∣∣∣Gn]− 2(E
[
ε(i)
∣∣∣Gn])2 + E

[
ε(i)
∣∣∣Gn]2

= E
[
(ε(i))2

∣∣∣Gn]− E
[
ε(i)
∣∣∣Gn]2

= σ2 − 0

■

• Strict exogeneity implies E
(
ε(i)
)
= 0 for all i = 1, . . . , n.

Proof. By the law of total expectation, E
(
ε(i)
)
= E

(
E
[
ε(i)
∣∣σ(X(1), . . . ,X(n))

])
. ■

Regression 22

3.4 Ordinary Least-Squares (OLS)

Least-squares fitting is the name given to the mathematical procedure for finding the best-fitting
curve to a collection of data by way of minimising the sum of squared residuals of the examples
from the curve’s respective predictions.

Ordinary9 least-squares is a type of linear least-squares fitting method that estimates the
unknown parameters θ in a linear regression model by using a dataset T . We denote the sum of
squared residuals by J(θ) and define it by any constant multiple of

J(θ) =
n∑

i=1

(ϵ(i))2 ..=
n∑

i=1

(
hθ(x

(i))− y(i)
)2

,

and in matrix form:
J(θ) = ϵ⊤ϵ = (Xθ − y)⊤(Xθ − y).

Goal: We wish to find θ that minimises our loss J(θ) over θ ∈ Rp+1.

The approach followed in CS229 opts to minimise J(θ) by calculating its gradient ∇θ w.r.t.
θ by using some “known facts” about the matrix derivative. The calculation of ∇θJ(θ) has been
side-barred below, and I’ve collected the matrix derivative facts in Example A.2.2.

The calculation is done by finding the gradient with respect to θ of the cost
function J(θ), setting that gradient to zero to get what are known as the normal
equations, and then finding stationary points. The relevant definitions for the
following calculations can be found in Chapter A.

We begin by setting the constant multiple of J(θ) to 1/2 which simplifies future
calculations.

∇θJ(θ) = ∇θ

(
1

2
(Xθ − y)⊤(Xθ − y)

)
=

1

2
∇θ

(
θ⊤

X
⊤
Xθ − θ⊤

X
⊤y − y⊤

Xθ + y⊤y
)

=
1

2
∇θtr

(
θ⊤

X
⊤
Xθ − θ⊤

X
⊤y − y⊤

Xθ + y⊤y
)

=
1

2
∇θ

(
tr(θ⊤

X
⊤
Xθ)− tr(y⊤

Xθ)− tr(y⊤
Xθ) + tr(y⊤y)

)
=

1

2
∇θtr(θ

⊤
X

⊤
Xθ)−∇θtr(y

⊤
Xθ)

=
1

2
∇θtr(θ

⊤
X

⊤
Xθ)− X

⊤y

(5)
=

1

2
((X⊤

X)⊤θ + X
⊤
Xθ)− X

⊤y = X
⊤
Xθ − X

⊤y

In the third equality, note that tr(a) = a for a ∈ R. We introduced the trace for
convenience of computation using 5 by setting A⊤ = θ, B = X⊤X, and C = I.

Instead, I decided to follow the fantastic lecture notes (lectures 2–4, and 7) from the Spring 2016
Convex and Conic Optimisation course by Amir Ali Ahmadi. These concise notes gave me a solid
understanding of basic optimisation, and the least-squares example was an exercise for the reader
so all errors herein are my own.

9There’s some contention over what ‘ordinary’ actually means. The most sensible explanation I’ve found is from
this Stack Exchange comment suggesting that it’s there to contrast with the weight parameters in weighted
least-squares regression — a technique that can be found in the following subsection. Namely, if the weights in WLS
are all equal to 1, you get OLS.

https://www.princeton/edu/~aaa/Public/Teaching/ORF523/S16/
https://stats.stackexchange.com/questions/211439/what-is-ordinary-in-ordinary-least-squares/251192#comment477875_251192

Regression 23

3.4.1 CONVEX OPTIMISATION

Theorem 3.4.1 Consider the minimisation problem

min
x∈Rn
∥Ax− b∥2

where A is an m×n matrix, and b ∈ Rn. Under the assumption that the columns of A are linearly
independent,

x∗ = (A⊤A)−1A⊤b

is the unique global solution.

Proof. We can re-write the objective function in matrix form f(x) = (Ax−b)⊤(Ax−b). According
to Corollary A.1.4, calculating the gradient of f at x can be done by first finding the Fréchet
derivative of f at x, and then transposing the resulting bounded linear map.

Definition 3.4.2 Let U
open
⊆ Rn with x ∈ U and f : U → R. If there exists a bounded linear10

map Lx : Rn → R that satisfies

lim
v→0 in Rn

|f(x+ v)− f(x)− Lxv|
∥v∥

= 0

then f is said to be Fréchet differentiable at x. The linear map Lx is called the Fréchet derivative
of f at x and is denoted by df(x).

We first calculate the numerator of the difference quotient:

f(x+ v)− f(x) = (A(x+ v)− b)⊤(A(x+ v)− b)− f(x)

= (Ax− b+Av)⊤(Ax− b+Av)− f(x)

= f(x) + (Ax− b)⊤(Av) + (Av)⊤(Ax− b) + (Av)⊤(Av)− f(x)

= (Ax− b)⊤(Av)︸ ︷︷ ︸
∈R

+(Av)⊤(Ax− b) + (Av)⊤(Av)

= ((Ax− b)⊤(Av))⊤ + (Av)⊤(Ax− b) + (Av)⊤(Av)

= 2(Av)⊤(Ax− b) + (Av)⊤(Av)

Now we conjecture that the linear part of the remainder Lxv = 2(Ax − b)⊤Av is our derivative
candidate. The matrix representation of the map Lx is 2(Ax − b)⊤A. It’s clearly linear because
Lx(v + w) = Lxv + Lxw, and Lx(αv) = αLxv. Every linear map between normed vector spaces
whose domain is finite dimensional is automatically bounded. Now we verify the limit in the
definition of the Fréchet derivative. The difference quotient is given by

|f(x+ v)− f(x)− Lxv|
∥v∥

=
|(Av)⊤(Av)|
∥v∥

=
∥Av∥2

∥v∥

⩽
∥A∥op∥v∥

2

∥v∥
= ∥A∥op∥v∥ −→ 0 as v → 0 in Rn.

Therefore, df(x) = Lx as linear maps, Jf(x) = 2(Ax − b)⊤A is the coordinate representation
of df(x) with respect to the standard bases of Rn and R, from which it follows that ∇f(x) =
2A⊤(Ax− b) = 2A⊤Ax− 2A⊤b.

10We also denote this by Lx ∈ L(Rn;R).

Regression 24

Relating this back to our regression problem, we call the system of equations

X⊤Xθ = X⊤y

the normal equations.

Theorem 3.4.3 (First-Order Necessary Condition for Optimality) If x∗ is an unconstrained11

local minimum of a differentiable function f : Rn → R, then ∇(x∗) = 0.

Note that f is differentiable. By the FONC, x∗ being an unconstrained local minimum solution
=⇒ ∇f(x∗) = 0. Note that ∇f(x) = 0 ⇐⇒ A⊤Ax = A⊤b. We wish to invert A⊤A to get
a solution x∗. Since A is assumed to have linearly independent columns, it follows that A⊤A is
invertible.
Proof. A matrix A is invertible iff its nullspace is trivial {0}. Observe that

(A⊤A)x = 0 =⇒ x⊤(A⊤A)x = 0

⇐⇒ (Ax)⊤(Ax) = 0

⇐⇒ ∥Ax∥2 = 0

⇐⇒ Ax = 0

i.e. if x is in the nullspace of A⊤A, then Ax = 0. If we can demonstrate further that x = 0, then
the invertibility of A⊤A follows.

Notice that

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


x1...
xn

 =


∑n

j=1 a1jxj∑n
j=1 a2jxj

...∑n
j=1 amjxj

 =


a11
a21
...

am1

x1 + · · · +


a1n
a2n
...

amn

xn

i.e. Ax is a linear combination of the columns of A with weight xj corresponding to column j. By
the linear independence of the columns, this forces xj = 0 for every j from 1 to n i.e x = 0. In
summary, we’ve shown that x ∈ nullspace(A⊤A) =⇒ x = 0 which is equivalent to A⊤A being
invertible. �

Thus, an unconstrained optimal solution to our optimisation problem is

x∗ = (A⊤A)−1A⊤b.

Now we appeal to the second-order sufficient condition for optimality.

Theorem 3.4.4 (Second-Order Sufficient Condition) Suppose that f : Rn is twice continuously
differentiable, that there exists a point x∗ such that ∇f(x∗) = 0, and that ∇2f(x∗) ≻ 0. Then x∗

is a strict local minimum of f .

Let’s verify the final assumption of the theorem by calculating the Hessian matrix of f at
x∗ = (A⊤A)−1A⊤b. According to Remarks A.1.6, we can calculate the Fréchet derivative of
df(x) i.e. the second-order Fréchet derivative of f , and then its coordinate representation with
respect to the standard basis of Rn is the Hessian of f at x. As before, we calculate the difference.

df(x+ v)h− df(x)h = 2(A(x+ v)− b)⊤Ah− 2(Ax− b)⊤Ah

= 2(Ax− b)⊤Ah+ 2(Av)⊤Ah− 2(Ax− b)⊤Ah

= 2(Av)⊤Ah

= 2v⊤A⊤Ah

11Unconstrained means we minimise over all x ∈ Rn.

Regression 25

Let (Lxv)h = Lx(v, h) = 2v⊤A⊤Ah. It’s bilinear and automatically bounded. We don’t need to
verify the defining limit because df(x+ v)h− df(x)h− Lx(v, h) = 0. Thus, the Hessian of f is

∇2f(x) = 2A⊤A.

We’ve already shown that x⊤A⊤Ax = ∥Av∥ ⩾ 0 and that Ax = 0 ⇐⇒ x = 0, so A⊤A ≻ 0. By
the second-order sufficient condition for strict convexity

∇2f(x) ≻ 0, ∀x ∈ Ω =⇒ f is strictly convex on Ω

we conclude that our f is strictly convex on Rn. Finally, we remark that the conditions of the
following theorem are satisfied for Ω = Rn so x∗ is the global unique solution on Rn.

Theorem 3.4.5 Consider an optimisation problem min f(x) subject to x ∈ Ω, where f : Rn → R
is strictly convex on Ω, and Ω is a convex set. Then the optimal solution (assuming it exists) must
be unique.

■

The assumption that the columns of X are linearly independent means that there are no redun-
dant features.

In summary, if the columns of X are linearly independent, then J(θ) is strictly convex on Rp+1,
and if an optimal solution exists, then it’s the unique global minimum

θ∗ = (X⊤X)−1X⊤y

that solves the normal equations X⊤Xθ = X⊤y.

This conclusion came with the proviso that an optimal solution exists. We haven’t (yet) shown
this is the case.

3.4.2 IS THERE ALWAYS A SOLUTION TO THE NORMAL EQUATIONS?

Let’s look more closely at the normal equations.

X⊤Xθ = X⊤y

When does a solution exist? On the left, we have X⊤X acting on θ, and outputting X⊤y. We can
view this as the classical linear algebra problem of solving Ax = b for x. Equivalently12, solving
this system of equations means writing b as a linear combination of the columns of A. Thus, a
solution to our normal equations exists iff X⊤y is in the column space of X⊤X. This is indeed the
case because:

Lemma 3.4.6 The column spaces of X⊤X and X⊤ are equal.

Proof. One inclusion is very simple. Let b ∈ colspace(X⊤X) i.e. there exists some v ∈ Rn s.t.
X⊤Xv = b. Now let w = Xv ∈ Rn, and so we’ve shown that there exists some w ∈ Rn s.t. X⊤w = b
i.e. b ∈ colspace(X⊤). Thus, colspace(X⊤X) ⊆ colspace(X⊤).

12As evidenced by our earlier calculation that

Ax =


a11

a21

...
am1

x1 + · · · +


a1n

a2n

...
amn

xn.

Regression 26

For the reverse inclusion, let b ∈ colspace(X⊤). We wish to show that b ∈ colspace(X⊤X).
uneasy

■

Thus, there always exists a solution to the normal equations. In the case that X is of full-rank,
there is a unique global solution to the optimisation problem. Otherwise, X is not of full-rank i.e.
rank(X) < min(n, p+ 1). Note that n is typically much larger than p+ 1 so rank(X) < p+ 1. By
the rank-nullity theorem,

rank(X) + dimnullspace(X) = p+ 1

so the dimension of the nullspace of X is strictly greater than 0 i.e. the nullspace of X is non-trivial.
Let θ∗ be any optimal solution of the normal equations. Then we may take any non-zero vector v
in the nullspace of X and observe that θ∗ + v also satisfies the normal equations

X⊤X(θ∗ + v) = X⊤Xθ∗ + X⊤(Xv) = X⊤y + X⊤0 = X⊤y.

Thus, there are infinitely many solutions to the normal equations.

Which solution does one typically choose out of the infinitely many? I have no idea right now so
I’m leaving a blank space for it — feels important.

uneasy

There are other methods to approximate θ̂. The following two algorithms are iterative:

Regression 27

3.5 Iterative Methods

3.5.1 GRADIENT DESCENT

Gradient descent is an iterative searching algorithm that searches for an optimal solution (min-
imiser) θ̂ that minimises J . It begins by initialising some θ and repeatedly performs the simulta-
neous update

θj ..= θj − α
∂

∂θj
J(θ) for j = 0, . . . , p.

Remarks 3.5.1

• The symbol ..= here is for the assignment operator when programming.

• Each iteration of this algorithm moves every θj in the direction of steepest decrease of J .
This is because the partial derivative ∂θj is defined as the direction of greatest increase of a
function in the direction of θj .

• The constant α is called the learning rate13 and determines how “large” the step is in each
iteration.

More explicitly,
∂

∂θj
J(θ) =

1

2

∂

∂θj

n∑
i=1

(
hθ(x

(i))− y(i)
)2

=
n∑

i=1

(
hθ(x

(i))− y(i)
) ∂

∂θj

(
hθ(x

(i))− y(i)
)

=
n∑

i=1

(
hθ(x

(i))− y(i)
)
x
(i)
j

Thus, the update rule looks at every example at each iteration and is called the batch gradient
descent update rule:

θj ..= θj − α

n∑
i=1

(
hθ(x

(i))− y(i)
)
x
(i)
j for j = 0, . . . , p simultaneously.

The batch gradient descent algorithm is as follows:

Algorithm 1 Batch gradient descent
1: procedure batch gradient descent
2: θ ← θ0 ▷ Initialise a guess for θ
3: while convergence criterion do

4: θj ← θj − α

n∑
i=1

(hθ(x
(i))− y(i))x

(i)
j ▷ for every j

5: end while
6: return θ0
7: end procedure

The magnitude of the update of θj is proportional to the error term hθ(x
(i)) − y(i). If the

algorithm encounters an example for which the prediction nearly matches the actual value of y(i),
then (hθ(x

(i))− y(i)) ≈ 0 and it finds little need to change the parameters.

13If all the features are normalised to [−1, 1], then α = 0.01 is a sensible value to start with.

Regression 28

In general, gradient descent can be susceptible to local minima. This is because the algorithm makes
locally optimal choices at each step/iteration. However, the way this particular OLS optimisation
problem was set up guarantees convergence to a unique global minimiser (assuming α isn’t too
large). J has a unique global minimum.

θ0

θ1

J(θ)

r′

−∇f

θ1

θ2

Figure 3.1: A paraboloid-shaped surface (left) with height J(θ) parameterised by θ =
[
θ0, θ1

]⊤
and its level sets/contours (right). The contours for constant values of J(θ) are ellipses.

The direction of steepest ascent (of ∇f) is always orthogonal to the level set f(θ1, θ2) = k of
a surface i.e. for a parameterisation r of the level set, ⟨∇f, r′⟩ = 0. In the diagram, we follow
−∇f when updating our parameters. If α is too small, the algorithm will require far too many
iterations. If the value of J(θ) increases then there’s a very strong chance that α is too large and
the minimiser has been overshot. A disadvantage of batch gradient descent is that a single iteration
can become very slow if the number n of training examples is very large.

3.5.2 STOCHASTIC GRADIENT DESCENT

Instead of scanning through all examples in a single iteration, a less computationally expensive
option is to repeatedly loop over the training set i = 1, . . . , n, at each step using only the current
example (x(i), y(i)) to update the parameters.

The update rule for a single example (x(i), y(i)) is called the Widrof-Hoff learning rule:

θj ..= θj − α
(
hθ(x

(i))− y(i)
)
x
(i)
j .

The stochastic gradient descent algorithm is as follows:

Algorithm 2 Stochastic Gradient Descent
1: procedure stochastic gradient descent
2: θ ← θ0 ▷ Initialise a guess for θ
3: for i← 1, n do
4: θj ← θj − α

(
hθ(x

(i))− y(i)
)
x
(i)
j ▷ for every j

5: end for
6: return θ0
7: end procedure

Since the algorithm uses the derivative for one example in each iteration, the parameters θ are
updated and improved slightly but may not be in the most direct direction downhill for J .

Regression 29

θ1

θ2

To this end, stochastic gradient descent takes a noisy route but on average gets θ closer to
a minimum. Convergence is not guaranteed for this algorithm and θ will often keep oscillating
around a minimum of J(θ). Decreasing the learning rate α in the later stages of the algorithm
could yield good results.

3.6 Locally Weighted Linear Regression

Suppose that we have a set of data plotted below.

ℓ

x X

Y

It’s pretty clear what the shape of the data is. How does one fit a curve to the data that
looks like the red curve? It’s not so straightforward to find features (e.g.

√
x, log(x), x2/3) to fit

the data. Luckily, it’s possible to sidestep this difficulty using a method called locally weighted
linear regression:

The goal of ordinary least-squares linear regression was to find optimal parameters θ̂ that
minimise a cost function J(θ) (which quantifies how our hypothesis hθ predictions differ from the
given data) and then output a prediction model h

θ̂
= θ̂⊤x.

Locally weighted linear regression looks at a small neighbourhood around a query point x, fits
a straight line ℓ to the values in this neighbourhood and uses ℓ to make a prediction. To fit said

Regression 30

straight line to the data around such a point x, one can use a modified cost function Jloc(θ) which
places greater emphasis on points close by to x e.g.

Jloc(θ) ..=

n∑
i=1

ω(i)
(
θ⊤x(i) − y(i)

)2
.

ω(i) is known as a weighting function and for an example (x(i), y(i)) exhibits the following:

• if |x(i) − x| is small, then ω(i) ≈ 1

• else if |x(i) − x| is large, then ω(i) ≈ 0

Thus, ω(i) tells us how much attention must be paid to the values of (x(i), y(i)) when fitting the
straight line.

A common choice of ω(i) is ω(i) ..= exp

(
−(x(i) − x)2

2■2

)
.

WHAT IS THE QUANTITY ■ IN THE WEIGHTING FUNCTION?

We need some way to describe how quickly the importance (or weight) of a training example falls
off from the query point x. We do so by incorporating a quantity ■ = τ called the bandwidth.
To illustrate, we graph ω(i) against training examples:

x

τ

For this example (x(i), y(i)),
we assign a weight equal to
the height of w(i)(x(i))

This example is
far away from
x so it gets a
weight ≈ 0

X

Y

Figure 3.2: A visualisation of the weighting function (in red) for a neighbourhood of the query
point x.

PARAMETRIC AND NON-PARAMETRIC ALGORITHMS

Unweighted linear regression is an example of a parametric algorithm because it has a fixed,
finite number of parameters (the θi’s) which are fit to the data and once θ is fit and stored, the
training data is no longer needed to make future predictions.

On the other hand, making predictions with locally weighted linear regression requires us to
keep the entire training set around. It’s an example of a non-parametric algorithm because the
amount of data/parameters that must be kept in order to represent the hypothesis grows linearly
with the size of the training data.

Non-parametric performs badly if one has a particularly large training set but a benefit is that
the data can be fit quite well without having to manually fiddle with features.

Regression 31

3.7 Normality Assumptions (Ordinary Linear Regression)

A probabilistic assumption reveals that the ordinary least-squares cost function J(θ) is the one
we should be minimising because it naturally arises through the method of maximum likelihood
estimation. We add this assumption to the linear regression model:

5. Normality of errors:
The distribution of ε = (ε(1), . . . , ε(n)) conditional on X(1), . . . ,X(n) is jointly normal
N (0, σ2In).

With the inclusion of joint normality, a linear regression model is termed a Gaussian linear
regression model.

We always assume that our random variables map into nice enough spaces (e.g. Borel spaces)
s.t. there exists a system of regular conditional probabilities of ε ∈ MeasF ,BRn (Ω ;Rn) given
X ..= (X(1), . . . ,X(n)) ∈ MeasF ,B

(R(p+1))n
(Ω ; (R(p+1))n) i.e. a map κεX : BRn × (R(p+1))n → [0, 1] s.t.

1. For every x = (x(1), . . . , x(n)) ∈ (R(p+1))n, κεX(·,x) is a probability measure on the codomain
(Rn,BRn) of ε.

2. For each B ∈ BRn , the mapping x 7−→ κXY (B,x) is:

• an B(R(p+1))n-measurable function satisfying for P-a.e. ω ∈ Ω:

P
[
ε−1(B)

∣∣σ(X)](ω) = κεX(B,X(ω)),

• and is PX-integrable, satisfying for all B ∈ BRn and D ∈ B(R(p+1))n :

P
(
ε−1(B) ∩ X−1(D)

)
=

∫
D
κεX(B,x) dPX(x).

The conditional normality means that κεX satisfies for every B ∈ BRn :

κεX(B,x) = γn,σ2(B) for PX-a.e. x ∈ (R(p+1))n,

where φn,σ2 is a multivariate normal probability distribution. In other words, the conditional law
of ε given X has a multivariate Gaussian density with mean 0 and covariance matrix σ2In. Also,
since there’s no dependence of φn,σ2 on x, our disintegration formula becomes

P
(
ε−1(B) ∩ X−1(D)

)
=

∫
D
γn,σ2(B) dPX(x) = γn,σ2(B)PX(D)

and this factorisation demonstrates that ε and X are independent.

3.7.1 CONSEQUENCES OF JOINT CONDITIONAL NORMALITY OF OUR ERRORS

The assumption of joint conditional normality of our errors implies several statements:

Corollary 3.7.1 Each ε(i) is conditionally normally distributed given X(i) with the same mean 0
and variance σ2.

Proof. The idea is to push the conditional law of ε given X forward via the natural coordinate
projection map πi. Indeed, for each x ∈ (R(p+1))n:

κε
(i)

X (· ,x) ..= (πi)♯κ
ε
X(· ,x) = (πi)♯γn,σ2(·) = γ1,σ2(·)

because the marginal distribution of a multivariate normal is univariate normal with variance the
(i, i)th entry in the covariance matrix. ■

Regression 32

Corollary 3.7.2 The ε(i) are conditionally independent given X.

Proof. This follows from the previous corollary by noting that for every x the joint conditional law
of ε given X factorises into the following product measure of every marginal conditional distribution
of ε(i) given X i.e.

κεX(· ,x) = γn,σ2 =

n⊗
i=1

γ1,σ2(·) =
n⊗

i=1

κε
(i)

X (· ,x).

■

Corollary 3.7.3 There are no conditional cross-variance terms.

Proof. I imagine this comes from the covariance matrix entries outside of the main-diagonal
being 0. ■

uneasy

Corollary 3.7.4 The distribution of Y = Φ(X)θ+ε conditional on X is normal with mean Φ(X)θ
and covariance matrix σ2In.

Proof. According to Section 18.3.2 from KEB103 [1, p. 205], we can in a sense “push-forward” the
regular conditional probability of ε given X by a jointly-measurable map in order to obtain the
conditional law of Y.

Definition 3.7.5 Let (EX , EX) and (EY , EY) be measurable spaces. A Markov
(or transition) kernel from EX to EY is a map κ : EY × EX → R s.t.

• for every x ∈ EX , κ(·, x) is a probability measure on (EY , EY), and

• for every B ∈ EY , κ(B, ·) is EX -measurable.

Theorem 3.7.6 Given a jointly measurable map Z : EY ×EX → EZ , the func-
tion κZ : EZ × EX → [0, 1] defined for B ∈ EZ and x ∈ EX by

κZ(B, x) ..= κ({y ∈ EY : Z(y, x) ∈ B}, x)

is a Markov kernel from EX to EZ .

It suffices to check that the map which takes ε and X to Y is jointly-measurable. Indeed, let14

Z : Rn︸︷︷︸
ε

× (R(p+1))n︸ ︷︷ ︸
X

→ Rn︸︷︷︸
Y

be the affine transformation
y = Z(ϵ,x) = Φ(x)θ + ϵ.

This is clearly jointly measurable. Thus, the conditional law of Y given X is the regular conditional
probability κYX : BRn × (R(p+1))n → [0, 1] defined for any B ∈ BRn and x ∈ (R(p+1))n by

14The underbraces denote which random elements these inputs and outputs correspond to.

Regression 33

κYX (B,x) ..= κεX((Z ◦ ιx)−1(B),x)

= κεX({ϵ ∈ Rn : (Z ◦ ιx)(ϵ) ∈ B},x)

= κεX({ϵ ∈ Rn : Z(ϵ,x) ∈ B},x)

= κεX({ϵ ∈ Rn : Φ(x)θ + ϵ ∈ B},x)

= γn,σ2({ϵ ∈ Rn : Φ(x)θ + ϵ ∈ B})

=

∫
{ϵ∈Rn : Φ(x)θ+ϵ∈B}

φn,σ2(ϵ) dλRn(ϵ)

=

∫
h−1(B)

φn,σ2(ϵ) dλRn(ϵ) where u = h(ϵ) ..= Φ(x)θ + ϵ

=

∫
B
φn,σ2(u− Φ(x)θ)| det(Jh−1)(u)|dλRn(u)

=

∫
B
φn,σ2(u− Φ(x)θ) dλRn(u)

= N (Φ(x)θ, σ2In)(B)

The penultimate line’s Jacobian determinant of h−1(u) = u − Φ(x)θ is simply 1 because it’s a
translation. ■

The final piece of the puzzle follows.

Corollary 3.7.7 The Y (i) are conditionally independent given X, and each Y (i) is conditionally
normally distributed given X with mean Φ(x(i))θ and variance σ2

Proof. The proof follows in an entirely analogous fashion to the proof of the independence of the
ε(i) conditional on X. This observation is crucial for the following section. ■

By some leap of faith, I believe the conditional law of Y (i) given X(i) is the same as that of Y (i)

given X. If this is true, then one has the disintegration formula for any B ∈ BR and D ∈ BR(p+1) :

P
(
(Y (i))−1(B) ∩ (X(i))−1(D)

)
=

∫
D
κY

(i)

X(i)(B, x) dPX(i)(x)

=

∫
D
N (Φ(x(i))θ, σ2)(B) dPX(i)(x)

=

∫
D

∫
B
φ1,Φ(x(i))θ,σ2(y) dλ(y) dPX(i)(x).

uneasy

3.7.2 MAXIMUM LIKELIHOOD ESTIMATION

We begin with the assumption that our data T has already been observed from a random sample

(X(1), Y (1)), . . . , (X(n), Y (n))
i.i.d.∼ Pθ

whose distribution is a particular parametric distribution Pθ from a family {Pθ}θ∈Θ, where Θ
is some indexing set. For the purposes of what follows, we assume that this family of probability
measures is dominated by a σ-finite measure ν. In the discrete case, ν will be the counting measure;
and in the absolutely continuous case, ν is the Lebesgue measure. This domination assumption
allows us to speak of the15 density of Pθ, and therefore speak of the central object of this section.

15Technically this is defined up to ν-null sets but it’s not a massive abuse of language to say ‘the’ with the tacit
assumption that we’re referring to a representative of an equivalence class of functions that differ ν-a.e.!

Regression 34

The method of maximum likelihood estimation is a search for optimal parameters θ′ ∈ Θ for
which it was most likely that our data had been sampled from Pθ′ . We do this by working with
a surrogate quantity called the joint likelihood L of our data. We view it as a function of θ in
order to carry out the aforementioned optimisation.

Definition 3.7.8 The joint likelihood function for θ given our data T is the density of the
joint distribution of our sample (with respect to a dominating measure ν) evaluated at the
observed value T .

L =
dP(X(1),Y (1)), ..., (X(n),Y (n))

dν

∣∣∣
T .

In our case, our random sample is i.i.d. and made up of (absolutely) continuous random vectors
(with respect to λ), so we may take ν = ⊗nλ and obtain16 the following expression:

L(θ) =
dP(X(1),Y (1)), ..., (X(n),Y (n))

d⊗nλ

∣∣∣∣∣
T

i.i.d.
=

(
n∏
1

dPθ

dλ

)∣∣∣∣∣
T

=
n∏

i=1

fθ((x
(i), y(i)))

I think it’s important to emphasise that the likelihood is not a product of probabilities. Instead, it’s
a Radon-Nikodym derivative of the (joint) density of the random variable of interest with respect
to a (product) dominating measure. In our case with a random sample, the independence implies
that our derivative becomes a product of densities. In the case that the original random variable of
interest is discrete, the density is indeed the probability mass function (and hence the probability
itself). This means that the likelihood is the probability but simply viewed as a function of the
parameters. In the general case, there is no such correspondence.

�

From the disintegration formula earlier, if we assume that X(i) has density fX(i),θ, then we have
the following equality for any B ∈ BR and D ∈ BR(p+1) :

P
(
(Y (i))−1(B) ∩ (X(i))−1(D)

)
=

∫
D
κY

(i)

X(i)(B, x) dPX(i)(x)

=

∫
D
N (Φ(x(i))θ, σ2)(B) dPX(i)(x)

=

∫
D

∫
B
φ1,Φ(x(i))θ,σ2(y) dλ(y) dPX(i)(x)

=

∫
D

∫
B
φ1,Φ(x(i))θ,σ2(y) dλ(y)fX(i),θ dλ(x)

=

∫
D

∫
B
φ1,Φ(x(i))θ,σ2(y)fX(i),θ(x) dλ(y) dλ(x)

which demonstrates the joint density fθ of (X(i), Y (i)) factorises into the product of the condi-
tional density of κY (i)

X(i) (which is the normal) and the marginal density of X(i).

16I’m leaving out some details that I expect are true but not quite sure e.g. if µ1, . . . , µn are measures, and
ν1, . . . , νn is a collection of σ-finite measures s.t for every i we have µi ≪ νi, then

d(µ1 ⊗ . . .⊗ µn)

d(ν1 ⊗ . . .⊗ νn)
=

n∏
i=1

dµi

dνi
.

Regression 35

Therefore, the likelihood takes the form:

L(θ) = . . . =

n∏
i=1

fθ((x
(i), y(i)))

=

n∏
i=1

1√
2πσ

exp

(
−(y(i) − Φ(x(i))θ)2

2σ2

)
fX(i),θ(x

(i))

This factorisation is useful for two reasons:

1. We’ve only made assumptions about the conditional distribution of our errors from which it
follows that each Y (i) is conditionally normally distributed given X(i).

2. If we assume the marginal density is independent of θ, then optimising L(θ) is an equivalent
problem to optimising the conditional likelihood Lcond defined by

Lcond(θ) =

n∏
i=1

1√
2πσ

exp

(
−(y(i) − Φ(x(i))θ)2

2σ2

)
.

Densities can often take small values, and the conditional likelihood above can be a product
of many such small numbers. Multiplying many small numbers together in an algorithm could
underflow17 the computer. We’d prefer to work with a sum instead of a product so need a suitable
transformation T . By suitable, we’d like that if L(θ) is maximised at θ̂, then T (L(θ)) is also
maximised at θ̂. A candidate for T which ticks all the boxes is the natural logarithm T = log. It’s
monotonically increasing and transforms products into sums.

Thus, we typically prefer to use the conditional log likelihood ℓ(θ) ..= log(Lcond(θ)):

ℓ(θ) = log

(
n∏

i=1

1√
2πσ

exp

(
−(y(i) − Φ(x(i))θ)2

2σ2

))

=

n∑
i=1

log

(
1√
2πσ

exp

(
−(y(i) − Φ(x(i))θ)2

2σ2

))

= n log

(
1√
2πσ

)
− 1

2σ2

n∑
i=1

(y(i) − Φ(x(i))θ)2︸ ︷︷ ︸
= J(θ)

This means that the problem of maximising Lcond(θ):

• is equivalent to maximising ℓ(θ)

• which is equivalent to minimising J(θ)

which was precisely the ordinary least-squares linear regression problem.

In fact, the overall framework defined by the two points below

1. Make a set of probabilistic assumptions about the conditional response.

2. Using the method of maximum likelihood estimation, derive a new type of supervised learning
algorithm.

17When the result of a calculation is more precise than a computer can represent in memory.

Regression 36

is something we’ll re-use for fitting parameters for different types of problems. In particular, when
the target variable y ∈ Y is now either 0 or 1 i.e. a classification problem.

When building learning algorithms, often
we make assumptions about the world
that we just know aren’t 100% true
because it leads to algorithms that are
computationally efficient.

Andrew Ng

37

CHAPTER 4

Classification

Let X = Rp, and Y = {c1, . . . , cK} for a finite integer K ∈ N.

4.1 Linear Classifiers

A classifier is a function h : X → {c1, . . . , cK}, where K is the number of classes under consid-
eration. Such functions partition the input feature space X into K cells1 whose boundaries are
called decision boundaries. If these decision boundaries are linear, we call h a linear classifier.2

A linear classifier makes decisions by thresholding across linear decision boundaries so it can be
thought of as the composition of first performing a linear transformation T : X → RK of an input
feature vector x ∈ X (which is a way of scoring an input feature), followed by some (activation)
thresholding function f to make the decision, i.e. h = f ◦ T .

4.1.1 AGGREGATION/SCORING T

Since T : X → RK may be represented by a K×p matrix W , we can denote h by hW (x) = f(Wx).
The entries wi,j (for i = 1, . . . ,K and j = 1, . . . , n) of W are called weights. Each weight places
an “importance” on the corresponding feature, and serves as a parameter that can be fine-tuned by
an algorithm.

Focusing only on the linear transformation for now, if we think of each row Wi of W as the
prototypical object of the class ci, the ith component of T (x) is given by

n∑
j=1

wi,jxj = W⊤
i x = ⟨Wi, x⟩.

Each inner product ⟨Wi, x⟩ quantifies how “similar” our example’s feature representation x is to
Wi. Thus, T (x) is a vector of “scores” representing how well x fits into each and every class.

Some books add a bias term b ∈ RK to the linear transformation
T (x) = Wx to make an affine transformation A(x) = Wx+ b. Writ-
ten explicitly:

w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n
...

...
. . .

...
wK,1 wK,2 . . . wK,n


x

(i)
1
...

x
(i)
n

+


b1
b2
...
bK

 =

 ...


Thankfully this can be viewed as a special case of T (x) = Wx by
embedding the input feature vectors into Rp+1 with x0 = 1 and

1I use this term in the mathematical sense. A partition of a set X is a family of non-empty subsets of X such
that each x ∈ X belongs to a unique subset. The subsets in a partition are called cells. We say that X is partitioned
into B1, . . . , BK if the Bi are such that for i ̸= j, Bi ∩Bj = ∅ and

X =

K⊔
i=1

Bi.

2There are different names for linear classifiers; In biology and neuroscience, linear classifiers are often called
perceptrons or single units of a neural net. In statistics and machine learning, they are called logistic regression and
support vector machines (SVMs) respectively.

Classification 38

appending the bias vector to the left of W :
w1,0 w1,1 w1,2 . . . w1,n

w2,0 w2,1 w2,2 . . . w2,n
...

...
...

. . .
...

wK,0 wK,1 wK,2 . . . wK,n




1

x
(i)
1
...

x
(i)
n

 =

 ...


where bi = wi,0 for i = 1, . . . ,K.

4.1.2 THRESHOLD f

We can take f = argmaxi∈{1,...,K} Ti(x) as the subscript i of the class label ci for our prediction.
This follows the previous logic that such an i will correspond to the class ci for which x is most
similar to Wi.

There are certainly other choices of f to define our linear classifier h. Probably something to do
with how the decision boundaries are formed; one class vs the rest, pairwise (class vs class)
comparisons etc.

uneasy

The simplest case of classification is between K = 2 classes — binary classification. Our
hypothesis h : X → {c1, c2} ..= {−1, 1} is3 called a linear binary classifier and takes the form

h(x) = f(T (x)) = f(Wx) = f

([
W⊤

1 x
W⊤

2 x

])
.

The class labels inspire the following nomenclature:

• If y(i) = +1, then (x(i), y(i)) is called a positive example.

• If y(i) = −1, then (x(i), y(i)) is called a negative example.

Let f return the class label ci for which W⊤
i x is maximised. Then our hypothesis is

h(x) = f(T (x)) =

{
+1, if W⊤

1 x ⩾ W⊤
2 x

−1, if W⊤
1 x < W⊤

2 x.

The comparison between W⊤
1 x and W⊤

2 x can be written in terms of a single vector

W⊤
1 x−W⊤

2 x = (W1 −W2︸ ︷︷ ︸
= θ

)⊤x.

This use of θ in the linear (or discriminant) function T (x) = θx matches with other literature and
is consistent with the more general T (x) = Wx at the start of this chapter.

4.2 The Single-Layer Perceptron

Let K = 2. Our hypothesis h : X → {−1, 1} takes the form

h(x) = f(T (x)) = f(θ⊤x) =.. hθ(x),

where we adopt the convention that x0 = 1, and the bias term θ0 has been incorporated into
θ ∈ Rp+1. Our training set is a collection of examples

T = {(x(i), y(i))}ni=1 ⊆ Rp × {−1,+1}.
3Up to re-labelling — we could equally have chosen {0, 1} or any other two-element set for our labels Y. This

choice of course influences the form that f takes.

Classification 39

We can plot the input feature vectors x(i) as points in Rp, and represent each point with a shape
corresponding to its label y(i). Geometrically, we wish to learn a linear decision boundary that sep-
arates X into two subsets; one containing only inputs x(i) with a positive label, and its complement
containing only inputs x(i) with a negative label. This linear decision boundary is a hyperplane4

of Rp i.e. a subset of Rp (with codimension 1) whose points satisfy the equation ⟨θ, x⟩ ..= θ⊤x = 0
for 0 ̸= θ ∈ Rp.

Positive examples y(i) = +1

Negative examples y(i) = −1

Figure 4.1: An example of a perfectly linearly separable dataset in R3 with a separating hyperplane
decision boundary (teal).

The above key for denoting positive and negative example feature vectors by shapes will be kept
the same for the remainder of this section.

�

This means that our decision hyperplane (which passes through the origin) is the collection of
points orthogonal to θ. This divides Rp into two half-spaces.

• If an example (x(i), y(i)) satisfies θ⊤x(i) ⩾ 0, then x(i) is in the half-space in which our choice
of θ directs into. This is because the inner product

〈
θ, x(i)

〉
= θ⊤x(i) is a measure of similarity

between the two vectors. Assign the label +1 to such an x(i).

• Otherwise,
〈
θ, x(i)

〉
< 0 and we shall assign it the value −1.

These considerations define our hypothesis as

hθ(x) =

{
+1, if θ⊤x ⩾ 0

−1, if θ⊤x < 0

=.. sgn(θ⊤x).

This is the link between linear binary classifiers and decision hyperplanes.

4.2.1 SETUP

Given the last section, we know that finding an optimal decision boundary that minimises mis-
classifications over our training set is tantamount to finding a vector of optimal parameters θ.
Searching for an appropriate θ will follow the same general structure as the previous chapters.

4In general, a hyperplane has exactly two unit normals ±n̂ and an affine hyperplane of Rp with normal vector
+n̂ and origin translation b ∈ Rn is defined to be the set of all x ∈ Rp s.t. n̂ · (x− b) = 0.

Classification 40

Algorithm 3 A single epoch of the training step in the single-layer perceptron algorithm
1: θ ← 0 ▷ Initialise θ
2: for i = 1, . . . , n do
3: Update θ ← θ̃
4: end for
5: return θ̃

Consider a particular training example (x(i), y(i)) ∈ T .

• If (x(i), y(i)) is correctly classified by hθ, either:

◦ y(i) = +1 and hθ(x
(i)) = +1, or

◦ y(i) = −1 and hθ(x
(i)) = −1.

i.e. y(i)hθ(x
(i)) = +1.

• If (x(i), y(i)) is misclassified by hθ, either:

◦ y(i) = +1 and hθ(x
(i)) = −1, or

◦ y(i) = −1 and hθ(x
(i)) = +1.

i.e. y(i)hθ(x
(i)) = −1

It follows that our loss function is very straight-forward to define. For each example, we define the
“hard” loss of our hypothesis hθ by

Lhard(hθ(x
(i)), y(i)) = 1{hθ(x(i)) ̸= y(i)}.

The associated empirical risk (which averages the hypothesis’ loss over T) is given by

Remp.(hθ) ..=
1

n

∑
i∈M

Lhard(hθ(x
(i)), y(i)) =

1

n

n∑
i=1

1{hθ(x(i)) ̸= y(i)}.

That final term is precisely the misclassification rate of our hypothesis with respect to Lhard.
Naturally, we’d like to penalise misclassifications so everything checks out with the framework in
Chapter 2 — the empirical risk is the quantity we wish to minimise by adjusting θ in search of an
optimal hypothesis hθ i.e. we want to find

argmin
θ

n∑
i=1

1{hθ(x(i)) ̸= y(i)}.

Equivalently, finding such parameters θ means that every training example is correctly classified
i.e.

y(i)hθ(x
(i)) > 0.

How do we search for such parameters? The first thought is to spam gradient descent on line 3
in the vague general structure of Algorithm 3. The indicator function isn’t differentiable in any
neighbourhood of its discontinuity. Too bad. No gradient descent for us!

Let’s conduct a little thought experiment to side-step this difficulty.

Classification 41

4.2.2 SURROGATE PERCEPTRON PROBLEM

Suppose that we chose a differentiable function f instead of sgn(x) in our hypothesis, namely
f = idR. Then hθ(x

(i)) = θ⊤x(i) would’ve been differentiable. We call this particular hypothesis
the unbounded linear unit. Support further that instead of Lhard, we chose a “softer” loss

Lsoft(hθ(x
(i)), y(i)) = max(0,−y(i)θ⊤x(i)).

This is known as the perceptron loss.5

Lsoft(hθ(x
(i)), y(i))

y(i)θ⊤x(i)

Figure 4.2: The perceptron loss.

We get a bit more information from this than Lhard because a larger value of −y(i)θ⊤x(i)

quantifies how off our prediction is (as opposed to the flat value of 1 for a misclassified example).
Keep in mind that this loss function behaves the same as Lhard for correctly classified examples —
they all get assigned a flat 0.

As before, the quantity we wish to minimise is the corresponding empirical risk function

softRemp.(hθ) =
1

n

n∑
i=1

Lsoft(hθ(x
(i)), y(i)).

LetM⊆ {1, . . . , n} denote the set of indices corresponding to the examples misclassified by hθ

M ..= {i : y(i)hθ(x(i)) < 0}.

It turns out that our soft empirical risk is equal to

softRemp.(hθ) =
1

n

∑
i∈M
−y(i)θ⊤x(i).

This sum is certainly a quantity we can differentiate and so the method of gradient descent is a
viable approach for finding an optimal θ. Let’s give that quantity a name

J(θ) ..=
∑
i∈M
−y(i)θ⊤x(i).

J(θ) is certainly positive. It’s also convex:
Proof. We’ll use two facts:

• max(0,−s) is convex.

Proof. max(x, y) =
x+ y

2
+
|x− y|

2
and | · | is certainly convex (by the triangle inequality).

■

5A variant max(1− s, 0) is called the Hinge Loss.

Classification 42

• If f(·) is convex, then f(A(·) + b) is also convex i.e. composition of a function with an affine
transformation preserves convexity.

Now we simply note that max(0,−y(i)θ⊤x(i)) is the composition (s 7−→ max(0,−s)) ◦ (x 7−→
y(i)θ⊤x(i)). ■

Also note that J(θ) is convex in θ with domain Rn and is bounded below by 0. The convexity
implies that if there’s a local minimiser, then it’s a6 global minimiser at which J attains its global
minimum.
The algorithm outline for the gradient descent goes as follows:

Algorithm 4 Gradient descent on the soft empirical risk
1: θ ← 0 ▷ Initialise θ
2: while loop condition do
3: update θ ← θ̃ via the gradient descent update rule
4: updateM← {i : − y(i)(θ̃)⊤x(i) > 0}
5: end while
6: return θ̃

If the data are perfectly linearly separable into two classes, our loop condition can simply be
(while M ≠ ∅) and the algorithm terminates when we find optimal parameters θ∗ such that all
examples have been correctly classified by hθ∗ i.e. the empirical risk is zero. Note that θ∗ is not
necessarily unique. There may be many values of the parameters for which the empirical risk is
zero. This is illustrated in the following figure:

θ⊤x = 0

θ

φ⊤x = 0

φ

X1

X2

Figure 4.3: Even with perfectly linearly separable data, in R2 for illustrative convenience, there is
no unique decision boundary for perfect classification.

If the data aren’t perfectly linearly separable into two classes, a solution hθ can be still be
learned with Remp.(hθ) > 0 but we’d have to implement a reasonable loop condition. End of
thought experiment.

End of thought experiment. Let’s return to the non-differentiable hypothesis with sgn(·) having a
jump discontinuity:

6Since J is not strictly convex (because max has flat parts), we can’t conclude that such a global minimiser is
unique.

Classification 43

4.2.3 CLASSICAL PERCEPTRON

We shall make some geometric considerations to define an appropriate update rule for θ and
indirectly minimise the misclassification rate Remp.(hθ).

Suppose that we are working in R2 for visual convenience i.e. our feature vectors are of the
form

x(i) =

x(i)1

x
(i)
2

 ∈ X = R2.

Suppose further that we have initialised θ and the corresponding hyperplane miraculously correctly
classifies all but one training example.

• Suppose that the currently misclassified example (x(i), y(i))’s true label is positive. Highlight
this by making it grey i.e. y(i) = +1 but hθ(x

(i)) = −1.

θ⊤x = 0

θ

x(i)

X1

X2

To compensate for this example having been misclassified, a reasonable update of the param-
eters θ 7−→ θ̃ would move (and in particular, for our hyperplane passing through the origin,
rotate) the decision boundary in such a way that x(i) would point more in the direction of
θ̃ i.e. to increase the value from

〈
θ, x(i)

〉
< 0 to

〈
θ̃, x(i)

〉
⩾ 0. Since x(i) is of course fixed

(as part of the data T from which we’re learning), we could add some non-negative scalar
multiple α of x(i) to θ i.e. θ 7−→ θ + αx(i) =.. θ̃ because〈

θ̃, x(i)
〉

..=
〈
θ + αx(i), x(i)

〉
=
〈
θ, x(i)

〉
+ α

〈
x(i), x(i)

〉
︸ ︷︷ ︸

⩾0

⩾
〈
θ, x(i)

〉
.

θ⊤x = 0

θ

x(i)

αx
θ̃

(θ̃)⊤x = 0X1

X2

Classification 44

Therefore, our update of θ can be written as

θ 7−→ θ + αx(i) =.. θ + y(i)αx(i).

That inclusion of y(i) = +1 is non-obvious but the next example will highlight why we’ve
done so.

• Now suppose instead that the misclassification is of a negative example i.e. y(i) = −1 but
our hypothesis has assigned it the label hθ(x(i)) = +1.

θ⊤x = 0

θ

x(i)

X1

X2

To compensate for this example having been misclassified, we want to achieve the opposite
effect to before. Our decision boundary assigns our example a positive value

〈
θ, x(i)

〉
⩾ 0

but we wish to update θ 7−→ θ̃ so that our example points in the opposite direction to θ̃ i.e.
⟨θ̃, x(i)⟩ < 0. We can do this by subtracting some non-negative scalar multiple α of x(i) to θ

i.e. θ 7−→ θ − αx(i) =.. θ̃ because〈
θ̃, x(i)

〉
..=
〈
θ − αx(i), x(i)

〉
=
〈
θ, x(i)

〉
− α

〈
x(i), x(i)

〉
︸ ︷︷ ︸

⩾0

⩽
〈
θ, x(i)

〉
.

Note that
θ 7−→ θ − αx(i) =.. θ + y(i)αx(i).

θ⊤x = 0

θ

x(i)

−αx
θ̃

(θ̃)⊤x = 0X1

X2

To summarise, both misclassifications reduce to the update of parameters

θ 7−→ θ + y(i)αx(i).

Classification 45

We didn’t mention it before but if the example is correctly classified, we of course do not update
θ in the current iteration. Our total update rule is{

Do nothing if (x(i), y(i)) is correctly classified,
θ 7−→ θ + y(i)αx(i) if (x(i), y(i)) is misclassified.

Equivalence to Rosenblatt’s Perceptron (1962)

In the interest of historical preservation, the update rule de-
rived above can be re-written in a way that serves as a special
case of Rosenblatt’s original ‘error correction procedure’ formu-
lation introduced in [4, p. 110]. The actual update rule from [4,
pp. 292–293] is written as the increment we update the weights
by

∆ν = a∗ · (sgn(R∗ − r∗)) · ϵ.

In our notation:

• An asterisk superscript e.g. a∗ denotes the current ex-
ample being used, and any subsequent objects computed
from it.

◦ The current input feature vector is a∗ ..= x(i).
• The weights are ν ..= θ.
• The required response is R∗ ..= y(i).
• The obtained response is r∗ ..= hθ(x

(i)).
• The learning rate is ϵ ..= α.

Thus, the update rule is simply given by

θ 7−→ θ + α sgn(y(i) − hθ(x
(i)))x(i).

How this is equivalent to our geometrically-derived update is
simple. If our example has been correctly classified, Rosen-
blatt’s rule also doesn’t update the parameters for sgn(y(i) −
hθ(x

(i))) = sgn(0) = 0. For the misclassified examples:

• If y(i) = +1 and hθ(x
(i)) = −1, then sgn(y(i)−hθ(x(i))) =

sgn(2) = 1 =.. y(i).
• Else, y(i) = −1 and hθ(x

(i)) = +1, and so sgn(y(i) −
hθ(x

(i))) = sgn(−2) = −1 =.. y(i).

In both cases, sgn(y(i) − hθ(x
(i))) = y(i) and so we recover our

update rule.

Classification 46

The Algorithm and Comments

At last, we can state a naïve implementation of the classical perceptron algorithm.

Algorithm 5 A single epoch of the training step in the perceptron algorithm
1: θ ← 0 ▷ Initialise θ
2: whileM ≠ ∅ do
3: for i = 1, . . . , n do
4: if y(i) = hθ(x

(i)) then
5: pass
6: else
7: for i = 1, . . . , p do
8: θj ← θj + y(i)αx

(i)
j

9: end for
10: end if
11: end for
12: end while
13: return θ

The above algorithm assumes that the data is perfectly linearly separable i.e. once all examples
have been correctly classified, the while loop terminates. However, for training data that isn’t
perfectly linearly separable, we have a few options:

• We can fine-tune α as we go along, throttling the size of the updates until a threshold has
been crossed (at which point we decide further updates aren’t meaningful).

• We can impose a hard cap on the number of iterations.

• We can change our hypothesis from the non-differentiable sgn(·) function to hθ = f ◦ T for
a differentiable f and follow the argument from earlier to minimise the corresponding “soft”
loss function instead of the “hard” loss associated with sgn(·).

The classical perceptron learning algorithm isn’t used much in practice; it doesn’t have a
probabilistic interpretation (as far as I can tell) but it’s useful to have a geometric feel for what’s
happening with hyperplanes. It used to be pretty famous in the 50’s and 60’s when people thought
it was a good model for the brain and how it works. However, a famous paper by Marvin Minsky
demonstrated that the perceptron is limited because for some datasets, there does not exist a linear
separating boundary.

Figure 4.4: A dataset in R2 for which there does not exist a linear separating decision boundary.
Two linear decision boundaries that fail to perfectly classify the dataset are depicted.

In the interest of inference, it would be great to have a model that quantifies how likely each
example is to be a member of each class. In comes the modelling technique of logistic regression
that uses a softer hypothesis to model the (conditional) probability of an unseen example’s label
(given its feature vector) — our hypothesis will be a so-called sigmoid function, and we shall see
that the perceptron loss can be viewed as the limiting case of such a sigmoid.

Classification 47

4.3 Logistic Regression

Consider the following dataset:

× × × ×

× × × ×

0.5

1

x

y

The data is clearly separated into two classes. Suppose that a linear regression hypothesis hθ is
fit to the data. This produces a line of best fit y = hθ(x). We can use this line to classify examples
into two distinct classes. The separating boundary can be set to hθ(x) = 0.5:

label of x =

{
0, hθ(x) ⩾ 0.5

1, hθ(x) < 0.5

Now say that we add a single example ■ to the dataset. With this extra example, which is clearly
classified as positive and doesn’t change the structure of the dataset very much, the new straight
line fit hθ′ is vastly different and thresholding at 0.5 gives a very different decision boundary. This
suggests that the linear regression model doesn’t generalise well to even similar training sets of
this kind. Model variance refers to the amount by which the hypothesis hθ would change if
we estimated it using a different training data set. Thus, linear regression has high variance for
this type of binary classification task and it’s probably best to find another method that’s not so
sensitive to perturbing the input T in order to classify datasets of this nature.

4.3.1 THE MODEL

Without complete data on the population, there’s often no perfect rule for classification. Instead,
we resort to a stochastic approach that aims to model the conditional distribution of the response
given the predictors. We do this, as described in Section 1.2:

• Assume that the data T has been generated by a true probability distribution PX×Y that
lives in a family {Pθ}θ∈Θ of distributions parameterised by some θ ∈ Θ.

• Search through this parameter space Θ by iterating over the training data in order to find
an optimal parameter θ∗ that makes Pθ∗ a good approximation for PX×Y .

Probabilistic Assumptions

As always, we assume that the training examples are realisations of a collection of random vectors

(X(i), Y (i))
i.i.d.∼ PX×Y .

Since Y only assumes values in {0, 1}, it seems appropriate to model the response by a
conditional Bernoulli distribution given X. Since we always assume X to be a nice enough
(Borel) space, there exists a system7 of regular conditional probabilities {Px(·) ..= κX(·,x)}x∈X on

7This is somewhat of an abuse of notation because we refer to a system of regular conditional probabilities on
F = σ(X, Y) = σ(X)∨σ(Y) generated by X ∈ MeasF, EX (Ω ;X) both by the transition kernel κY

X : σ(X, Y)×X → R
and and the collection {Px}x∈X where Px(·) is the name we give every κY

X(·,x).

Classification 48

F = σ(X, Y) = σ(X) ∨ σ(Y) given8 the sub-σ-algebra G = σ(X). The values of each conditional
probability measure κX(·,x) is completely determined9 by its values on {Y = 0} and {Y = 1},
and these values must sum to unity

κX({Y = 0},x) + κX({Y = 1},x).

The goal is to model the conditional expectation of the response with a suitable hypothesis h
so we can make predictions beyond the training data. In the case of our conditionally distributed
Bernoulli random variable Y given X, our conditional expectation is the function

x 7−→
∫
Ω
Y (ω′) dκX(·,x)(ω′) =.. E[Y |X = x].

Since Y −1({0}) ⊔ Y −1({1}) = Ω, our expression for E[Y |X = x] becomes

E[Y |X = x] =

∫
Y −1({0})

Y (ω′) dκX(·,x)(ω′) +

∫
Y −1({1})

Y (ω′) dκX(·,x)(ω′)

=

∫
Y −1({1})

dκX(·,x)(ω′)

= κX(Y −1({1}),x)

which is the very formal way of writing the familiar expression

“E[Y = 1 |X = x] = PY |X=x(Y = 1 |X = x).”

We first incorporate the predictors into the model as a linear combination θ⊤X like in linear
regression. As before, θ⊤X can take any real value. Since Y assumes values in {0, 1}, and we’re
assuming that the conditional response is Bernoulli, we need to restrict the output of our hypothesis
[0, 1] in some meaningful way so as to interpret it as a probability. One such commonly used function
is called the sigmoid/logistic function g : R→ [0, 1] defined by z 7→ (1+ e−z)−1. Thus, a candidate
hypothesis to model the conditional expectation is hθ : X → [0, 1] defined by

hθ(x) = g(θ⊤x) =
1

1 + e−θ⊤x
.

There are plenty of other functions g that could’ve been chosen to massage our prediction within
[0, 1]. The logistic function was chosen in particular because it arises as a natural example of a
broader class of algorithms derived from a broader set of probabilistic principles.10

All things above considered, the conditional distribution is completely specified by the condition

1 = κX({Y = 0},x) + κX({Y = 1},x)︸ ︷︷ ︸
=..hθ(x)

which can be re-written for y ∈ {0, 1} as

κX({Y = y},x) = (hθ(x))
y(1− hθ(x)

1−y.

As usual, we don’t have access to the actual conditional distribution of Y given X but we do
have a training set T to analyse with the goal of learning “good” parameters θ so that our model
hθ best fits the data.

In exactly the same spirit as Section 3.7.2, we are interested in searching for parameters θ
that maximise the conditional likelihood given by

Lcond.(θ) =

n∏
i=1

(hθ(x
(i)))y

(i)
(1− hθ(x

(i)))1−y(i)

8Also said to be ‘generated by X.’
9By a standard extension argument, first determining the values of every such measure on the generators of

σ(X, Y).
10These are called generalised linear models.

Classification 49

The conditional log-likelihood is simpler to maximise:

ℓ(θ) =

n∑
i=1

(
y(i) log(hθ(x

(i))) + (1− y(i)) log(1− hθ(x
(i)))

)
.

An example of an algorithm to find an optimal value θ = θ∗ which maximises ℓ(θ) is batch
gradient ascent. The update rule for j = 0, . . . , p simultaneously is:

θj ..= θj + α
∂

∂θj
ℓ(θ).

We use gradient ascent instead of descent because the log function is strictly concave. We could,
equivalently, have used gradient descent on −ℓ(θ).

Figure 4.5: A visualisation of gradient ascent for ℓ-concave (left) and gradient descent for ℓ-convex
(right).

Plugging the definition of ℓ(θ) into the update rule requires some algebra. The derivative of
the logistic function is:

g′(z) = (g(z))(1− g(z)) (dσ)

For a single example (x(i), y(i)), the partial derivative of hθ(x(i)) w.r.t. θj is:

∂

∂θj
hθ(x

(i)) =
∂

∂θj
g(θ⊤x(i))

= g′(θ⊤x(i))
∂

∂θj

(
θ⊤x(i)

)
= g′(θ⊤x(i))x

(i)
j

(dσ)
= g(θ⊤x(i))

(
1− g(θ⊤x(i))

)
x
(i)
j

= hθ(x
(i))
(
1− hθ(x

(i))
)
x
(i)
j

Thus, the expression for the partial derivative of the log-likelihood is:

∂

∂θj
ℓ(θ) =

∂

∂θj

n∑
i=1

(
y(i) log(hθ(x

(i))) + (1− y(i)) log(1− hθ(x
(i)))

)
=

n∑
i=1

(
y(i) − hθ(x

(i))

hθ(x(i))
(
1− hθ(x(i))

)) ∂

∂θj
hθ(x

(i))

=
n∑

i=1

(y(i) − hθ(x
(i)))x

(i)
j

and the update rule is given by the following formula

θj ..= θj + α

n∑
i=1

(
y(i) − hθ(x

(i))
)
x
(i)
j for j = 0, . . . , p simultaneously.

Classification 50

This update rule looks identical (in form) to that of linear regression but the hypothesis function
hθ is of course different (g(θ⊤x) instead of Φ(x(i))θ = θ⊤x for linear regression). This is no
coincidence and will be re-visited later when GLMs are covered.

Logistic regression is really a method that, given an example x, outputs a probability hθ(x). It’s
up to the user to choose some kind of a threshold (e.g. 0.5) for these probabilities in order to define
a classifier.

�

At the end of the perceptron algorithm, we can think of θ as some linear combination of
the misclassified examples during the training phase. With logistic regression, θ is some linear
combination of all examples with the weights being how correct or wrong our hypothesis was
during training.

There are other methods we can use to search for a “good” θ:

4.4 Newton’s Method

Gradient descent maximises a function using knowledge of its derivative.
An alternative method that can be used for maximising a function is known as Newton’s

method. Newton’s method is a root-finding algorithm that constructs a sequence of real numbers
that converge towards a root by leveraging second order Taylor approximations about the iterates.
When applied to the derivative f ′ of a function f , Newton’s method finds solutions to the equation
f ′ = 0 i.e. the critical points (maxima, minima or saddle/inflexion). In this case, Newton’s method
on f ′ is a stronger version of gradient descent as it requires knowledge of f ’s second derivative.

THE METHOD

Let f : R → R and suppose that we wish to find a value θ∗ of θ so that f(θ∗) = 0. The goal is to
pick an initial guess θ0 and construct a sequence of iterates {θk} that converge towards a minimiser
of f . The next iterate θk+1 is found by minimising the second-order Taylor approximation about
the prior iterate θk:

f(θk + ε) ≈ f(θk) + f ′(θk)ε+
f ′′(θk)

2
ε2

by finding the critical point of the quadratic in ε

0 =
∂

∂ε

(
f(θk) + f ′(θk)ε+

f ′′(θk)

2
ε2
)

=⇒ ε =
−f ′(θk)

f ′′(θk)

and setting θk+1 = θk + ε. Thus, the update rule is

θk+1
..= θk −

f ′(θk)

f ′′(θk)
.

If θ is vector-valued, Newton’s method can be generalised and the update rule becomes θ ..=
θ−H−1∇θf(θ), where H is a (p+1)× (p+1) matrix of all mixed second-order partials called the
Hessian and ∇θf(θ) is the usual vector of partial derivatives.

Newton’s method enjoys a property called quadratic convergence and is typically faster than
batch-gradient descent and requires fewer iterations to get a good approximation for a minimiser.
However, each iteration is potentially more expensive because it requires finding and inverting a
Hessian matrix (of mixed second order partials).

It definitely has its uses despite not being very popular for requiring more information (in the
form of second order derivatives).

Classification 51

4.4.1 NEWTON-RAPHSON

The Newton-Raphson method is another method for root-finding and uses tangent lines to approx-
imate a root. Initialise a guess θ(0) and update the value of θ(i) by choosing the point where the
tangent line has a root

θ(i+1) ..= θ(i) − f ′(θ(i))

f ′′(θ(i))

f(θ(0))

θ∗ θ(0)θ(1)θ(2)θ(3) θ

Figure 4.6: A visualisation of using the Newton-Raphson method to approximate the root θ∗.

Classification 52

Everything above this point has been fixed.

Any chapter below this point (minus the appendices) might need to be fixed.

53

CHAPTER 5

Generalised Linear Models (GLMs)

Thus far, we’ve seen two supervised learning models that arise from natural probabilistic assump-
tions about data:

Ordinary linear regression {Y |X = x;θ} ∼ N (θ⊤x, σ2)

Logistic regression {Y |X = x;θ} ∼ Bernoulli

(
1

1 + e−θ⊤x

)

These two have a linear (in θ) component θ⊤x in common. This is not a coincidence and turns
out to be part of a more general unifying theory - the theory of GLMs. GLMs are just a general
way to model data.

The ordinary linear regression model assumes that the conditional distribution of the continuous
random variable Y |X = x;θ is Gaussian

Y |X = x;θ ∼ N (E(Y |X = x;θ), σ2)

and that the conditional mean (cond. expectation) µ(x) ..= E(Y |X = x;θ) of this distribution is
modelled by a hypothesis hθ that incorporates the predictors in a linear fashion i.e.

E(Y |X = x;θ) is modelled by hθ(x) = θ⊤x.

Generalised Linear Model

1. The first step to constructing a GLM incorporates the predictors X as a linear combination
denoted η ..= θ⊤X. This is the L part of a GLM.

2. The generalisation part comes with the choice of conditional distribution for the output:

Y |X = x;θ ∼ ExponentialFamily(η).

Given such a choice of distribution, if we were to model the conditional expectation (the value
you expect to sample from such a distribution) with η = θ⊤X as before, we may run into issues:

e.g. Take it as fact (for now) that the Bernoulli distribution is an example of an Exponential-
Family distribution. Suppose that Y |X = x;θ ∼ Bernoulli(φ). Then E(Y |X = x;θ) ∈ [0, 1]. How-
ever, modelling E(Y |X = x;θ) = θ⊤x would suggest that varying x means that E(Y |X = x;θ)
can take values all over the real line R. This is clearly false.

3. To rectify this, we define what’s known as a link function g to make our model for the
conditional expectation compatible with the chosen distribution for our output Y |X = x;θ
as follows:

E(Y |X = x;θ) = g−1(θ⊤x)

=.. g−1(η).

There are three different parameterisations of a GLM:

Generalised Linear Models (GLMs) 54

model
parameter

natural
parameter

canonical
parameters

θ η
φ - Bernoulli

µ, σ2 - Gaussian
λ - Poissonθ⊤x

g

g−1

θ parameterises the exponential family through η. Whenever we learn a GLM, we only learn θ.

5.1 The Exponential Family

The exponential family is a class of families of distributions. In a sense, it’s one of the simplest ways
to relate X and θ. Think of X and θ as one-dimensional to start with (X, θ). The exponential
family restricts the way they can interact with each other and its density has a form symmetric in
θ and x:

pX(x; θ) = exp(θx)f(x)g(θ).

This naturally generalises to vectors X and θ. If they are of different dimensions, we can instead
consider the inner product of a function η of θ (that embeds it into a space of dimension matching
with X) with a function T of X e.g. ⟨T (X), η(θ)⟩. Then our density looks like

pX(x;θ) = exp(⟨η(θ), T (x)⟩)f(x)g(θ).

A family of distributions F = {Pη} is said to be an exponential family parameterised by η i.e.
F ∈ ExponentialFamily(η) if its probability density function can be written in the form

p(y; η) = b(y) exp(η⊤T (y)− a(η)).

• y is the output

• η is called the natural parameter

• T (y) is called the sufficient statistic

(It will often be the case that the distributions have T (y) = y)

• b(y) is called the base measure

It allows us to consider both discrete and continuous variables within the
framework of exponential families. It can be thought of as a “change of
measure."

• a(η) is called the log-partition function

The quantity exp(−a(η)) plays the role of a normalisation constant, ensuring that the
density p(y; η) sums/integrates to 1.

For a fixed choice of (T, a, b), this defines a family of distributions indexed by η i.e. {p(y; η)}η.

5.1.1 EXAMPLES OF EXPONENTIAL FAMILY DISTRIBUTIONS

• A Bernoulli distributed discrete random variable X ∼ Bernoulli(φ) is in the exponential family.
Its mass function can be written as:

Generalised Linear Models (GLMs) 55

pX(y;φ) = φy(1− φ)1−y

= exp(log(φy(1− φ)1−y))

= exp(y log(φy) + (1− y) log(1− φ))

= exp

(
y log

(
φy

1− φ

)
+ log(1− φ)

)
b(y) = 1, T (y) = y. Also η⊤ = η = log

(
φy

1−φ

)
so we can rearrange for1 φ = eη

1+eη
= 1

1+e−η which
implies that a(η) = − log(1− φ) = log(1 + eη).
Thus, the class of Bernoulli distributions {p(y;φ)}φ parameterised by φ is in the exponential
family.

• Let X be a continuous, normally distributed random variable with variance σ2 = 1 and mean
µ. We claim this distribution is in the exponential family. Its density function is:

f(y;µ) =
1√
2π

exp

(
− (y − µ)2

2

)
=

1√
2π

e−y2/2 exp

(
µy − 1

2
µ2

)
So b(y) = e−y2/2, T (y) = y, η = µ and a(η) = 1

2
µ2 = 1

2
η2 and the claim follows.

The exponential family has some nice properties.

• Maximum likelihood estimation with respect to η is concave i.e. log(P(Y ; η)) is concave in η.
Since MLE is concave, NLL is convex in η.

• E(Y ; η) = ∂
∂ηa(η)

• Var(Y ; η) = ∂2

∂η2
a(η)

There are various other members of the Exponential Family that can be used to model random
variables that take on different types of values:

Data Type Exponential Family Distribution Model Name

R Gaussian/Laplace Regression

{0, 1} Bernoulli Classification

Z+ Poisson Count/Poisson Regression

R+ e.g. time Gamma/Exponential Survival Analysis

{1, . . . ,K} Multinomial Softmax Regression

Bernoulli Distributions Beta ?

Categorical Distributions Dirichlet ?
Back to supervised learning.
The general framework is the same as always. We’ve been given some training set T =

{(x(i), y(i)) : i = 1, . . . , n} and we wish to learn a function that predicts a label given a vector
of features.

• First make a choice of distribution for the response according to its data type.

• Express this distribution as a member of the ExponentialFamily. This involves finding a(η),
b(y) and T (y). Most importantly, we find an appropriate link function g so we can model the
mean parameter of the distribution (µ, φ etc.) i.e. the conditional expectation with g(η).

At this point, we’ve supposed that for each i = 1, . . . , n:

Y |X = x(i);θ ∼ ExponentialFamily(θ⊤x(i)).

1It’s no coincidence that this is the sigmoid function. It relates to the logistic regression algorithm.

Generalised Linear Models (GLMs) 56

• Our hypothesis is hθ(x) = g(θ⊤x).

• We intend to learn suitable parameters θ by doing MLE.

What do we actually gain from developing a unifying framework like GLMs apart from
some elegant mathematics?

The most useful benefit of a GLM is that when it comes to maximum likelihood estimation w.r.t
θ on the log likelihood, the learning update rule for gradient descent is always the same regardless
of which exponential family distribution is chosen:

θj = θj + α
(
y(i) − hθ(x

(i))
)
x
(i)
j for j = 1, . . . , n simultaneously.

[Generalised Linear Models] share a
number of properties, such as linearity,
that can be exploited to good effect and
there is a common method for computing
parameter estimates.

McCullagh and Nelder - GLMs (1989)

Might help to have a visualisation of GLM assumptions.

5.2 Multi-class Classification (Softmax Regression)

Let X = Rp and Y = {0, 1}k.
The following is a non-GLM approach which doesn’t feature in the lecture notes. Suppose we

have data T that looks like it fits into k distinct classes. Let the label of each example x(i) ∈ Rp

be a tuple y(i) ∈ Y = {0, 1}k. For example, if y(i) = (0, . . . , 0, 1), then that means the object
(x(i), y(i)) belongs to class k.

We can visualise the input space X ⊆ Rp as two dimensional for ease of interpretation:

θ[1]

y = 1

θ[2]

y = 2

θ[k]
y = k

⋆ x

X1

Xp

The goal of multi-class classification is to learn a model that can predict the class which best
fits a new unseen example ⋆ whose feature vector is x. The main idea is to take the idea of logistic
regression where we outputted a single value for the positive class P(Y = 1 |X = x;θ) and extend

Generalised Linear Models (GLMs) 57

it to output a vector of probabilities for each class:

hθ(x) =


P(Y = 1 |X = x;θ)
P(Y = 2 |X = x;θ)

...
P(Y = k |X = x;θ)

 .

In softmax regression, we associate to each class C a vector of parameters θ[C]. This can be seen
in the figure above. The intuition behind this is that each θ[C] should point in the direction of the
members of class C so that only those members will give a dot product against θ[C] that is much
larger than examples belonging to other classes. This is a criterion for separating classes from one
another. Each θ⊤

[C]x can be thought of as a score for how well x matches the class C. We can write
these class parameters in a matrix called the parameter matrix:

θ =


θ⊤
[1]

θ⊤
[2]
...

θ⊤
[k]

 .

Given an example x(i), we can plot θ⊤
[C]x

(i) against the classes C. This is called the logit space.

. . .

1 2 k C (classes)

θ⊤
[C]x

Figure 5.1: A visualisation of the logit space for a test feature vector x. The values of θ⊤
[C]x can

be negative and greater than 1 which we can’t interpret as probabilities.

Probabilities need to be positive and sum up to 1. To define the posterior probability of a class
C given an input feature vector, we:

• exponentiate to preserve the “order” of the θ⊤x and make everything positive

exp
(
θ⊤
[C]x

)
• and then normalise to get everything in [0, 1] i.e. ∀C = 1, . . . , k:

P(Y = C |X = x;θ) =
exp

(
θ⊤
[C]x

)
∑k

j=1 exp
(
θ⊤
[j]x
) .

These equations define the softmax/multi-class classification model.

Generalised Linear Models (GLMs) 58

1

. . .

1 2 k
C (classes)

exp
(
θ⊤
[C]x

)
∑k

j=1 exp
(
θ⊤
[j]x
)

A new example x is classified by picking the C for which P(Y = C |X = x;θ) is largest.

5.2.1 GLM APPROACH

Unwieldy notation that I’m yet to address.

59

CHAPTER 6

Generative Learning Algorithms

Statistical classification models (used for regression/classification) fall under three distinct cate-
gories, computing classifiers by different approaches:

1. A discriminative1 algorithm learns the conditional distribution of Y |X = x (for any given
datapoint X = x).

2. A generative algorithm learns the joint probability distribution of (X, Y) (over the entire
data) and then uses Bayes’ theorem to (calculate the “posterior” and thus) define a classifier.

3. Classifiers computed without a probability model are also referred to (loosely) as “discrimi-
native.”

All of the classification algorithms discussed thus far have been discriminative. For discrimi-
native algorithms, we maximise the conditional likelihood. For generative algorithms, we instead
maximise the joint likelihood to fine-tune the relevant parameters.

Having modelled the joint distribution, at classification time we can predict the posterior dis-
tribution P(Y = y |X = x) using P(X |Y = y) and P(Y = y) (the class prior) in Bayes’ rule:

P(Y = y |X = x) =
P(X = x |Y = y)P(Y = y)

P(X = x)
.

In the case that Y is binary, we can write the posterior as:

P(X = x |Y = y)P(Y = y)

P(X = x |Y = 0)P(Y = 0) + P(X = x |Y = 1)P(Y = 1)
. (6.1)

6.1 GDA for Binary Classification

Let X = Rp and Y = {0, 1}.
The setting is binary classification. A discriminative approach is to learn a classifier that serves

as a linear separating boundary between the positive and negative classes as seen with logistic
regression. An alternative approach is generative and involves building a model for each class i.e.
learning the typical features of each class separately. At classification time for an unseen example
x, the class that resembles x most closely is the one assigned to it.

Gaussian discriminant analysis (GDA) is one such example of a generative learning algorithm.
The GDA model for binary classification asserts that:

• Y ∼ Bernoulli(φ),

• X|Y = 0 ∼ N (µ0,Σ),

• X|Y = 1 ∼ N (µ1,Σ).

The parameters of this model are Σ ∈ Rp×p, φ ∈ R and µ0 ∈ Rp ∋ µ1. We can train these
parameters using maximum likelihood estimation as we’ve done several times before. There is one
key difference. Since we’re approximating the joint distribution of the training data, we use the
joint distribution instead of the conditional one we used for discriminative models. As before, we

1Also known as a conditional model.

Generative Learning Algorithms 60

suppose the examples in T were sampled independently and identically. The joint likelihood L of
T can then be factored into

L(φ, µ0, µ1,Σ) =
n∏

i=1

PX,Y

(
x(i), y(i);φ, µ0, µ1,Σ

)
=

n∏
i=1

PX|Y

(
x(i)

∣∣∣ y(i);µ0, µ1,Σ
)
PY

(
y(i);φ

)
By finding stationary points of the log-likelihood, we arrive at the following maximum likelihood

estimates. The working out for all of these can be found in (C.1).

• φ̂ is an estimate for PY

(
y(i) = 1

)
and we can simply interpret this estimate as the fraction of

positive examples:

φ̂ =

n∑
i=1

y(i)

n
=

n∑
i=1

1
(
y(i) = 1

)
n

• The estimates of the means of both classes µ̂0 and µ̂1 can be interpreted as the averages of
the example feature vectors of their respective classes. The formulae are:

µ̂0 =

n∑
i=1

1
(
y(i) = 0

)
x(i)

n∑
i=1

1
(
y(i) = 0

) µ̂1 =

n∑
i=1

1
(
y(i) = 1

)
x(i)

n∑
i=1

1
(
y(i) = 1

) .

• The covariance matrix parameter is shared between both distributions. Its estimate is:

Σ̂ =
1

n

n∑
i=1

(x(i) − µy(i))(x
(i) − µy(i))

⊤

6.1.1 LINK BETWEEN GDA AND LOGISTIC REGRESSION

Having found these parameters through MLE, to make a prediction for the most likely label ŷ of
a test input feature vector x, one would need to compute

ŷ = argmax
y

PY |X=x(y |x) = argmax
y

PX|Y=y(x | y)PY (y)

PX(x)

= argmax
y

PX|Y=y(x | y)PY (y).

The denominator need not be calculated as it’s a constant in the argmax over y. The posterior
distribution P(Y = 1 |X = x) can be computed explicitly using (6.1):

P(Y = 1 |X = x) =
P(X = x |Y = 1)P(Y = 1)

P(X = x |Y = 0)P(Y = 0) + P(X = x |Y = 1)P(Y = 1)

=
1

1 + 1−φ
φ exp

(−1
2 (x− µ0)⊤Σ−1(x− µ0) +

1
2(x− µ1)⊤Σ−1(x− µ1)

)
=

1

1 + exp
(
−
[
(Σ(µ1 − µ0))

⊤Σ−1x+ (µ0 + µ1)
⊤Σ−1(µ0 − µ1)− log((1− φ)/φ)

])
=

1

1 + exp(−(θ⊤x+ θ0))

where θ = Σ(µ0 − µ1)
⊤ and θ0 = (µ0 + µ1)

⊤Σ−1(µ0 − µ1)− log((1− φ)/φ).

Generative Learning Algorithms 61

P(Y = 1 |X = x) = 0.5

X1

Xp

Figure 6.1: The contour plots of both conditional Gaussian distributions (negative in green, positive
in red) and a dashed line to represent the decision boundary representing input features that are
equally likely to be classified as positive and negative i.e. the set of x s.t. P(Y = 1 |X = x) = 0.5.

Thus, a GDA model uniquely determines a classifier that has a linear2 decision boundary that
arises from a logistic regression.

The converse, that Y |X = x following a Bernoulli distribution implies X|Y = y is multivariate
Gaussian, is not true. logistic regression model is necessarily the posterior of a GDA model (or any
model at that), is not true.

Thus, GDA makes more restrictive assumptions than logistic regression. If the training data
exhibits these assumptions, GDA will be more sample-efficient (require less samples to make accu-
rate predictions). Logistic regression on the other hand is pretty robust (i.e. tends to work pretty
well even if assumptions aren’t made) and so should generally be your first choice of algorithm in
practice.

6.1.2 EXTRA NOTE ON GDA

In GDA, are there any other/extra assumptions on the prior that are needed so that the posterior
takes the form of a logistic function?

In general, if X|Y = y ∼ ExponentialFamily then the posterior takes the form of:

• the logistic function if Y is binary-valued i.e. Y = {0, 1}, or

• the softmax function if Y is categorical e.g. Y = {1, . . . , k}.

2Consider the model for which X|Y = 0 and X|Y = 1 don’t share a covariance matrix. Instead, they have
different covariance matrices Σ0 and Σ1, respectively. The dashed line in the contour figure above representing the
linear decision boundary will no longer be linear - it will curve around the class that is more concentrated. The
posterior distribution in that case can be thought of as being modelled by logistic regression with
polynomial features. ←− Seems reasonable and will verify later.

62

CHAPTER 7

Support Vector Machines

All the methods so far have generated linear classifiers. Suppose that the training data one has
looks like a non-linear decision boundary would be appropriate:

X1

X2

Figure 7.1: A visualisation of two-dimensional feature vectors (x
(i)
1 , x

(i)
2) ∈ X1 × X2 that fall into

two classes and don’t admit a linear decision boundary.

It turns out that one can use the methods we’ve developed so far like logistic regression and
GDA to achieve a non-linear decision boundary. This is done by transforming, via a function ϕ,
the feature vectors and embedding them into a higher dimensional space. An example of such a ϕ
could take in a feature vector X = [X1, X2]

⊤ ∈ R2 and output

ϕ : X 7−→ ϕ(X) ..=


X1

X2

X2
1

X2
2

X1X2

 ∈ R5.

Performing logistic regression on these transformed features generates a non-linear decision bound-
ary. It’s quite a complicated procedure to manually pick a certain ϕ for the purposes of most
problems, especially highly non-linear decision boundaries. SVMs (support vector machines) ad-
dress this issue.

A support vector machine is a supervised learning model that is used for classification. Given
a set of training data whose examples are labelled as belonging to one of two classes, an SVM
training algorithm builds a non-probabilistic linear classifier. There are many decision boundaries
that could work as a linear classifier. Which one should we choose? SVMs use the particular
criterion that an optimal decision boundary is one that puts the widest “separation” between the
two classes of training examples.

SVMs are also used to perform non-linear classification by using a function ϕ to map feature
vectors in X into a higher-dimensional space ϕ(X) where the data is more likely (but certainly
not guaranteed) to be linearly separable. Higher dimensional spaces carry the expense of greater
computational cost when it comes to manipulating vectors ϕ(x) ∈ Rd (e.g. ϕ(x)⊤ϕ(z)) compared
to vectors x ∈ Rp with p < d. A key observation is that during the optimisation process for finding
a “suitable” separating boundary, the feature vectors present themselves in a very specific form,
namely an inner product ⟨ϕ(x(i)), ϕ(x(j))⟩. This form can be represented by a simpler and more
computationally efficient map K known as a kernel. In ML, the kernel trick has its historical roots
in isolated digit recognition through work by Vladimir Vapnik.

Support Vector Machines 63

Some pros and cons of SVMs are:

+ They are useful for potentially highly non-linear decision boundaries.

+ The algorithmic implementation of the SVM is of turn-key type i.e. there aren’t many
parameters to fiddle with (like the learning rate α in gradient descent).

- They aren’t as useful as neural networks nowadays.

The build-up of the theory will be as follows:

• Addressing the linearly separable case with a primitive version of an SVM known as an
optimal margin classifier.

• The method of Lagrange multipliers and duality to discuss optimisation methods to find an
optimal margin classifier.

• The idea of kernels.

• The inseparable case.

The media talks a lot about machine
learning as just neural networks. The set
of algorithms in practice is much wider
than neural networks and deep learning.

Andrew Ng

The setting for all of this theory will be binary1 classification. For mathematical convenience,
a change of notation is in order. Let X = Rp and Y = {−1,+1} so that −1 represents a negative
example and +1 a positive one. The parameters θ ∈ Rp+1 are now separated into w ∈ Rp and
an intercept term b ∈ R. The linear classifier will be denoted as hw,b and defined for x ∈ X by
hw,b(x) = g(w⊤x+ b) where

g(z) =

{
+1, if z ⩾ 0

−1, if z < 0.

7.1 Separable Case - Optimal Margin Classifier

Suppose that a training set T is linearly separable i.e. there exists a hyperplane of the form w⊤x+
b = 0 for which all positive examples (labelled y(i) = +1) satisfy w⊤x(i) + b > 0 and all negative
examples satisfy w⊤x(i) + b < 0. These two conditions can be summarised as y(i)(w⊤x(i) + b) > 0
for all training examples.

Support vector machines attempt to minimise the generalisation error through the concept of a
margin - the smallest distance between the decision boundary and any of the examples. In SVMs,
the decision boundary chosen is the one that maximises margin.

The perpendicular distance of a point x0 from a hyperplane w⊤x + b = 0 is |w⊤x0 + b|/∥w∥.
We’re only interested in solutions for which the entire training set has been classified correctly.
Thus, the distance of each training example to the decision boundary is

y(i)(w⊤x(i) + b)

∥w∥
=.. γ(i)

1In the setting of a multi-class classification problem, one can combine binary SVMs. For example, if N is
the number classes, one can train N one-versus-rest (say “one” positive, “rest” negative) binary classifiers. To then
classify a test point, we pick the class corresponding to the greatest positive distance from its respective boundary
to the test point.

Support Vector Machines 64

and we call γ(i) the geometric margin of (w, b) with respect to the example (x(i), y(i)).
The margin is defined to be the closest example to the hyperplane and our goal is to search for

parameters (w, b) that maximise this margin i.e. we desire

argmax
w,b

(
1

∥w∥
min
i
(y(i)(w⊤x(i) + b))

)
.

Directly solving this is tough without extra constraints.

w⊤x+ b = 0

w

X1

X2

Figure 7.2: A visualisation of the maximum-margin hyperplane separating two classes.

An obvious restriction to make is that our training examples don’t fall into the “margin” which
is the region shaded in yellow. For this reason, we impose that y(i)(w⊤x(i)+ b) ⩾ δ for some δ > 0.
Note that the geometric margin of (w, b) w.r.t an example (x(i), y(i)) is invariant under re-scaling
the parameters (w, b) 7→ (cw, bw). This is because:

γ(i) = y(i)
(

w⊤

∥w∥
x(i) +

b

∥w∥

)
7→ y(i)

(
cw⊤

|c|∥w∥
x(i) +

cb

|c|∥w∥

)
= sign(c)γ(i) = γ(i).

This gives us the freedom to rescale (w, b) 7→ (w/δ, b/δ) so that y(i)(w⊤x(i)+b) = 1 for the example
closest to the decision boundary. The re-scaling to 1 is purely because 1 is the simplest positive
real number. In this case, all the examples will satisfy

y(i)(w⊤x(i) + b) ⩾ 1 for i = 1, . . . , n.

These constraints are known as the canonical representation of the decision boundary. For examples
where equality holds, an example’s constraint is called active (and inactive for the remainder of
example constraints). By definition of there always being at least one closest point, there will
always be one active constraint.

The optimisation problem then becomes argmaxw,b(1/∥w∥) subject to the constraints. This is
equivalent to argmin

w,b
(∥w∥2/2)

y(i)(w⊤x(i) + b)− 1 ⩾ 0 for i = 1, . . . , n

Support Vector Machines 65

7.2 The Dual Representation via Lagrange Multipliers

To solve this constrained optimisation problem, we can use the method of Lagrange multipliers to
incorporate the constraints as a weighted sum (whose weights are called Lagrange multipliers) into
a function that involves the term we’d like to minimise. For each constraint ci ⩾ 0 for i = 1, . . . , n,
we multiply ci by a constant αi ⩾ 0 called a Lagrange multiplier and subtract it from the objective
function. This defines the Lagrangian:

L(w, b, α) = 1

2
∥w∥2 −

n∑
i=1

αi(y
(i)(w⊤x(i) + b)− 1)

=
n∑

i=1

αiy
(i) +

1

2
∥w∥2 −

n∑
i=1

αiy
(i)(w⊤x(i) + b)

Then we minimise this with respect to w and b.

∇wL = 0 =⇒ w =

n∑
i=1

αiy
(i)x(i)

∂L
∂b

= 0 =⇒
n∑

i=1

αiy
(i) = 0

Substituting these back into the Lagrangian gives what’s known as the Wolfe dual representation
of the optimisation problem in which we maximise

L̃(α) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
i′=1

αiαi′y
(i)y(i

′)(x(i))⊤x(i
′)

subject to αi ⩾ 0 for i = 1, . . . , n and
∑n

i=1 αiy
(i) = 0.

This is a quadratic optimisation problem in α subject to a set of inequality constraints. The
y(i)y(i

′) term compares the output labels of each observation and x(i) · x(i′) is a representation of
how similar the two vectors are. The αiαi′ term determines whether or not this pair of observations
is relevant in defining the decision boundary.

A new input feature vector u is classified according to the sign of

yu =
n∑

i=1

αiy
(i)(x(i))⊤u+ b.

Interestingly, in both the expressions for L̃(α) and the decision rule for classifying a new u, the
training examples present themselves only in the form of a scalar product (x(i))⊤x(i′) and (x(i))⊤u
respectively. This is a fundamental observation and the reason why the optimal margin classifier is
amenable to generalisation to the case where the training examples (as they are currently) aren’t
linearly separable. In this case, one idea is that perhaps embedding (via a function ϕ) into a higher
dimensional space may separate the points through some hyperplane.

ϕ

Figure 7.3: A linearly inseparable training set that becomes linearly separable (with a hyperplane,
in grey) once embedded into a higher dimensional space via ϕ.

Support Vector Machines 66

Using this embedding, all instances of (x(i))⊤x(i′) in the model can be replaced with ⟨ϕ(x(i)), ϕ(x(i′))⟩.
This form can be represented by a simpler and more computationally efficient map K known as a
kernel and this defines a support vector machine.

Through the deeper and more general theory of Lagrange multipliers, a constrained optimisation
problem of the Wolfe dual form satisfies the Karush-Kuhn-Tucker conditions. In our specific case,
there are only 3 conditions: 

αi ⩾ 0

y(i)(w⊤x(i) + b)− 1 ⩾ 0

αi(y
(i)(w⊤x(i) + b)− 1) = 0

This means that each example (x(i), y(i)) satisfies either αi = 0 or y(i)(w⊤x(i) + b) = 1.

• For the former, any example for which αi = 0 plays no role in prediction for an unseen vector
input u as the term involving αi doesn’t appear in the sum for yu.

• The remaining examples are called support vectors and lie on the maximum margin hyper-
planes.

Once a model is trained, most examples that aren’t support vectors can be discarded. This makes
SVMs quite practical.

7.3 Kernels

Kernels avoid the need for explicit computation using the embedding ϕ directly. Certain functions
K : X × X → R can be represented as an inner product in another space ϕ(X).

eg Let u, v ∈ Rn and r, γ, σ ∈ R. Some common kernels include:

1. Linear: ⟨u, v⟩

2. Polynomial: (γ⟨u, v⟩+ r)d

3. Sigmoid: tanh(γ⟨u, v⟩+ r)

4. Radial Basis Function “rbf”/Gaussian: e−∥u−v∥/σ where ∥u− v∥ =
√
⟨u− v, u− v⟩.

67

CHAPTER 8

Regularisation and Bayesian Statistics

8.1 Bias and Variance

Given a model, it’s possible to make the values of hθ(x(i)) as close as we like to the y(i) by including
a sufficiently large number of parameters. More complex models are called highly flexible. If a model
is too flexible, it’s not as interpretable as a simple model. It also doesn’t help that highly flexible
models can suffer from overfitting i.e. when the model works too hard to pick up on patterns in the
training data that may just be due to random chance rather than by properties of the underlying
phenomenon that generated the training data. Such a model doesn’t translate well to other sets
of data for the same phenomenon. Thus, an overfitted model has narrow scope in its predictive
powers.

Two keywords to describe a model are:

• Variance refers to the amount by which h would change if we estimated it using a different
training data set. Since the training data are used to fit the statistical learning method,
different training data sets will result in a different h. But ideally the estimate for f should
not vary too much between training sets. However, if a method has high variance, then small
changes in the training data can result in large changes in h.

• Bias is error introduced by modelling i.e. the error introduced by reducing a complex phe-
nomenon to a simple trend/model.

As before, we can measure the quality of fit of a model to T by looking at the statistical risk
with quadratic loss (i.e. the mean squared error MSE):

MSE =
1

n

n∑
i=1

(y(i) − h(y(i)))2.

Training MSE is a useful measure for how well the model we’ve learned fits to the given training
data. However, we’re often more interested in how our model performs on unseen data. Thus, we
also aim to minimise what is known as the test MSE.

A fundamental rule of statistical learning is that while model flexibility increases, the training
MSE decreases but the test MSE may not necessarily also decrease. A small training MSE and
large test MSE indicate overfitting.

eg Consider the problem of fitting a polynomial hθ to training data T via linear regression.
The optimisation objective was to find a value of θ that minimised the residual sum of squares:

argmin
θ

[
1

2

n∑
i=1

∥y(i) − hθ(x
(i))∥2

]

As deg(hθ) increases, the training error decreases but the trade-off is that the parameters tend to
grow very large in magnitude. The figure below shows polynomials of degrees 1, 2 and 16 fit to a
set of data generated by a quadratic polynomial with noise:

The line p1 clearly accounts for variation above and below the line but it’s a very poor fit for the
data. The quadratic model p2 looks a lot better by eye and follows the data reasonably well. The
16th degree polynomial p16 overfits to the data on the right-hand-side and clearly has high variance.
A different set of data from the same phenomenon would generate a very different hypothesis.

Regularisation and Bayesian Statistics 68

−10 −5 0 5 10

0

20

40

60

80

100

120

Independent Variable

D
ep

en
de

nt
V

ar
ia

bl
e

(x(i), y(i))

p1(x)

p2(x)

p16(x)

Figure 8.1: Data generated by Z∩ [−10, 10] ∋ x 7−→ (x2+ω) where ω ∼ N(0, 8) along with best-fit
plots of orders 1, 2 and 16.

8.2 Regularisation

One of the most effective ways to prevent overfitting is regularisation. The idea of regularisation
is to incorporate a term involving the parameters to the cost function that incentivises the chosen
searching algorithm (for θ) to make the values of θj smaller. For linear regression, regularisation
changes1 the optimisation objective to

argmin
θ

[
1

2

n∑
i=1

∥y(i) − hθ(x
(i))∥2 + λ∥θ∥2

]
.

The parameter λ controls how much focus there is on minimising the parameters θj relative to
the sum of squares. λ = 0 means there is no regularisation. In the case of polynomial fitting,
λ→∞ =⇒ |θj | → 0 =⇒ hθ(x) = 0. It’s important to pick a value for λ that isn’t too large or
small.

Having just covered support vector machines that deal with potentially infinitely dimensional
spaces, why don’t they overfit? It turns out that the optimisation problem of minimising
∥w∥2/2 has a similar effect to regularisation (and limits the space of potential decision
boundaries in a special way).

8.2.1 BAYESIAN STATISTICS (MAXIMUM A-POSTERIORI ESTIMATION)

In an analogous way to how the OLS cost function arose from performing MLE on a probabilistic
model Y |X = x ∼ N (θ⊤x, σ2) and finding

θ̂ = argmax
θ

n∏
i=1

P
(
Y = y(i)

∣∣∣X = x(i);θ
)
,

regularisation arises from a Bayesian statistics POV. We viewed θ as an unknown but constant-
valued parameter. This view of θ is taken in a frequentist perspective of statistics. θ is not random

1In the case where one wants to instead maximise an objective function instead, one subtracts the regularisation
term from the cost function. Logistic regression is one such example:

argmax
θ

[(
n∑

i=1

log(P
(
Y = y(i)

∣∣∣X = x(i);θ
))
− λ∥θ∥2

]

Regularisation and Bayesian Statistics 69

and it’s the job of a frequentist to come up with some statistical procedure (like MLE) to try and
estimate θ.

A Bayesian persepctive views θ as a random variable whose value is unknown but before having
seen any data, we have some prior beliefs i.e. we express our prior beliefs by specifying a prior
distribution P(θ) on θ. The goal is to find a value of θ that is most likely after having observed
the data i.e. to compute the posterior distribution of the parameters:

P(θ | T) = P(T |θ)P(θ)
P(T)

∝ likelihood× prior

The denominator of the fraction is a normalisation constant to ensure the posterior is a probability
distribution.

To make a prediction for a new test example u, we can compute the posterior distribution of
the target using the posterior distribution on θ. Taking the equation above and integrating with
respect to θ gives∫

θ
P(θ | T)dθ︸ ︷︷ ︸

=1

=
1

P(T)

∫
θ
P(T |θ)P(θ)dθ =⇒ P(T) =

∫
θ
P(T |θ)P(θ) dθ

This means that for the example u:

P(Y |X = u, T) =
∫
θ
P(Y |X = u,θ)P(θ) dθ.

It’s tough to compute such high-dimensional integrals for the posterior of θ given T , especially in
closed form. Instead, we approximate the posterior distribution for θ with a single point estimate
called the maximum a posteriori (or MAP) estimate for θ:

θMAP = argmax
θ

[
P(T |θ)P(θ)

P(T)

]
= argmax

θ
[P(T |θ)P(θ)]

= argmax
θ

[
n∏

i=1

P
(
Y = y(i)

∣∣∣X = x(i),θ
)
P(θ)

]

This is the same formula as with maximum likelihood estimation but with an extra factor of the
prior. Note that θ in this case are being conditioned on since it’s a random variable.

Here’s where it links to regularisation. Instead of optimising the posterior directly, we often
choose to optimise the negative logarithm of the posterior. This means that

θMAP = argmin
θ
− [log(P(T |θ)) + log(P(θ))]

Assuming that the prior is normally distributed around 0 i.e. θ ∼ N (0, τ2I), you get

− log(P(θ)) = − log

(
1

(2π)p/2(det(τ2I))1/2
exp

(
−1

2
θ⊤(τ2I)−1θ

))
= constant +

1

2τ2
∥θ∥22.

We can drop the constant term in the minimisation problem so − log(P(θ)) is proportional to ∥θ∥22.
That’s the regularisation term defined earlier from the frequentist point of view. Thus, MAP can
be thought of as a regularisation of ML estimation. Some important points are:

• The parameters θMAP fitted will then have smaller norm than those θ̂ selected by ML esti-
mation and so Bayesian MAP is less susceptible to overfitting.

Regularisation and Bayesian Statistics 70

• If the training data set is very large (n large) then the regularisation term becomes negligible
when compared to the likelihood term.

• Choosing a stronger prior limits the flexibility of the model in favour of preferring plausible
solutions.

71

CHAPTER 9

Extra Notes

Underdetermined models have too few examples to estimate the parameters. (Similar to mathe-
matical systems of equations where there are less equations than unknowns.)

Lasso = L1 regularisation, Ridge = L2 regularisation
Probability quantifies anticipation (of outcome) and likelihood quantifies trust (in model)

9.1 Statistics Server

The Boston housing dataset is a classic “getting started with regression” dataset. It’s a good one
and saves you from having to download and clean a lot of data yourself.

Table 2 fallacy (not taught in regression classes)
For a DS master’s course, the bare minimum to be expected in terms of mathematical statistics

background is MLE, sufficient/complete statistics and hypothesis testing.

72

CHAPTER A

Differentiation

A.1 Fréchet Derivative

The most general (and incredibly useful!!) definition of derivative that I’m aware of is that of the
Fréchet derivative of a function between normed vector spaces.

Definition A.1.1 Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces, U ⊆ X be open, x ∈ U , and
f : U → Y. If there is a bounded linear map Ax : X→ Y that satisfies

lim
v→0 in X

∥f(x+ v)− f(x)−Axv∥Y
∥v∥X

= 0 (A.1)

then f is said to be Fréchet differentiable at x. The linear map Ax is then called the Fréchet
derivative of f at x and is denoted df(x).

Corollary A.1.2 Let X = Rn with the standard Euclidean basis {e1, . . . , en}, Y = Rm with
similar remarks. Let U ⊆ Rn be open, and let f : U → Rm be Fréchet differentiable at x ∈ U .
Then the Jacobian matrix Jf(x) of partial derivatives of f at x exists and is the matrix of the
Fréchet derivative df(x) with respect to the standard Euclidean bases of Rn and Rm i.e

df(x)v =


∂f1
∂x1

(x) ∂f1
∂x2

(x) . . . ∂f1
∂xn

(x)
...

...
. . .

...
∂fm
∂x1

(x) ∂fm
∂x2

(x) . . . ∂fm
∂xn

(x)


v1...
vn


for all v =

n∑
i=1

viei ∈ Rn.

For the following, let (X, ∥ · ∥X) = (Rn, ∥ · ∥), and (Y, ∥ · ∥X) = (R, | · |).

Definition A.1.3 The gradient of f : Rn → R at x ∈ Rn is defined as the vector

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ∈ Rn

of partial derivatives of f .

Corollary A.1.4 The coordinate representation Jf(x) of the Fréchet derivative df(x) of f : Rn →
R, and the gradient ∇f(x) of f at x are related by the transpose operation

Jf(x) = (∇f(x))⊤.

Proof. The coordinate representation of the Fréchet derivative of f : Rn → R with respect to the
standard basis {e1, . . . , en} of Rn is a 1× n matrix i.e. a linear functional on Rn, taking vectors to
scalars i.e. a row of partial derivatives

Jf(x) =
[

∂f
∂x1

(x) · · · ∂f
∂xn

(x)
]
.

The claim follows. ■

Differentiation 73

Definition A.1.5 Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y) be normed spaces, U ⊆ X be open, x ∈ U , and
f : U → Y. If there exists a bounded-linear-map-valued bounded linear map Ax : X → L(X;Y)
that satisfies

lim
v→0 in X

∥df(x+ v)− df(x)−Axv∥X→Y
∥v∥X

= 0

then f is said to be twice Fréchet differentiable at x. The linear map Ax is then called the
second-order Fréchet derivative of f at x and is denoted d2f(x).

Remarks A.1.6

• We can view an element of L(X,L(X;Y)) as a bounded bilinear map Ax : X×X→ Y, treating
Ax(v)w as being the same as Ax(v, w).

• The norm ∥ · ∥X→Y is the operator norm. We say that a bilinear map A : X1 × X2 → Y is
bounded if

∥A∥X→Y
..= sup{∥A(v1, v2)∥Y : ∥v1∥Y ⩽ 1, ∥v2∥Y ⩽ 1} <∞.

• If we let A : X → Y be a linear map between normed spaces, there are equivalent ways to
express the operator norm:

∥A∥X→Y = sup
0̸=v∈X

∥Av∥Y
∥v∥X

= sup
∥v∥X=1

∥Av∥Y
∥v∥X

= sup
∥v∥X=1

∥Av∥Y.

• The limit in the definition of the second-order Fréchet derivative can be written more explicitly
by expanding out the operator norm:

lim
v→0 in X

∥df(x+ v)− df(x)−Axv∥X→Y
∥v∥X

= lim
v→0
in X

sup
h̸=0

∥df(x+ v)h− df(x)h− (Axv)h∥Y
∥h∥X∥v∥X

= lim
v→0
in X

sup
∥h∥X=1

∥df(x+ v)h− df(x)h− (Axv)h∥Y
∥v∥X

.

Corollary A.1.7 Let X = Rn with the standard Euclidean basis {e1, . . . , en}, Y = R, U ⊆ Rn be
open, and f : U → R be twice Fréchet differentiable at x ∈ U . Then the matrix representation of
d2f(x) with respect to the standard basis of Rn is called the Hessian matrix Hf(x). Its entries
are the second-order partial derivatives of f at x i.e.

Hf(x) ..=


∂2f

∂x1 ∂x1
(x) · · · ∂2f

∂xn ∂x1
(x)

...
. . .

...
∂2f

∂x1 ∂xn
(x) · · · ∂2f

∂xn ∂xn
(x)

 ∈ Rn×n

in the sense that for all

v =
n∑

i=1

viei and w =
n∑

i=1

wiei,

we have that
d2f(x)(v, w) = v⊤Hf(x)w.

Differentiation 74

A.2 Matrix Calculus

Definition A.2.1 For a function f : Rm×n → R, we define the derivative of f with respect to
A ∈ Rm×n by:

∇Af(A) =


∂f

∂A11
. . . ∂f

∂A1n
...

. . .
...

∂f
∂Am1

. . . ∂f
∂Amn

 .

As a special case for a vector θ = [θ1, . . . , θn]
⊤ ∈ Rn and J : Rn → R, we define

∇θJ(θ) =


∂J
∂θ1
...
∂J
∂θn

 .

Example A.2.2

• Some properties about the trace of a square matrix tr(A) =
∑

iAii.

◦ For any two matrices A,B s.t. AB is square, tr(AB) = tr(BA). As a corollary, there’s
a cyclic nature to the trace tr(ABC) = tr(BCA) = tr(CAB).

◦ tr(A) = tr(A⊤)

◦ tr(A+B) = tr(A) + tr(B)

◦ tr(aA) = atr(A) for a scalar a.

• Some properties of the matrix derivative:

(1) ∇Atr(AB) = B⊤

(2) ∇A⊤f(A) = (∇Af(A))⊤

(3) ∇Atr(ABA⊤C) = CAB + C⊤AB⊤

(4) ∇A det(A) = det(A) · (A−1)⊤

The following is used in the derivation of the normal equation:
Combine (2) and (3) to make (5):

∇A⊤tr(ABA⊤C)
(2)
=
(
∇Atr(ABA⊤C)

)⊤
(3)
=
(
CAB + C⊤AB⊤

)⊤
= B⊤A⊤C⊤ +BA⊤C

(5)

From regular calculus, we know that (d/dx)(x2) = 2x.
The matrix derivative trace analogue is ∇Atr(AA

⊤C) = CA+ C⊤A which is similar to

d(a2c)

da
= 2ac

75

CHAPTER B

CS229 Problem Sheets

B.1 Problem Sheet 0

QUESTION 1A

Let f(x) = 1
2x

TAx+ bTx, where A is a symmetric matrix and b ∈ Rn is a vector. What is ∇f(x)?

SOLUTION 1A

f(x+ v)− f(x) =
1

2
(x+ v)TA(x+ v) + bT (x+ v)− 1

2
xTAx− bTx

=
1

2
xTAv +

1

2
vTAx+

1

2
vTAv + bT v

Conjecture that Axv = 1
2

(
xTAv + vTAx

)
+bT v. Thus, the difference quotient limit (A.1) becomes:

1

2
lim

v→0 in X

|vTAv|
∥v∥2

⩽
1

2
lim

v→0 in X

∥vT ∥2∥A∥op∥v∥2
∥v∥2

=
1

2
lim

v→0 in X
∥vT ∥2∥A∥op

= 0

Our expression for the Fréchet derivative of f at x is:

df(x)v =
1

2

(
xTAv + vTAx

)
+ bT v

=
1

2

(
xTAv + xTAv

)
bT v since R ∋ vTAx = (vTAx)T = xTAv

=
(
xTA+ bT

)
v

Therefore, ∇f(x) =
(
xTA+ bT

)T
= Ax+ b.

SOLUTION 1A (ALTERNATIVE)

Alternatively, one can resort to an explicit computation. Let x = [x1 . . . xn]
T and A be the matrix

whose (i, j)th entry is aij .
1

2
xTAx =

1

2

n∑
i=1

xi

n∑
j=1

aijxj

Let Ak denote the kth row of A.

∂(12x
TAx)

∂xk
=

1

2

n∑
i=1

n∑
j=1

aij
∂

∂xk
(xixj) =

1

2

 n∑
i=1

aikxi +
n∑

j=1

akjxj


=

1

2

(
Akx+ (kth column of A) · x

)
=

1

2

(
Akx+ (AT)kx

)
=

1

2
(2Akx)

= Akx

CS229 Problem Sheets 76

The second equality stems from observing that
∂

∂xk
xixj =


xj , k = i

xi, k = j

0, otherwise.

Therefore, ∇(xTAx) =


...

Akx
...

 = Ax.

∴ ∇f(x) = ∇(xTAx) +∇(bTx) = Ax+


...

∂
∂xk

∑n
i=1 bixi
...

 = Ax+


...
bk
...

 = Ax+ b

QUESTION 1B

Let f(x) = g(h(x)) where g : R→ R and h : Rn → R are differentiable. What is ∇f(x)?

SOLUTION 1B

∇f(x) =


...

∂(g◦h)
∂xi

(x)
...

 =


...

g′(h(x)) ∂h
∂xi

...

 = g′(h(x))


...
∂h
∂xi
...

 = g′(h(x))∇h(x)

QUESTION 1C

The Hessian of a function f : Rn → R is the n × n symmetric matrix of second order partial
derivatives whose (i, j) entry is (∇2f(x))ij =

∂2f
∂xi ∂xj

(x). Let f(x) = xTAx+bTx. What is ∇2f(x)?

SOLUTION 1C

Using (1a), our expression for the (θ, k) entry of the Hessian is:

∂2

∂xθ ∂xk
f(x) =

∂

∂xθ

 n∑
i=1

aikxi +

n∑
j=1

akjxj

+ bk


=

1

2
(aθk + akθ)

= aθk by the symmetry of A

Therefore, ∇2f(x) = A.

QUESTION 1D

Let f(x) = g(aTx) where g : R → R is continuously differentiable and a ∈ Rn. What are the
gradient and Hessian of f at x?

CS229 Problem Sheets 77

SOLUTION 1D

Define h : Rn → R by h(x) = aTx. From (1a), ∇h(x) = a. Using (1b), we have that:

∇f(x) = ∇(g ◦ h)(x)
= g′(h(x))∇h(x)
= g′(aTx)a

The (k, j) entry of the Hessian of f at x is given by:

∂2

∂xk ∂xj
f(x) =

∂

∂xk

(
g′(aTx)

∂

∂xj
(aTx)

)
=

∂

∂xk

(
g′(aTx)

∂

∂xj

(
n∑

i=1

aixi

))

=
∂

∂xk

(
g′(aTx)aj

)
= g′′(aTx)

∂

∂xk
(aTx)aj

= g′′(aTx)akaj

Finally, the expression for the Hessian is:

∇2f(x) = g′′(aTx)


...

· · · akaj · · ·
...

 = g′′(aTx)aaT .

QUESTION 2

A symmetric matrix A ∈ Rn×n is called:

• positive semidefinite, denoted A ⪰ 0, if for all x ∈ Rn, xTAx ⩾ 0,

• positive definite, denoted A ≻ 0, if for all non-zero x ∈ Rn, xTAx > 0.

QUESTION 2A

Let z ∈ Rn. Show that A = zzT is positive semidefinite.

SOLUTION 2A

Since AT = (zzT)T = (zT)T zT = zzT = A, A is symmetric. Now let x ∈ Rn. Then, xTAx =
xT zzTx = (xT z)(xT z)T = |xT z|2 ⩾ 0.

QUESTION 2B

Let 0⃗ ̸= z ∈ Rn and A = zzT . What is the nullspace of A and what is the rank of A?

SOLUTION 2B

QUESTION 2C

m,n ∈ N. Let A ∈ Rn×n be positive semidefinite and B ∈ Rm×n be arbitrary. Is BABT also
positive semidefinite? If so, prove it. Otherwise, give a counterexample with explicit A and B.

CS229 Problem Sheets 78

SOLUTION 2C

(BABT)T = (BT)TATBT = BATBT = BABT since A is symmetric. Thus, BABT is symmetric.
Now let x ∈ Rn and consider xT (BABT)x = (xTB)A(BTx) = (xTB)A(xTB)T ⩾ 0 because A is
positive semidefinite and y = xTB ∈ Rn.

QUESTION 3

The eigenvalues of a matrix A ∈ Rn×n are the roots of the characteristic polynomial pA(λ) =
det(λI − A), which may (in general) be complex. They are also defined as the values λ ∈ C for
which there exists a vector x ∈ Cn such that Ax = λx. We call such a pair (λ, x) an eigenvalue-
eigenvector pair. For notational convenience, we define the diagonal matrix with values λ1, . . . , λn

along the main diagonal and 0’s elsewhere as:

diag(λ1, . . . , λn) =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn



QUESTION 3A

Suppose that the matrix A ∈ Rn×n is diagonalisable i.e. there exists an invertible matrix T ∈ Rn×n

such that A = TΛT−1 where Λ = diag(λ1, . . . , λn). Use the notation t(i) for the columns of T so
that T = [t(1) · · · t(n)] where t(i) ∈ Rn. Show that At(i) = λit

(i) so that the eigenvalue-eigenvector
pairs of A are (t(i), λi).

SOLUTION 3A

A = TΛT−1 =⇒ AT = TΛ

⇐⇒ A[t(1) · · · t(n)] = [t(1) · · · t(n)]diag(λ1, . . . , λn)

⇐⇒ [At(1) · · ·At(n)] = [λ1t
(1) · · ·λnt

(n)]

⇐⇒ At(i) = λit
(i) ∀i = 1, . . . , n

QUESTION 3B

A matrix U is orthogonal if UTU = I. The spectral theorem, perhaps the most important theorem
in linear algebra, states that if A ∈ Rn×n is symmetric, then A is diagonalisable by a real orthogonal
matrix. That is, there are a diagonal matrix Λ ∈ Rn×n and an orthogonal matrix U ∈ Rn×n such
that A = UΛUT . Let λi = λi(A) denote the ith eigenvalue of A.

Let A be symmetric. Show that if U = [u(1) · · ·u(n)] is orthogonal, where u(i) ∈ Rn and
A = UΛUT , then u(i) is an eigenvector of A and Au(i) = λiu

(i), where Λ = diag(λ1, . . . , λn).

SOLUTION 3B

Right-multiply A = UΛUT by U to get AU = UΛ(UTU). Since UTU = I, we have that AU = UΛ
and the calculation that follows is identical to (3a) by replacing T with U .

QUESTION 3C

Show that if A is positive semidefinite, then λi(A) ⩾ 0 for each i.

CS229 Problem Sheets 79

SOLUTION 3C

A being positive semidefinite means, in particular, that A is symmetric. Since A is symmetric,
it is diagonalisable by a real orthogonal matrix U = [u(1) · · ·u(n)] and the eigenvalue-eigenvector
pairs of A are of the form (λi(A), u(i)). Since U is real orthogonal, each u(i) has unit length i.e.
∥u(i)∥2 = 1.

The other property of A being positive semidefinite is that for all x ∈ Rn, xTAx ⩾ 0. Let
i ∈ {1, . . . , n} and x = u(i) in particular. Thus, for each i = 1, . . . , n

0 ⩽ (u(i))T (Au(i)) = u(i)λiu
(i) = λi(∥u(i)∥2)2 = λi.

CS229 Problem Sheets 80

B.2 Problem Sheet 1

QUESTION 1A

Find the hessian H of J :

J(θ) =
−1
n

n∑
i=1

(
y(i) log(hθ(x

(i))) + (1− y(i)) log(1− hθ(x
(i)))

)
and show that for any vector z, it holds true that z⊤Hz ⩾ 0.

SOLUTION 1A

This identity has already been derived in the notes:

∂

∂θj
hθ(x

(i)) =
∂

∂θj
g(θ⊤x(i))

= hθ(x
(i))
(
1− hθ(x

(i))
)
x
(i)
j

Using this identity, we can find an expression for the ith entry of ∇J(θ):

∂

∂θj
J(θ) =

−1
n

n∑
i=1

(
y(i)

hθ(x(i))

∂

∂θj
hθ(x

(i)) +
1− y(i)

1− hθ(x(i))

∂

∂θj
(1− hθ(x

(i)))

)

=
−1
n

n∑
i=1

(y(i) − hθ(x
(i)))x

(i)
j

Therefore, the (j, k)th entry of H = ∇2J is:

∂2

∂θj ∂θk
J(θ) =

1

n

n∑
i=1

hθ(x
(i))(1− hθ(x

(i)))x
(i)
j x

(i)
k

The expression for z⊤Hz is:

z⊤Hz =

p∑
j=0

p∑
k=0

zjHjkzk

=

p∑
j=0

p∑
k=0

zj
1

n

n∑
i=1

hθ(x
(i))(1− hθ(x

(i)))x
(i)
j x

(i)
k zk

=
1

n

n∑
i=1

 p∑
j=0

p∑
k=0

zjx
(i)
j x

(i)
k zk


︸ ︷︷ ︸

(x⊤z)2⩾0

(
hθ(x

(i))(1− hθ(x
(i)))

)
︸ ︷︷ ︸

⩾0 since g(...)∈[0,1]

⩾ 0

Therefore, H ⪰ 0 i.e. the Hessian of J is positive semi-definite. Therefore, J is convex i.e. the
local minimum is the global minimum.

81

CHAPTER C

Calculations

C.1 GDA Maximum Likelihood Estimates

Consolidate both parameters µ0 and µ1 into a single parameter that takes on either value depending
on the value of y(i):

µy(i) = 1
(
y(i) = 0

)
µ0 + 1

(
y(i) = 1

)
µ1.

ℓ(φ, µy(i) ,Σ) = log

(
n∏

i=1

PX|Y

(
x(i)|y(i);µy(i) ,Σ

)
· P(Y)y(i);φ

)

= n log

(
1

(2π)n/2|Σ|1/2

)
− 1

2

n∑
i=1

(x− µy(i))
⊤Σ−1(x− µy(i))

+
n∑

i=1

(
y(i) log(φ) + (1− y(i)) log(1− φ)

)

• φ̂

∂

∂φ
ℓ(φ, µy(i) ,Σ) =

1

φ

n∑
i=1

y(i) +
−1

1− φ

n∑
i=1

(1− y(i))

=
1

1− φ

(
n− 1

φ

n∑
i=1

y(i)

)

∂ℓ

∂φ
= 0 =⇒ φ̂ =

1

n

n∑
i=1

y(i) = y

• µ̂i

Do I take gradients or...
∂

∂µi
ℓ(φ, µy(i) ,Σ) = . . .

= . . .

82

Bibliography

[1] Khallil Ebrahim Benyattou. Conditional Exkebtations. 2026.

[2] Mark John Schervish. Theory of Statistics. Springer Science & Business Media, 2012.

[3] Fumio Hayashi. Econometrics. Princeton University Press, 2000.

[4] Frank Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mecha-
nisms, volume 55. Spartan Books Washinton, DC, 1962.

	Introduction
	Paradigms
	Tasks and Models

	Supervised Learning
	Probability to Model Uncertainty
	Probabilistic Model

	Loss and Risk

	Regression
	Setup
	Estimating the Regression Function
	Linear Regression
	Extra Assumptions

	Ordinary Least-Squares (OLS)
	Convex Optimisation
	Is there always a solution to the normal equations?

	Iterative Methods
	Gradient Descent
	Stochastic Gradient Descent

	Locally Weighted Linear Regression
	Normality Assumptions (Ordinary Linear Regression)
	Consequences of joint conditional normality of our errors
	Maximum Likelihood Estimation

	Classification
	Linear Classifiers
	Aggregation/Scoring T
	Threshold f

	The Single-Layer Perceptron
	Setup
	Surrogate perceptron problem
	Classical perceptron

	Logistic Regression
	The Model

	Newton's Method
	Newton-Raphson

	Generalised Linear Models (GLMs)
	The Exponential Family
	Examples of Exponential Family Distributions

	Multi-class Classification (Softmax Regression)
	GLM Approach

	Generative Learning Algorithms
	GDA for Binary Classification
	Link Between GDA and Logistic Regression
	Extra Note on GDA

	Support Vector Machines
	Separable Case - Optimal Margin Classifier
	The Dual Representation via Lagrange Multipliers
	Kernels

	Regularisation and Bayesian Statistics
	Bias and Variance
	Regularisation
	Bayesian Statistics (Maximum a-Posteriori Estimation)

	Extra Notes
	Statistics Server

	Differentiation
	Fréchet Derivative
	Matrix Calculus

	CS229 Problem Sheets
	Problem Sheet 0
	Problem Sheet 1

	Calculations
	GDA Maximum Likelihood Estimates

