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CHAPTER 1

Introduction

What is statistics to me?

Statistics is a field of study that involves:

• designing experiments and surveys to collect sample data on a population,

• analysing said samples,

• and making inferences about the wider population from the sample.

A population is a set Π of similar objects or interests — be it real or conceptual. For example,
the collection of objects that a company may manufacture at some point in the future can be
considered to be a hypothetical population. A sample is a proper subset of a population.

What is statistics to others?

Statistics is a theory of information, with
inference making as its objective.

[7, p. 2]

The objective of statistics is to make an
inference about a population based on
information contained within a sample
from that population, and to provide an
associated measure of goodness for the
inference.

[7, pp. 2–3]

Before being able to make inferences, we need some way to characterise/describe a set of
measurements.

1.1 Describing/characterising a set of measurements

A population can be characterised/approximated by taking a sample and creating its relative
frequency distribution.1

• Frequency is the number of occurrences of a given type of event, or the number of members
of a population falling into a specified class or category.

◦ A class or grouping is a way of organising data into intervals or categories to summarise
a dataset.

• If the frequency is expressed as a proportion of the total number of occurrences/members,
it’s called the relative frequency.

1This is an example of a descriptive statistic.
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Therefore, a relative frequency distribution created from empirical data (in the form of a
sample drawn from a population) is a specification of how the frequencies of sample members are
distributed according to the values of the variables they exhibit.

If we consider a population to be the outcome of drawing repeatedly from some random process,
we can suppose that the population is governed by some underlying theoretical “random
distribution” (known as a probability distribution). The subsequent sections will develop a theory
of “probability” and a consequence of this will be that we can postulate “random distributions”
that model the underlying distribution of a population.

1.1.1 VISUALISING DATA

A histogram is a graphical representation of a set of observations.2 Each class frequency is
represented by the area of the rectangle centred on its respective class interval. If all the class
intervals are of equal length, the heights of the rectangles are also proportional to the observed
frequencies. There are several types of histogram:

• A frequency histogram’s bar heights represent the frequency of each bin (interval).

• A relative frequency histogram’s bar heights represent the relative frequencies of data points
within each bin. (Useful for comparing histograms with different sample sizes)

• Cumulative frequency histograms.

For the purpose of inference, histograms aren’t usually adequate. Many histograms can be formed
from the same data i.e. histograms have the potential to heavily rely on bin size and location of
endpoints.

The rule of thumb always should be that
details robust to variation in bin width
and bin origin are likely to be genuine;
details fragile to such are likely to be
spurious or trivial.

Nick Cox @ Cross Validated

This sensitivity to variations cannot be determined a priori (from theoretical deduction) and is
instead learned from observation/experience. A safe bet is to use multiple histograms with several
bin widths and origins.3

2i.e. a univariate frequency diagram
3I saw somewhere on the internet that an alternative method is to check a kernel density estimate with a

not-too-wide bandwidth.

https://stats.stackexchange.com/a/51753
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CHAPTER 2

Mathematical Framework of Experiments

2.1 Experiments

Populations of interest are almost always simply too large and complex to observe completely.
Experiments offer a way to sample data from a population in a controlled way, isolating the effect
of specific variables1 that allow for properties of said population to be calculated.

• An experiment is a procedure that has a well-defined set of possible outcomes.

◦ When an experiment has more than one possible outcome and the outcome is uncertain,
we call it a random experiment.

◦ If an experiment only has one possible outcome, it’s called deterministic.

• A trial is a single performance of a well-designed experiment.

2.2 Probability

Probability is a numerical measure of how likely an outcome of an experiment is.
Actually assigning probabilities should be based on experience. Ideally, these numbers should

be verified by repeating an experiment (if it’s even possible to do so):

2.2.1 FREQUENTIST INTERPRETATION

If an experiment is repeated many times, we obtain a sample of observations and from this we can
calculate the proportion of outcomes corresponding to some favourable outcome we’re interested
in. Let A(n) denote the number of trials in which the favourable outcome occurs in n repetitions
of the experiment. Then the aforementioned proportion, the relative frequency of the event, is
A(n)/n. As n grows large (n → ∞), we expect that the long-run relative frequency stabilises at
some value p ..= limn→∞A(n)/n in [0, 1].

Definition 2.2.1 This value p ..= limn→∞
A(n)
n is an intuitive measure of one’s belief that the

favourable outcome A will occur in any given trial of an experiment — the frequentist probability
of the event.

Long-run frequencies are often computed with simulations but their accuracies depend on how
well the simulation captures the random nature of the particular experiment.

Some limitations of the relative frequency interpretation of probability are quite natural con-
sequences of the assumptions we made:

• We rely on repeated trials.

◦ Some events of interest are unique or not repeatable.
◦ We don’t have a way to account for subjective probability.
◦ We rely on the trials being identical and independent of each other. How realistic is this

to implement in real life?2

1Is there a better word for this?
2Probably not very?
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• There’s a tacit assumption that we have access to infinitely many trials when calculating the
long-run frequencies exactly. However, we can only work with finitely many trials in real life
to approximate such frequencies.

A framework of probability that enables one to handle a wider variety of events without having
to rely only on the observed data from infinitely many repeated trials would certainly be a wonderful
thing to have. Indeed, Kolmogorov formulated an axiomatic framework of probability for this
expressed level of generality:

2.2.2 KOLMOGOROV’S AXIOMATIC FRAMEWORK

Random experiments are formalised using the language of sets and measures. The environment in
which a random experiment lives can be modelled by a triple (Ω,F ,P) known as a probability
space.

Once we carry out a random experiment we observe some quantity e, corresponding to the
theoretical outcome ω that came to fruition as a result of carrying out the experiment, as an
element of a(n often numerical) set E. This correspondence is formalised by a function
X : Ω→ E (called a random variable), and so we write e = X(ω).

Loosely speaking:

• The outcome space Ω of a random experiment is a non-empty3 set of all its possible
outcomes.

• A family F ⊆ 2Ω of subsets of Ω will be the structure that contains sets of outcomes and
supports operations that describe how such sets relate to each other.

e.g. If A and B are subsets of Ω, then we’ll desire sets like their union A ∪ B, intersection
A ∩ B, and (absolute) complement Ac also be in F . Everything we’d ideally want to
talk about from a probabilistic point of view when it comes to composing events will be
in F — this is colloquially referred to as F being stable.

• Finally, we’ll define an abstract set function P : F → [0, 1], assigning to each subset of out-
comes A ⊆ Ω, a number P(A) — called the probability of A — representing how likely A is
to occur in any given trial.

◦ The abstract definition of P is removed from any concept of limits of relative frequencies
— it’s simply a map that satisfies some basic axioms on the family F .

◦ Assigning probabilities to events A that can’t be repeated is as simple as including A in
F , and assigning a number in [0, 1] to A under P. There is no need to rely on repeated
trials.

◦ From a terminological perspective, if P is well-defined on F , in the sense that it that
meaningfully assigns a single number to each event A ∈ F , then A is called an event.
If no such P is prescribed, we call A an element of F .

Now for some definitions to make precise the above objects:

2.3 Collections of Events, F

Definition 2.3.1 Suppose that Ω is a non-empty set and F ⊆ 2Ω satisfies the following:

(1) Ω ∈ F
3If it’s empty, then pack it in.
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(2) F is closed under (absolute) complementation i.e. A ∈ F =⇒ Ac ∈ F

(3) F is closed under (at most) countably infinite unions i.e.

{Ai}i∈N ⊆ F =⇒
⋃
i∈N

Ai ∈ F .

Such a collection F is called a σ-algebra over Ω.

Example 2.3.2

• The membership of ∅ in every σ-algebra follows from Ω ∈ F and closure under complemen-
tation i.e. F ∋ Ωc = ∅. Thus, F = {∅,Ω} is a σ-algebra over Ω called the trivial σ-algebra
over Ω.

• The power set 2Ω is always a σ-algebra known as the discrete σ-algebra over Ω.

Practically speaking, it’s often difficult to outright specify all the sets in a σ-algebra. Instead,
we can build up to such a specification by considering simpler collections of subsets of Ω — arbitrary
collections (as seen in the next subsection), or more structured simple collections called algebras.
For the latter, we take the definition of a σ-algebra and relax the closure under countable unions
(3) to closure under finite unions (3′).

Definition 2.3.3 Suppose that Ω is a non-empty set and A ⊆ 2Ω satisfies the following:

(1) Ω ∈ A

(2) A is closed under (absolute) complementation i.e. A ∈ A =⇒ Ac ∈ A

(3′) A is closed under finite unions i.e. if A,B ∈ A then A ∪B ∈ A.

Such a collection A is called an algebra over Ω.

Remarks (Conceptual)

• De Morgan’s law states that for any collection of subsets {Ai}i∈I ⊆ 2Ω:(⋃
i∈I

Ai

)c
=
⋂
i∈I

Ac
i .

Consequently,

◦ an algebra A is closed under finite intersections (as seen in the footnote of this page),
and

◦ a σ-algebra F is closed under countably infinite intersections.

So we could equivalently have replaced (3′) in the definition of an algebra with

(3′′) A is closed under finite intersections i.e. if A,B ∈ A then A ∩B ∈ A.

• Sets in an algebra have a simple representation which makes it easy for us to define other
objects (like set functions) over them — this will be important in Section 3.5.1.

Remarks (Terminological)

• The (relative) complement of B in A is B \A.

• A,B ∈ F are mutually exclusive (or disjoint) if they have empty intersection i.e. A∩B =
∅.

• A collection of sets {An}n∈N ⊆ F is pairwise disjoint4 if for all i ̸= j : Ai ∩Aj = ∅.
4If I slip and say ‘disjoint’, I mean ‘pairwise disjoint’. I’ll try my best to say ‘empty intersection’ to mean

∅ = ∩iAi.
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• A partition of a set B is a family of non-empty subsets of B such that each ω ∈ B belongs
to a unique subset. The subsets in a partition are called cells. We say that B is partitioned
into B1, . . . , Bn if the Bi are pairwise disjoint and

B =

n⊔
i=1

Bi.

2.3.1 GENERATING (σ-)ALGEBRAS

Is there a smallest σ-algebra
containing a given collection

C ⊆ 2Ω?

In many cases, it isn’t possible to explicitly describe all sets of a σ-algebra. However, given an
arbitrary collection C of subsets of Ω, one can define the smallest σ-algebra that contains C. We
do this by noting that:

• The collection of σ-algebras {Fα}α∈I containing C is non-empty since 2Ω is a σ-algebra.

• The intersection of an arbitrary family of σ-algebras {Fα}α∈I on Ω is also a σ-algebra on Ω.

This gives us the following definition:

Definition 2.3.4 The σ-algebra generated by C ⊆ 2Ω, denoted σ(C), is the smallest σ-algebra
containing C and is defined by:

σ(C) ..=
⋂

Fα-σ-algebra
s.t. C⊆Fα

Fα.

Definition 2.3.5 Analogous statements hold for algebras and so the algebra generated by
C ⊆ 2Ω, denoted Alg(C), is the smallest algebra containing C and is defined by:

Alg(C) ..=
⋂

Aα-algebra
s.t. C⊆Aα

Aα.

Now we take a small reprieve from probability, and
consider a more general context.

2.4 The Extended Real Line, R

The extended real line R will be the setting in which a lot of the subsequent theory will be discussed.
Definitions first, importance afterwards.

Definition 2.4.1

• As a set, we define R ..= R ∪ {−∞,+∞}.

• We extend addition and multiplication from R to R as follows. For a ∈ R, define:

◦ a+∞ =∞, a+ (−∞) = −∞
◦ 0 · (±∞) = 0

◦ 1/(±∞) = 0

◦ a · (±∞) =

{
±∞ if a > 0,

∓∞ if a < 0.
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The expression (+∞) + (−∞) is left undefined, for how would one assign a unique value to
such an expression?

• Equipping R with its natural ordering i.e. augmenting the total ordering ⩽ on R to include
−∞ < a < +∞ for a ∈ R, induces a topology To on R called the order topology.

◦ A basis for this topology is the collection

C = {(a, b) : a, b ∈ R, a < b} ∪ {(a,+∞] : a ∈ R} ∪ {[−∞, b) : b ∈ R}.

• One can also make R into a metric space by defining a metric d(x, y) = |f(x)− f(y)| on it by
pulling back the standard metric on [−1, 1] via the homeomorphism f : R → [−1, 1] defined
by

f(x) =


x/(1 + |x|), where x ∈ R
+1, where x = +∞
−1, where x = −∞.

Note that for x ⩾ 0, d(+∞, x) = 1/(1 + |x|), and for x ⩽ 0, d(−∞, x) = 1/(1 + |x|).

• Depending on the context, I reserve the use of the name extended real line for any of the
following (depending on the context):

◦ The set itself R ..= R ∪ {−∞,+∞},
◦ the topological space (R, To),
◦ or the metric space (R, d).

Remarks 2.4.2 It’ll be of immediate interest in the next section that we’re able to make statements
like “µ(A) = +∞” to describe a set A that is infinitely large with respect to a way µ of measuring
the size of sets.

Furthermore, the extended real line comes with some technical conveniences:

• R comes with the benefit that the infimum and supremum of every subset A ⊆ R exist in R.

◦ As an immediate consequence, both the lim sup and lim inf of a real sequence exist R
since we define them as5

lim sup
n→∞

an ..= inf
n

(
sup
k⩾n

ak

)
& lim inf

n→∞
an ..= sup

n

(
inf
k⩾n

ak

)
.

◦ As a nice application, that we shall see next chapter, one can define a way to “measure”
a set “from the outside” by taking the infimum over all the ways to “cover” that set.

• We may also extend the notion of convergence of sequences to allow for limits6 in {±∞}.

◦ Proposition 2.4.3 In particular, every monotone sequence in R has a limit in R.

Proof. Suppose that {an}n∈N is increasing i.e. ∀n ∈ N : an ⩽ an+1. Then for all k ⩾ n,
ak ⩾ an and so infk⩾n ak = an, and supk⩾n ak = limk→∞ ak from which we conclude
that

lim sup
n→∞

an = inf
n

sup
k⩾n

ak = inf
n

lim
k→∞

ak = lim
k→∞

ak

lim inf
n→∞

an = sup
n

inf
k⩾n

ak = sup
n
an = lim

k→∞
ak

An analogous argument holds for {an}n∈N-decreasing. ■

5The lim sup of a sequence is the notion of the tightest eventual upper bound i.e. how low the sequence’s upper
bound is in the long run (as n → ∞)

lim sup
n→∞

an
..= inf

n

(
sup
k⩾n

ak

)
.

We do this by taking the supremum of each tail to capture the highest the sequence goes from that starting point.
The sequence of suprema tails is a decreasing sequence. Then we take the infimum over all starting points to find
the tightest bound that eventually holds.

6These are sequences in R that we would say diverge to infinity.
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◦ As an application, we’ll be using monotone sequences of “simple” functions to approxi-
mate “measurable” functions.

2.5 Measures on F

With the definition of a σ-algebra in hand, we can define the class of set functions called measures,
and afterwards a particular type of measure — the one we desire — called a probability measure
P on F (over Ω).

It’s customary to denote the base space as X for a general measure. We call the pair (X,F) a
measurable space, and each A ∈ F is called a measurable set.

Definition 2.5.1 Let (X,F) be a measurable space. A set function µ : F → [0,+∞] is called a
measure on F if:

(i) µ(∅) = 0

(ii) For any pairwise disjoint collection {Ai}i∈N ⊆ F :

µ
( ⋃

i∈N
Ai

)
=
∑
i∈N

µ(Ai).

Property (ii) is called σ-additivity (or countable additivity). The triple (X,F , µ) is called a
measure space.

Proposition 2.5.2 (Properties of µ) A measure µ : F → [0,+∞] is:

• Finitely additive:

If A1, . . . , An are pairwise disjoint, then µ (
⋃n

i=1Ai) =
∑n

i=1 µ(Ai).

• Monotone:

If A,B ∈ F and A ⊆ B, then µ(A) ⩽ µ(B).

• Countably sub-additive:

For any {Ai}i∈N ⊆ F :
µ
( ⋃

i∈N
Ai

)
⩽
∑
i∈N

µ(Ai).

Proof.

• Take Ai = ∅ for i > n and appeal to µ being σ-additive.

• B = A ⊔ (B \A) and finite additivity gives us µ(B) = µ(A) + µ(B \A) ⩾ µ(A).

The final assertion will use a technique that’s repeated so often, I’m dedicating a lemma to it.

Lemma 2.5.3 (Disjointification) From any sequence {An}n∈N ⊆ 2X , one can construct a pair-
wise disjoint sequence {Bn}n∈N ⊆ 2X defined by B1 = A1 and for n ⩾ 2:

Bn = An \
( n−1⋃

i=1

Ai

)
with the same union ⋃

n∈N
An =

⊔
n∈N

Bn.
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Proof. Pairwise disjointness should be clear from the definition: Let n > m. Then Bn contains all
elements of An that haven’t already been included in any of the earlier Ai with i < n. In particular,
Bm is a subset of the union that’s been removed from An in order to form Bn.

For the equal union statement, one direction of inclusion is clear. Each Bn ⊆ An and so
∪n∈NBn ⊆ ∪n∈NAn. For the reverse inclusion, let x ∈ ∪n∈NAn. Let k be the smallest index for
which x ∈ Ak. This means that x is not an element of all the former Ai for i < k i.e. x ̸∈ ∪k−1n=1An.

∴ x ∈ Ak \
( k−1⋃

n=1

An

)
=.. Bk ⊆

⋃
n∈N

Bn.

�

• Let B1 = A1, and for n > 1 define Bn = An \
(⋃n−1

i=1 Ai

)
. The Bn are pairwise disjoint and

for all n :
⋃n

1 Bi =
⋃n

1 Ai. By monotonicity,

µ
( ∞⋃

1

Ai

)
= µ

( ∞⊔
1

Bi

)
=

∞∑
1

µ(Bi) ⩽
∞∑
1

µ(Ai).

■

Definition 2.5.4

• If µ(X) <∞, then µ is called finite.

• If there exists an at most countably infinite sequence {Ai}i∈N ⊆ F s.t. each µ(Ai) <∞ and

X =
⋃
i∈N

Ai,

then we call µ a σ-finite measure.

• A set N ∈ F is called a µ-null set if µ(N) = 0.

• A statement is true almost everywhere (abbreviated a.e.), or true for µ-almost every x
(abbreviated ∀µx), if the set on which it doesn’t hold is a µ-null set.

• A set F ⊆ X is called µ-negligible if it’s a subset of a µ-null set.

• A measure µ is called complete if every µ-negligible set F ⊆ X is measurable i.e

F ⊆ N, µ(N) = 0 =⇒ F ∈ F .

Note that, in general, a subset of a µ-null set (i.e. a µ-negligible set) need not be measurable
— the underlying σ-algebra encodes what is measurable and what isn’t. It’s a peculiar fact
but motivates the following:

2.5.1 SUB-σ-ALGEBRAS AND SUBSPACE MEASURES

Definition 2.5.5 Let (X,F) be a measurable space. We call G ⊆ F a sub-σ-algebra of F if G
is a σ-algebra on X in its own right.

Lemma 2.5.6 For any subset D ⊆ X, the collection

F|D ..= {A ∩D : A ∈ F}

defines a σ-algebra of subsets of D called the trace of F on D, or subspace σ-algebra of
subsets of D.
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A subtle distinction is that F|D is a σ-algebra on D, not on X. Thus, F|D is not in general a
sub-σ-algebra of F . However, if D is measurable (D ∈ F) then F|D is a sub-σ-algebra of F .

�

Proof.

• ∅ = ∅ ∩D ∈ F|D

• Suppose that A ∈ F|D i.e. ∃B ∈ F s.t. A = B ∩D. Then

D \A = D \ (B ∩D)

= (X \B)︸ ︷︷ ︸
∈F

∩D ∈ F|D

• Let {An}n∈N ⊆ F|D. Then ∃{Bn}n∈N ⊆ F s.t. ∀n : An = Bn ∩D. Then, we have that⋃
n∈N

An =
( ⋃

n∈N
Bn︸ ︷︷ ︸

∈F

)
∩D ∈ F|D.

■

Proposition 2.5.7 If we suppose further that (X,F , µ) is a measure space, and that D ⊆ X is a
measurable subset (D ∈ F), then the restriction of µ to D, denoted by µ|D : F|D → [0,+∞] and
defined for any A ∈ F|D by µ|D(A) = µ(A), is a measure on F|D.

Proof.

• Since F|D ∋ ∅, µ|D(∅) = µ(∅) = 0.

• Let {An}n∈N ⊆ F|D be a pairwise disjoint collection.

µ|D
( ⊔

n∈N
An

)
= µ

( ⊔
n∈N

An

)
=
∑
n∈N

µ(An) =
∑
n∈N

µ|D(An)

■

Definition 2.5.8 We call µ|D a subspace measure on D.

2.5.2 COMPLETION OF MEASURE

One “completes a measure space” by “adding” all µ-negligible sets to the underlying σ-algebra.

Theorem 2.5.9 Let (X,F , µ) be a measure space and N = {F ⊆ X : ∃N ∈ F with µ(N) =
0, and F ⊆ N} denote the collection of all µ-negligible sets. Then

F = {A ∪ F : A ∈ F , F ∈ N}.

is a σ-algebra, and there exists an extension µ : F → [0,+∞] of µ to F defined by µ(A∪F ) = µ(A)
s.t.

(i) µ is a measure,

(ii) µ is the unique extension to F ,
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(iii) µ is complete.

Moreover, F is the smallest σ-algebra containing F on which µ extends to a complete measure.

Why is it useful to complete a measure?

It seems to be a construction that avoids the pathology of a measure not respecting one’s
intuitive notion of ‘negligibility’ i.e. we certainly expect that if a set N is µ-null, then any subset
F ⊆ N should also be measurable (with measure zero) since it’s a smaller part of something we
can already measure. I believe there are more ramifications later on when discussing functions that
differ on µ-null sets.

Proof. 7

F is a σ-algebra:

• Contains the empty set:
Every µ-null set N ∈ F is µ-negligible (since N ⊆ N). In particular,
µ(∅) = 0 so ∅ ∈ F ∩ N . Therefore, ∅ = ∅ ∪ ∅ ∈ F .

• Closure under countable unions:
Since F is closed under countable unions, it remains to show that so too is
N . Let {Fi}i∈N i.e. ∃{Ni}i∈N ⊆ F s.t. ∀i ∈ N : Fi ⊆ Ni and µ(Ni) = 0. We
wish to demonstrate that F ..=

⋃
i∈N Fi ∈ N . Certainly, N ..=

⋃
i∈N Ni ∈ F ,

µ(N) = µ
( ⋃

i∈N

Ni

)
⩽
∑
i∈N

µ(Ni) = 0,

and ∀i ∈ N : Fi ⊆ Ni =⇒ F ⊆ N . Therefore, F ∈ N .
• Closure under complementation:

Let (A∪F ) ∈ F (i.e. A ∈ F , F ∈ N ). We wish to show that (A∪F )c ∈ F .

(A ∪ F )c = Ac ∩ F c

Since F is µ-negligible, there exists some N ∈ F with µ(N) = 0 and F ⊆ N .
Using the inclusion, we can write F c as N c ∪ (N \ F ). Therefore,

(A ∪ F )c = Ac ∩ F c

= Ac ∩ (N c ∪ (N \ F ))

= (Ac ∩N c)︸ ︷︷ ︸
∈F

∪ (Ac ∩ (N \ F )).︸ ︷︷ ︸
⊆N

Thus, (A ∪ F )c ∈ F .

Is µ well-defined?

We wish to show that the value of µ doesn’t depend on the representative
of the equivalence class of sets that are equal modulo µ-negligibles i.e. that
if A1 ∪F1 = A2 ∪F2 (with A1, A2 ∈ F and F1, F2 ∈ N ) then µ(A1 ∪F1) =
µ(A2 ∪ F2).
Note that since F1, F2 ∈ N , ∃N1, N2 ∈ F s.t. µ(N1) = µ(N2) = 0 and
F1 ⊆ N1, F2 ⊆ N2. Thus,

A1 ⊆ A1 ∪ F1 = A2 ∪ F2 ⊆ A2 ∪N2

from which we conclude that

µ(A1 ∪ F1) ..= µ(A1)

⩽ µ(A1 ∪N2) by monotonicity

⩽ µ(A1) + µ(N2) by sub-additivity of µ

= µ(A2) =.. µ(A2 ∪ F2).

The reverse inequality follows similarly from A2 ⊆ A2 ∪ F2 = A1 ∪ F1 ⊆
A1 ∪N1.

7Folland makes a note that we can make a simplifying assumption that A ∪N = ∅. I imagine this is to split up
the measurable and null parts to obtain a canonical representation for elements of F .



Mathematical Framework of Experiments 20

Is µ an honest to goodness extension of µ to F?

For any A ∈ F , A = A ∪ ∅ and µ is well-defined so

µ(A) = µ(A ∪ ∅) ..= µ(A).

(i) Is µ a measure?

◦ Since ∅ ∈ F , µ(∅) = µ(∅) = 0.
◦ Let {Ai ∪ Fi}i∈N ⊆ F be a collection of pairwise disjoint sets. Then

µ
( ⋃

i∈N

(Ai ∪ Fi)
)
= µ

(( ⋃
i∈N

Ai︸ ︷︷ ︸
∈F

)
∪
( ⋃

i∈N

Fi

)
︸ ︷︷ ︸

∈N

)

..= µ
( ⋃

i∈N

Ai

)
=
∑
i∈N

µ(Ai)

=..
∑
i∈N

µ(Ai ∪ Fi)

(ii) Is µ the unique extension of µ to F?
Suppose that ν is another extension of µ to F . Then, for any A ∪ F ∈ F :

ν(A ∪ F ) = µ(A) =.. µ(A ∪ F ).

(iii) Is µ complete? We wish to show that every µ-negligible set L is an element
of F .

◦ Since L is µ-negligible i.e. L ∈ Nµ, there exists some µ-null set M ∈ F
s.t. L ⊆ M .

◦ M is of the form M = A ∪ F for some A ∈ F and F ∈ Nµ.
◦ Since F is µ-negligible, ∃N ∈ Nµ s.t. µ(N) = 0 and F ⊆ N .
◦ Thus, M = (A ∪ F ) ⊆ (A ∪N).
◦ Note that 0 = µ(M) = µ(A ∪ F ) ..= µ(A) so A is a µ-null set, and

in particular an element of Nµ ∩ F . We’ve already shown that Nµ

(which we denoted by N ) is closed under countable unions so M ⊆
(A ∪N) ∈ Nµ.

◦ Thus, L ⊆ M ⊆ (A ∪N) ∈ Nµ and so L ∈ Nµ.
◦ Then we can write L = ∅ ∪ L, where ∅ ∈ F and L ∈ Nµ, so L ∈ F .

■

Definition 2.5.10

• F is called the completion of F with respect to µ.

• F is the join F ∨N = σ(F ∪N ) of F and the collection of negligible sets N .
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2.6 Why Not Always F = 2X?

So far we’ve considered measures µ on an arbitrary σ-algebra F . Why have we not simply taken the
power set 2X as our σ-algebra each time? Let’s get as many measurable sets in there as possible,
right?

If our space X is at most countably infinite, then there are no issues with taking F = 2X .
However, it’s very often the case that one is interested in uncountably infinite spaces like X = R
(or R). The prototypical counterexample is the attempt to define a measure that generalises the
notion of length of an interval I ⊆ R on the entirety of 2R:

Claim It is impossible to demand that a set function µ satisfies all 4 of the following conditions:

(µ.1) µ is defined on all of 2R i.e. µ : 2R → [0,+∞].

(µ.2) µ((a, b]) = b− a

(µ.3) µ is translationally invariant i.e. if A ⊆ R, then for every x ∈ R:

µ(A) = µ(A+ x),

where A+ x ..= {a+ x : a ∈ A},

(µ.4) λ is σ-additive i.e. for any pairwise disjoint collection {Ai}i∈N ⊆ 2R:

µ
( ∞⊔

i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Conditions (µ.2–4) are non-negotiable for a function that’s supposed to capture length — the
length of an interval is the difference between their endpoints, a set’s length doesn’t change if you
translate it, and the length of a disjoint sum of intervals is simply the sum of their individual
lengths.

This leaves (µ.1), the existence of a set to which one cannot assign a notion of “size” with such
a measure µ. One such example is called a Vitali set. We construct it as follows:

2.6.1 A NON-MEASURABLE SET (VITALI SET)

Let’s define an equivalence relation ∼ on R by x ∼ y ≡ x− y ∈ Q. Denote by [x] the equivalence
class of x. It’s clear that R/ ∼ is uncountable. Now we form the set V by selecting8 a representative
from each element of Λ s.t. each representative is in (0, 1). Therefore, V ⊆ (0, 1). Consider two
rational translates V +p and V + q of V . We claim that any two rational translates of V are either
equal or disjoint.
Proof. Suppose that they aren’t disjoint. If this implies they are equal then the claim has been
proven. Let p and q be rational, and x ∈ (V + p) ∩ (V + q). Then{

x = α+ p, where α ∈ V
x = β + q, where β ∈ V

This implies that α − β = q − p ∈ Q i.e. α ∼ β. Because we constructed V in such a way that
there is only one representative (in (0, 1)) for each equivalence class, this tells us that α = β so
q − p = 0 i.e. p = q. Thus, V + p = V + q.

The above claim is equivalent to its contrapositive i.e. V +p ̸= V +q =⇒ (V +p)∩(V +q) = ∅.
Now consider the disjoint collection of translates {V +q}q∈Q∩(−1,1). Their union is clearly contained

8This supposedly relies on the Axiom of Choice.
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in (−1, 2) and it follows that:

3 = µ((−1, 2)) ⩾ µ
( ⊔

q∈Q
q∈(−1,1)

(V + q)
)

by monotonicity

(4)
=

∑
q∈Q∩(−1,1)

µ(V + q)

(3)
=

∑
q∈Q∩(−1,1)

µ(V ).

Since our infinite sum of a constant is finite, 0 = µ(V ) = µ(V + q) for every q ∈ Q ∩ (−1, 1).

∴ µ
( ⊔

q∈Q∩(−1,1)

(V + q)
)
= 0.

Now we make the following

Claim
(0, 1) ⊆

⊔
q∈Q

q∈(−1,1)

(V + q).

From this, it will follow that

1 = µ((0, 1)) ⩽ µ
( ⊔

q∈Q
q∈(−1,1)

(V + q)
)
= 0

which is a contradiction.
Proof of claim. Let x ∈ (0, 1). We wish to show that x is a rational translate of some element
of V i.e. that ∃α ∈ V and ∃q ∈ Q ∩ (−1, 1) s.t. x = α+ q.

Since x ∈ R it is certainly a member of an equivalence class [α] ∈ R/ ∼ for some α ∈ (0, 1) i.e.
x−α = q for some Q. In particular, since x ∈ (−1, 1), then x−α ∈ (−1, 1) and so q ∈ Q∩ (−1, 1)
i.e. we’ve written x = α+ q in the desired form. ■

Therefore, there does not exist
such a set function on all of 2R.

2.6.2 DAMAGE CONTROL

We’ll continue using the example of µ defined on 2R, and modify the setup (i.e. conditions (µ.1–4))
in order to avoid pathological sets that cannot be measured in the general case.

Since there exist subsets that aren’t measurable by our most natural notion of length that
generalises µ((a, b]) = b− a, we should either:

1. modify only (µ.1) by restricting the domain of µ to a proper subset of 2R — a σ-algebra
of sets to which we can meaningfully assign size, or

2. relax only (µ.4) in the sense that µ is still defined on 2R, is finitely additive, but we only
demand that µ(⊔i∈NEi) =

∑
i∈N µ(Ei) holds for certain collections of sets.

1. The first approach will be to consider a natural σ-algebra that respects9 the underlying
structure of the space. In our case, R is equipped with a (standard) topology comprising of
sets (that we call open) which give us a way to discuss locality (neighbourhoods), continuity,
and other concepts in analysis. These are the “nice” sets in R and we would like for them
(and the countable set-theoretic compositions thereof) to be measurable.

9By containing it, and hence retaining any desirable properties of the underlying structure.
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Definition 2.6.1 The Borel σ-algebra over R, denoted BR ⊆ 2R, is generated by10 the
standard topology Tstd. on R i.e.

BR = σ(Tstd.)

More generally, for any topological space:

Definition 2.6.2 The Borel σ-algebra BX of a (topological) space (X, T ) is the σ-
algebra generated by the collection of all open subsets T of X

BX = σ(T ).

Most of the measures of interest in these notes will be defined on BX . Such measures are
called Borel measures.

2. The second approach will be the topic of Chapter 3. As opposed to the first point which is
quite descriptive, this approach will be more constructive:

• One starts by defining a set function, with some ideal properties like σ-additivity, on a
simple sub-collection11 S ⊆ 2X .

• Then we extend this set function as much as we can to a larger collection — a σ-algebra
generated by the original collection S.

• Hopefully this extension is unique and those nice properties like σ-additivity carry over.

Example 2.6.3 As a spoiler for what’s to come, we’ll see that for the example of constructing
the Lebesgue measure λ a by-product of the theory is that λ is a complete, unique measure
on L (the so-called collection of Lebesgue-measurable sets) s.t. L ⊇ BR. In fact, L is the
completion of BR with respect to λ i.e. every set A ∈ L is of the form A = B ∪ F where
B ∈ BR and12 F ∈ Nλ.

Now we take a brief intermission to discuss probability measures before returning to the above at
the start of the next chapter.

2.7 Probability Measures

Definition 2.7.1 A measure µ : F → [0,+∞] with the additional property that µ(X) = 1 is called
a probability measure.

• We often denote such a measure by P instead of µ, and the underlying space X by Ω.

• By monotonicity, every A ⊆ X satisfies 0 ⩽ P(A) ⩽ P(X) = 1 so P may be written as
P : F → [0, 1].

• The triple (Ω,F ,P) is called a probability space.

10Equivalently, BR is generated by the following families: {(a, b) : a, b ∈ R}, {[a, b] : a, b ∈ R}, {(a,∞) : a ∈ R},
and {[a,∞) : a ∈ R}.

11This simple collection is what was referred to earlier when we said the σ-additivity ‘holds for certain collections
of sets’ — formalised later in Definition 3.1.1.

12Recall that Nλ is the collection of λ-negligible sets i.e. Nλ = {F ⊆ R : ∃N ∈ F with λ(N) = 0 and F ⊆ N}.
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2.7.1 DEFINING Ω AND COUNTING SUBSETS

Correctly defining the outcome space of an experiment is imperative — all subsequent calculations
depend on it. If the outcome space is finite, one can follow the sample point method to
define a discrete probability measure and compute the probabilities of events:

1. List all finitely many elementary events (or atoms) {ωi}i∈I ⊆ Ω where |I| is finite.

2. Assign “reasonable” non-negative probabilities pi to each {ωi} such that all the pi sum to 1.

3. Events A ⊆ Ω are then defined as disjoint unions of elementary events i.e.

A =
⊔
i∈I
{ωi}

4. Calculate the probability of A as the sum

P(A) =
∑
i∈I

P(ωi).

Example For the random experiment of rolling a fair die, Ω = {1, 2, 3, 4, 5, 6}, F = 2Ω and each
outcome is equally likely for a single roll i.e. ∀ω ∈ Ω: P({ω}) = 1/6. Since any A ∈ F may be
written as a disjoint union of elementary events, we have that

P(A) = P
( ⊔

ω∈A
{ω}

)
=
∑
ω∈A

P({ω}) by additivity.

When it’s inconvenient to list all the elements of the outcome space, we can rely on a computer
the techniques of combinatorial analysis to determine the number of elements in a particular subset.

Counting

Theorem 2.7.2 (Fundamental Principle of Counting) If some procedure
can be performed in n1 ways, and if, following this procedure, a second procedure
can be performed in n2 different ways, ..., and finally the kth procedure can be
performed in nk different ways; then the number of ways the procedures can be
performed in the order indicated is the product n1 · . . . · nk.

Permutations

An arrangement of a set of n objects in a given order is called a permutation13

of the objects (taken all at a time).

An arrangement of any r ⩽ n of these objects in a given order is called an r-
permutation (or a permutation of n objects taken r at a time). The number of
permutations of n objects taken r at a time is denoted P (n, r). The first element
in an r-permutation of n objects may be chosen in n different ways. The second
can be chosen in n − 1 different ways. Proceeding inductively, the rth element
may be chosen in n−(r−1) ways. Thus, by the fundamental theorem of counting

P (n, r) = n · (n− 1) · . . . · (n− (r − 1)) =
n!

(n− r)!

13Equivalently, it’s a one-to-one function from a finite set into itself.
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Partitions

Suppose that we have n objects and we wish to partition them into k distinct
groups containing n1, . . . , nk objects, respectively, where each object appears in
exactly one group and n =

∑k
j=1 nj . The number N of ways to partition the

objects as such is

N =

(
n

n1, . . . , nk

)
=

n!

n1! · . . . · nk!

Proof. N is the number of distinct arrangements of n objects in a row for a case
in which rearrangement of the objects within a group does not count.

The number of distinct arrangements of the n objects, assuming all are distinct,
is P (n;n) = n!. This is equal to the product of the number of ways of partitioning
the n objects into k groups (ignoring order within groups) and the number of
ways of ordering the n1, . . . , nk elements within each group:

n! = P (n;n) = N · (n1! · . . . · nk!)

■

(
n

n1,...,nk

)
is known as a multinomial coefficient because such terms appear in

the expansion of the multinomial term y1 + . . .+ yk raised to the power of n.

Ordered Samples

When we, for example, choose one ball after another r times from an urn of n
balls, we call the choice an ordered sample of size r.

• When sampling with replacement, there are n possible choices of ball each
time so there are nr different ordered samples of size r.

• When sampling without replacement, each ordered sample of size r is sim-
ply an r-permutation from a set of size n. Thus, the number of ordered
samples without replacement is P (n, r).

Combinations

A combination is a selection of one or more of the elements of a given set
without regard to order. A combination of n objects taken r at a time is called
an r-combination. The number of combinations of n objects taken r at a time
is the number of subsets of size r. We denote this number by C(n, r) or nCr.
The selection of r objects from a total of n objects is equivalent to partitioning
the n objects into k = 2 groups, the r selected and the n− r remaining:

C(n, r) =

(
n

r, n− r

)
=

n!

r!(n− r)!
..=

(
n

r

)
.

Permutations are for lists.
Combinations are for groups.

2.8 Independence

Let (Ω,F ,P) be a probability space.
Independence in probability is the idea that there can be separate, non-interacting sources of

randomness.

Definition 2.8.1

• Two events A,B ∈ F are independent if P(A ∩B) = P(A)P(B).
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• A collection of events {Ai}i∈I are pairwise independent if every pair of events e.g. Ai and
Aj are independent.

• A collection of events {Ai}i∈I are mutually independent if for every finite set of distinct
indices i1, . . . , in from I:

P
( n⋂

j=1

Aij

)
=

n∏
j=1

P
(
Aij

)
.

The concept of mutual independence generalises readily from sub-collections of finitely many
events to sub-σ-algebras:

Definition 2.8.2 Let {Fi}i∈I be a collection of sub-σ-algebras of F . Then the σ-algebras {Fi}i∈I
are mutually P-independent if for every finite subset J ⊆ I, and every choice of Aj ∈ Fj for
j ∈ J ,

P
( ⋂

j∈J
Aj

)
=
∏
j∈J

P(Aj).

The mutual independence of events is a special case of the mutual independence of σ-algebras.
Note that for each i ∈ I, Fi = {∅, Ai, A

c
i ,Ω} is the σ-algebra generated by Ai. The condition of

mutual independence of the Fi then reduces to that of mutual independence of the Ai.

2.9 (Naïve) Conditional Probability

I wouldn’t say ‘naïve’ is a fitting word for the concept, but neither is ‘elementary’
for I consider everything in these notes to be at least somewhat sophisticated. I
went for the lesser of two evils.

Dependence is the complementary idea to independence. We learn new things every day and
update our beliefs when confronted with new evidence. How one should update one’s beliefs that
some event will occur given new evidence pertaining to said event is a central feature in the study
of probability. This is formalised by the concept of conditional probability.

Let A,B ∈ F . Suppose that we observe B with non-zero probability P(B) > 0 and say we’re
interested in how likely A is to occur given that B has already occurred. We denote this by P(A |B).

We can appeal to the relative frequency interpretation of probability as a guiding light for the
kind of expression to expect for P(A |B). Suppose that an experiment is repeated n times and on
each trial, the occurrences of A and B are recorded — the numbers of which are A(n) and B(n)
respectively. Suppose further that we concern ourselves with only the outcomes for which B occurs
with positive probability P(B) > 0 unless stated otherwise. The proportion of times that A occurs
in these outcomes where B occurs can be written as

(A ∩B)(n)

B(n)
=

(A∩B)(n)
n

B(n)
n

n→∞−→ P(A ∩B)

P(B)
,

where the numerator and denominator are thought of as the long-running relative frequencies of
the events A ∩B and B respectively. Thus, the relationship

P(B)P(A |B) = P(A ∩B)

defines the conditional probability of any A given the event B.
In the case that B is P-null, so is A ∩ B and the relationship 0 ∗ P(A |B) = 0 tells us nothing

about how to determine P(A |B).
Since we’re considering the fraction of outcomes where A occurs within the repeated trials where

B has already occurred, one would naturally expect that P(B |B) = 1. Since P is a probability
measure on F , it’s an immediate consequence that so too is P(· |B) : F → [0, 1], defined for all
A ∈ F by

P(A |B) =
P(A ∩B)

P(B)
.
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Definition 2.9.1 Given an event B ∈ F with P(B) > 0, the map P(· |B) : F → [0, 1] defined for
all A ∈ F by

P(A |B) =
P(A ∩B)

P(B)

is called the naïve conditional probability on F given B.

Corollaries

Corollary 2.9.2 (Multiplication Law) For any events A and B:

P(A ∩B) = P(A |B)P(B).

Alternative Characterisation of Independence

Given P(· |B) : F → [0, 1] with P(B) > 0, if A,B are independent, then

P(A |B) =
P(A ∩B)

P(B)
=

P(A)P(B)

P(B)
= P(A).

This gives us an alternate characterisation of independence. Two events A and B
are independent if the knowledge that one occurs gives us no information about
whether the other does (or doesn’t) i.e.

P(A |B) = P(A) and P(B |A) = P(B).

It’s possible to calculate an unconditional probability by conditioning on some
events that make the calculation simpler:

Corollary 2.9.3 (Law of Total Probability) Let B1, . . . , Bn be a partition
of Ω. Then for any event A ∈ F :

P(A) =

n∑
i=1

P(A |Bi)P(Bi).

The choice of partition is important and can turn a complicated problem into
smaller, simpler sub-problems.

Proof.

P(A) = P(A ∩ Ω)

= P

(
A ∩

(
n⊔

i=1

Bi

))

= P

(
n⊔

i=1

(A ∩Bi)

)

=
n∑

i=1

P(A ∩Bi) since the A ∩Bi are disjoint

=

n∑
i=1

P(A |Bi)P(Bi)

■

Bayes’ Rule

Suppose that instead of finding P(A |Bi), we seek the probability of a “cause” Bj

given an “effect” A. Bayes’ rule is very useful in this case.

Theorem 2.9.4 (Bayes’ Rule) For a partition B1, . . . , Bn of Ω and some event
A,

P(Bj |A) =
P(A |Bj)P(Bj)
n∑

i=1

P(A |Bi)P(Bi)

.
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Proof. From the definition of conditional probability

P(Bj |A) =
P(Bj ∩A)

P(A)

=
P(A |Bj)P(Bj)

P(A)
by the multiplication law

=
P(A |Bj)P(Bj)
n∑

i=1

P(A |Bi)P(Bi)

by the law of total probability.

■

Bayes’ rule is the fundamental ingredient for a subjective approach to theories of
evidence and learning. Its derivation is very simple but there’s massive ongoing
debate as to how it’s used in practise.

According to this point of view, an individual’s belief of some world event H
can be coded into probabilities P(H) and given some evidence E, our beliefs are
modified P(H |E).

Since P(E |H) is usually easier to calculate, Bayes rule comes in handy:

P(H |E) =
P(E |H)P(H)

P(E |H) P(H)︸ ︷︷ ︸
a prior

+P(E |Hc)P(Hc)

(Using Bayes’ rule and the law of total probability can help update our beliefs
based on observed evidence.)
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CHAPTER 3

Constructing Measures

This chapter will explore a1 systematic way to construct (probability) measures.

3.1 Terminology

Definition 3.1.1 Let C, C1 and C2 be any collections of subsets of X s.t. C1 ⊆ C2.

• A set function ν : C → [0,+∞] is:

◦ additive within C if for any n ⩾ 1 and any pairwise disjoint collection {Ai}ni=1 s.t.2⊔n
i=1Ai ∈ C, we have

ν
( n⊔

i=1

Ai

)
=

n∑
i=1

ν(Ai).

◦ σ-additive within C if we can replace n with ∞.

• Given any two set functions νi : Ci → [0,+∞] for i = 1, 2, we say that ν2 is an extension
of ν1 if

∀A ∈ C1 : ν2(A) = ν1(A).

This is denoted by ν2
∣∣∣
C1

= ν1.

3.2 Chapter Roadmap

• Recall the idea of covering a Euclidean subset and taking the limit to get a notion of area.

0. Introduce the notion of an outer measure µ∗ : 2X → [0,+∞].

◦ Let K ⊇ {∅, X} be a cover of X. Define a particular outer measure ρ∗ : 2X → [0,+∞],
from a set function ρ : K → [0,+∞], for any A ⊆ X by:

ρ∗(A) ..= inf

{ ∞∑
i=1

ρ(Ki) : {Ki}i∈N ⊆ K, A ⊆
⋃
i∈N

Kn

}

where ρ(∅) = 0.

• Introduce the collection Σ of Carathéodory measurable sets with respect to any outer measure
µ∗.

◦ Show that Σ is a σ-algebra.
◦ Show that the restriction of any outer measure µ∗ : 2X → [0,+∞] to Σ i.e. µ∗

∣∣
Σ

is a
measure.

1. Define a simple collection S (a semi-algebra) of subsets of X that covers X.

• This will be the collection on which we understand how to prescribe some notion of size
with a function — our goal being to extend such a function to a measure.

1The Riesz representation theorem seems to offer another way to define measures that I may include at a later
date.

2C is any collection so it need not be closed under finite unions (nor countably infinite unions in the definition
of σ-additivity) — that’s why we demand that the unions are also in C.
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2. Introduce the algebra Alg(S) generated by S, and provide an explicit representation for any
A ∈ Alg(S):

A ∈ Alg(S) ⇐⇒ ∃{Ej}nj=1 ⊆ S s.t. A =
n⊔

j=1

Ej .

3. Define a pre-pre-measure (additive and σ-additive function) µ0 on S, and a pre-measure on
any algebra A.

4. Show that an additive (resp. σ-additive) function on S can be uniquely extended to an
additive (resp. σ-additive) function on Alg(S).

• i.e. a pre-pre-measure on S can be extended uniquely to a pre-measure on Alg(S).
• This depends on a few facts about continuity from below and above of σ-additive func-

tions.

5. Then we prove that a pre-measure µ0 on an algebra A can be extended to a measure µ∗
∣∣
Σ
,

where Σ is a σ-algebra that contains A, and the measure µ∗
∣∣
Σ

is complete.

6. Under the assumption of σ-finiteness, the extended measure is unique.

• The Monotone Class Theorem (a similar structure theorem to the π-λ Theorem) is useful
here.

7. Finally, combine all of the above using the following:

• Define µ∗ as the aforementioned infimum (in 0.) but replace ρ with the pre-measure µ0
on Alg(S).

◦ µ0 uniquely extends the pre-pre-measure ν : S → [0,∞] to Alg(S).

• Then it follows that µ = µ∗
∣∣∣
Σ

is a complete and unique measure extending µ0 (and
hence ν) to Σ.

3.3 Approximation by Covering

It’s helpful to recall the procedure used in calculus to define the area of a bounded region E ⊆ R2.
Subdivide the plane into a collection K = {Kn}n∈N of (almost)3 disjoint rectangles.

• Approximate the area of E from below by summing the areas of rectangles in the grid that
are subsets of E — this is the inner area approximation.

• Approximate the area of E from above by summing the areas of rectangles in the grid that
intersect E — this is the outer area approximation.

3The shared edge of adjacent rectangles will intersect but they have no Euclidean area so they don’t count.
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E

Figure 3.1: The inner and outer area approximations of E for a fixed grid size (each Kn has the
same area).

Now we can vary over all possible available coverings in K to find the inner area and outer area of
E:

inn(A) = sup

{
area

( ⋃
i∈N

Ki

)
: {Ki}i∈N ⊆ K, A⊇

⋃
i∈N

Ki

}

out(A) = inf

{
area

( ⋃
i∈N

Ki

)
: {Ki}i∈N ⊆ K, A⊆

⋃
i∈N

Ki

}
If these two values are equal, the common value is the “area” of E. An astute observation is that one
can characterise the inner area in terms of the outer area, thus we only need one of these concepts
moving forward. I’ll explain how we get such a relationship in the general case in Section 3.4,
but the special case of Euclidean area offers a very simple manipulation:

Recall that the plane has been subdivided into disjoint rectangles and in this case, area( · ) is
additive on K — this property is not something we’ll be able to guarantee in the general case.
Because of this, for B ⊆ A we can express area(A \B) = area(A)− area(B).

For notational convenience, let K ..= ⊔i∈NKi be any cover that contains E, and let J be a
corresponding union of elements of K such that K \ J covers K \ E.

E

K

J

The inner area of E can then be expressed as:

inn(E)

= sup {area(J) : J ⊆ E}
= sup {area(K \ (K \ J)) : K \ E ⊆ K \ J}
= sup {area(K)− area(K \ J) : K \ E ⊆ K \ J}
= area(K)− inf {area(K \ J) : K \ E ⊆ K \ J}
= out(K)− out(K \ E)

This establishes the following relationship:

out(K)− out(K \ E) = inn(E) = out(E) i.e. out(K) = out(E) + out(K \ E).

3.3.1 OUTER MEASURE

The abstract generalisation of outer area is outer measure. The set of rectangles we can use to
cover a set are replaced by a more general concept:
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Definition 3.3.1 A covering of X is a countable collection K = {Kn}n∈N ⊆ 2X of sets such that

X ⊆
⋃
n∈N

Kn.

Definition 3.3.2 An (abstract) outer measure on X is a map µ∗ : 2X → [0,+∞] s.t.

(i) µ∗(∅) = 0

(ii) If E ⊆ F , then µ∗(E) ⩽ µ∗(F ).

(iii) If {Ei}i∈N ⊆ 2X , then

µ∗
( ∞⋃

i=1

Ei

)
⩽
∞∑
i=1

µ∗(Ei).

Proposition 3.3.3 Let {∅, X} ⊆ K ⊆ 2X , and ρ : K → [0,+∞] be a set function s.t. ρ(∅) = 0.
Then, for any A ∈ 2X :

ρ∗(A) ..= inf

{ ∞∑
i=1

ρ(Ki) : {Ki}i∈N ⊆ K, A ⊆
⋃
i∈N

Ki

}

is an example of an outer4 measure on X.

Proof.

(i) We can cover ∅ by {Ki}i∈N ⊆ K where Ki = ∅ for all i ∈ N. It’s clear that

ρ∗(∅) ⩽
∞∑
i=1

ρ(∅) = 0.

Any collection {Ki}i∈N ⊆ K satisfies ∅ ⊆ Ki for all i ∈ N and so qualifies as a cover of ∅.
Then the non-negativity of ρ implies that

∞∑
i=1

ρ(Ki) ⩾ 0.

In particular, the infimum ρ∗(∅) over all such coverings of ∅ is ⩾ 0. Therefore, 0 ⩽ ρ∗(∅) ⩽ 0.

(ii) Let E ⊆ F ⊆ X. We wish to show that ρ∗(E) ⩽ ρ∗(F ). Take any covering {Ki}i∈N ⊆ K of
F . Such a covering is also a cover of E. Note that the family of coverings of E is at least as
large as the family of coverings of F . Thus,

ρ∗(E) ..= inf
covers
of E

{∑
i∈N

ρ(Ki)

}
⩽ inf

covers
of F

{∑
i∈N

ρ(Ki)

}
=.. ρ∗(F ).

(iii) Assume that ρ∗(Ei) <∞ for all i. Otherwise, the inequality we wish to prove

ρ∗
( ⋃

i∈N
Ei

)
⩽
∑
i∈N

ρ∗(Ei)

4If we chose to pursue inner measure instead, we would define something like

ρ∗(A) ..= sup

{
∞∑
i=1

ρ(Ki) : {Ki}i∈N ⊆ K, A⊇
⋃
i∈N

Ki

}
.
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is trivial (since the right-hand side = +∞). Fix some ε > 0. Since the infimum ρ∗(Ei) is
finite by assumption for each i, we can find a covering that almost attains the infimum i.e.
∃{Kij}j∈N ⊆ K s.t. Ei ⊆

⋃
j∈NKij and

ρ∗(Ei) ⩽
∑
j∈N

ρ(Kij) ⩽ ρ∗(Ei) +
ε

2i
.

Letting i vary as well, the {Kij}i,j ⊆ K form a covering of the set E (since each {Kij}j covers
Ei).

∴ ρ∗(E) ⩽
∑

(i,j)∈N2

ρ(Kij) =
∑
i∈N

(∑
j∈N

ρ(Kij)
)

⩽
∑
i∈N

(
ρ∗(Ei) +

ε

2i

)
=
∑
i∈N

ρ∗(Ei) + ε.

This inequality holds for all ε > 0 so let ε ↓ 0 to conclude that ρ∗ is σ-sub-additive.

■

The outer measure ρ∗ defined above tells us that given a cover of X, and some set function
assigning sizes to such sets in the cover, we can cover A in all the different ways possible, assign a
number to the “size” of each combination, and then take the infimum of these sums. This lines up
with our motivating intuition at the chapter’s start — approximating area from outside and inside
of a set.

3.4 Outer Measurability and Carathéodory Extension

Consider E ⊆ X. Suppose that µ∗(X) < ∞, and let E ⊆ X. The outer measure of E, given by
µ∗(E), is finite by monotonicity of µ∗.

Looking back at the specific case of area in R2, we derived the expression out(K) = out(E) +
out(K \E) when the inner and outer measures of a bounded region E ⊆ R2 are equal. This turns
out to be particularly important in the general case when characterising measurability:

For any set E ⊆ X, sub-additivity of an outer measure µ∗ on 2X gives us the inequality

µ∗(X) ⩽ µ∗(E) + µ∗(X \ E).

We’ve assumed that µ∗(X) is finite, and so µ∗(X \E) is finite by monotonicity (since X \E ⊆ X).
Thus, we may meaningfully subtract µ∗(X \ E) from both sides of the inequality to get

µ∗(X)− µ∗(X \ E) ⩽ µ∗(E).

This is a lower bound for the outer measure of E. The LHS is analogous to the expression for
the inner area in the plane — a quantity that serves as “dual” to the outer measure by virtue of
subtracting the outer measure of E’s absolute complement in X from the outer measure of X. Let’s
define it to be the inner measure µ∗(E) of E. Thus, our inequality is the very intuitive statement
that the inner measure (which approximates a set from inside) is at most the outer measure (the
approximation from the outside):

µ∗(E) ⩽ µ∗(E).

Once again, if the inner and outer measures of E are equal i.e.

µ∗(E)︷ ︸︸ ︷
µ∗(X)− µ∗(X \ E) = µ∗(E)

then rearranging, which is permitted because µ∗(X) <∞, gives

µ∗(X) = µ∗(E) + µ∗(X \ E). (CaraX)
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This equation says that our set E splits X “nicely” without introducing any “extra” outer measure
in the split.

This requirement of splitting nicely was generalised by Carathéodory from just splitting X
(which required µ∗(X) <∞) to all subsets A ⊆ X:

Definition 3.4.1 A set E ⊆ X is said to be µ∗-measurable (or Carathéodory-measurable)
if it satisfies Carathéodory’s splitting criterion i.e. that for every A ⊆ X:

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

Definition 3.4.2 (Terminological remarks)

• Note that A∩Ec = A\E, and in (CaraX) we note that µ∗(E) = µ∗(X ∩E) so the expression
in (CaraX) is the special case of our Carathéodory criterion for just X.

• The Carathéodory criterion can be interpreted as E being µ∗ measurable iff it has a sufficiently
nice boundary, amenable to being covered by µ∗. The analogy I have in my head is that
coastlines have fractal dimension, so any subset of the surface of the Earth’s surface with
part of a coastline as its boundary would not satisfy the criterion — since any splitting at a
coastline would introduce extra measure. Maybe this is a poor analogy?

(!!) The “⩽” part of Carathéodory’s criterion is just sub-additivity. Verifying the inequality in
the reverse direction is sufficient for demonstrating a set is µ∗-measurable.

Theorem 3.4.3 (Carathéodory Extension) Let µ∗ be an outer measure on X.

• The set of µ∗-measurable sets Σ is a σ-algebra, and

• the restriction µ ..= µ∗
∣∣
Σ

is a complete measure.

Proof.

• Σ is a σ-algebra over X:

(1) For any A ⊆ X, µ∗(A ∩ ∅) + µ∗(A ∩ ∅c) = µ∗(∅) + µ∗(A ∩X) = µ∗(A). Thus, ∅ ∈ Σ.
(2) Carathéodory’s criterion is symmetric in A and Ac so A ∈ Σ =⇒ Ac ∈ Σ.
(3′) According to (!!), we need only verify the stated inequality. First, I’ll do this for two

sets E,F ∈ Σ. Let A ⊆ X. Then

µ∗(A)
E∈Σ
= µ∗(A ∩ E) + µ∗(A ∩ Ec)

F∈Σ
= µ∗((A ∩ E) ∩ F ) + µ∗((A ∩ E) ∩ F c)

+ µ∗((A ∩ Ec) ∩ F ) + µ∗((A ∩ Ec) ∩ F c)

= µ∗(A ∩ (E ∩ F )) + µ∗(A ∩ (E ∩ F c)) + µ∗(A ∩ (Ec ∩ F )) + µ∗(A ∩ (E ∪ F )c)
⩾ µ∗(A ∩ ((E ∩ F ) ∪ (E ∩ F c) ∪ (Ec ∩ F ))) + µ∗(A ∩ (E ∪ F )c) by sub-add

= µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )c)

Thus, E ∪ F ∈ Σ.
This fact extends to closure under finite unions by proceeding inductively so Σ is an
algebra.

(3) Now consider a countable collection {Ei}i∈N ⊆ Σ. We wish to show that Σ ∋ E ..=⋃
i∈NEi i.e. that for any A ⊆ X:

µ∗(A) ⩾ µ∗
(
A ∩

( ∞⋃
i=1

Ei

))
+ µ∗

(
A ∩

( ∞⋃
i=1

Ei

)c)
An intermediate factoid will let us construct a pairwise disjoint collection {Fi}i∈N from
the {Ei}i∈N which has the same union, but facilitates simpler computation because we
won’t need to worry about overlapping sets:
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Lemma 3.4.4 If F1, . . . , Fn ∈ Σ are pairwise disjoint, then for any A ⊆ X:

µ∗
(
A ∩

( n⋃
i=1

Ei

))
= µ∗(A ∩ E1) + . . .+ µ∗(A ∩ En).

Proof. It’s sufficient to prove for E1 and E2. Let E1 ∩E2 = ∅. Since E1 ∈ Σ, ∀A ⊆ X:

µ∗(A ∩ (E1 ∪ E2)) = µ∗((A ∩ (E1 ∪ E2)) ∩ E1) + µ∗((A ∩ (E1 ∪ E2)) ∩ Ec
1)

= µ∗((A ∩ E1 ∩ E1) ∪ (A ∩ E1 ∩ E2))

+ µ∗((A ∩ E1 ∩ Ec
1) ∪ (A ∩ Ec

1 ∩ E2︸ ︷︷ ︸
E2⊆Ec

1

))

= µ∗(A ∩ E1) + µ∗(A ∩ E2).

�

So now define {Fi}i∈N by F1 = E1, and for i > 1:

Fi = Ei \
( i−1⋃

n=1

Ei

)
.

Since Σ is an algebra, Σ ∋
⋃n

i=1 Fi. Thus,

µ∗(A) = µ∗
(
A ∩

n⋃
i=1

Fi

)
+ µ∗

(
A ∩

( n⋃
i=1

Fi

)c)
3.4.4
=

n∑
i=1

µ∗(A ∩ Fi) + µ∗
(
A ∩

( n⋃
i=1

Fi

)c)
⩾

n∑
i=1

µ∗(A ∩ Fi) + µ∗
(
A ∩

( ∞⋃
i=1

Fi

)c)
by monotonicity.

This inequality holds for all n. Let n→∞ to yield

µ∗(A) ⩾
∞∑
i=1

µ∗(A ∩ Fi) + µ∗
(
A ∩

( ∞⋃
i=1

Fi

)c)
⩾ µ∗

( ∞⋃
i=1

(A ∩ Fi)
)
+ µ∗

(
A ∩

( ∞⋃
i=1

Fi

)c)
by σ-sub-additivity

= µ∗
(
A ∩

( ∞⋃
i=1

Fi

))
+ µ∗

(
A ∩

( ∞⋃
i=1

Fi

)c)
.

Therefore, Σ is a σ-algebra.

• µ ..= µ∗
∣∣
Σ

is a measure:

Since we’ve already shown that µ∗(∅) = 0 and ∅ ∈ Σ, it follows that µ(∅) = 0. All that
remains to demonstrate is σ-additivity of µ ..= µ∗

∣∣
Σ

i.e. for any pairwise disjoint collection
{Ei}i∈N ⊆ Σ:

µ
( ∞⋃

i=1

Ei

)
=
∞∑
i=1

µ(Ei).

We already know that µ∗ is countably-sub-additive i.e.

µ
( ∞⋃

i=1

Ei

)
..= µ∗

( ∞⋃
i=1

Ei

)
⩽

∞∑
i=1

µ∗(Ei) =..
∞∑
i=1

µ(Ei).
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It remains to demonstrate the reverse inequality. Consider 3.4.4 with A = X:

µ∗
( ∞⋃

i=1

Ei

)
⩾ µ∗

(
X ∩

( n⋃
i=1

Ei

))
3.4.4
= µ∗(X ∩ E1) + . . .+ µ∗(X ∩ En).

This holds for all n ∈ N and so the inequality follows.

• µ is a complete measure:

We wish to show that any subset B of a µ-null set N ∈ Σ is also an element of Σ. Let A ⊆ X.

◦ Since µ∗ is monotone, notice that µ∗(B) ⩽ µ∗(N) = 0.
◦ Since (A ∩B) ⊆ B, its outer measure is also zero. Thus,

µ∗(A ∩B) + µ∗(A ∩Bc) = µ∗(A ∩Bc) ⩽ µ∗(A).

■

The restriction theorem above works for any outer measure µ∗.

It’s good to know that the above theorem holds so generally. However, if we construct an
outer measure µ∗ on X from a set function ρ on a cover K ⊇ {∅, X} of X, like we did with ρ∗ in
Proposition 3.3.3, then there’s no guarantee that µ extends ρ. We need some extra structure for
ρ and K.

3.5 Refined Carathéodory Extension

In practice, one begins with a particular class of set functions ν (which will be referred to as pre-
pre-measures) whose behaviour we understand on a simple collection of objects S (a semi-algebra)
that covers X.

The following example inspires the subsequent definition:

Example Consider X = R and the collection of half-open intervals

S = {(a, b] : a, b ∈ R} ∪ {(a,∞) : a ∈ R} ∪ {(−∞, b] : b ∈ R} ∪ {∅}.

Note that this collection is closed under finite intersections i.e. all of the following are elements of
S:

• (a, b] ∩ (−∞, c] =


∅, if c ⩽ a

(a, c], if a < c < b

(a, b], if c ⩾ b

• (a, b] ∩ (c,∞) =


(a, b], if c ⩽ a

(c, b], if a < c < b

∅, if c ⩾ b

• (−∞, b] ∩ (a,∞) =

{
(a, b], if a < b

∅, if b ⩽ a

• and, trivially, for any A ∈ S : A ∩ ∅ = ∅ ∈ S.
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Both algebras and σ-algebras demand closure under complementation but this motivating example
exhibits slightly weaker behaviour. Instead of Ac ∈ S, we instead have that, for example

(a, b]c = (−∞, a]︸ ︷︷ ︸
∈S

⊔ (b,+∞)︸ ︷︷ ︸
∈S

is a disjoint union of elements of S. The same holds for all other elements of S:

• (−∞, b]c = (b,∞) ∈ S

• ∅c = R = (−∞, a]︸ ︷︷ ︸
∈S

⊔ (a,+∞)︸ ︷︷ ︸
∈S

for any a ∈ R.

• (a,+∞)c = (−∞, a] ∈ S.

Thus, S is closed under complements being expressible as a disjoint union of elements of S. This
property looks like it’ll be compatible with an additive set function µ0 as we now have a way to
express µ0(Ac) as a sum

∑n
j=1 µ0(Ej) of the values of its disjoint “pieces.”

Definition 3.5.1 A collection S ⊆ 2X is called a semi-algebra if the following hold:

• ∅, X ∈ S

• S is closed under finite intersections i.e. A,B ∈ S =⇒ A ∩B ∈ S.

• If A ∈ S, then Ac =
n⊔

j=1

Ej where {Ej}n1 ⊆ S.

Our goal is to define a measure µ (on a suitable σ-algebra) that extends ν. We’ll do this by first
extending ν to a set function on the algebra Alg(S) generated by S. Then we will define an outer
measure µ∗ (using ν) in the same spirit as the last section, and finally restrict to get µ. Since our
end goal is a measure, we must necessarily have σ-additivity being carried through both extensions.
Since neither domain of ν and µ0 are σ-algebras, we must take care to specify the sense in which
both maps are σ-additive.

Definition 3.5.2 Let C ⊆ 2X . A set function ξ : C → [0,∞] is a measure on C if:

(a) ξ is additive within C,

(b) ξ is σ-additive within C.

Remarks 3.5.3 Since (finite additivity + σ-sub-additivity) is equivalent to σ-additivity, one can
relax either:

• (a) to ξ(∅) = 0, or

• (b) to σ-sub-additivity,

but not both at the same time!

Thus, I’ll define:

Definition 3.5.4

• ν is called a pre-pre-measure on a semi-algebra S if it’s a measure on S.

• µ0 is called a pre-measure on an algebra A if it’s a measure on A.
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3.5.1 EXTENSION FROM S TO Alg(S)

Important pedagogical point: When it comes to the construction of measures, we’ll see that the
algebra generated by a semi-algebra is very simple — one can explicitly represent all sets in such
an algebra as a disjoint union of finitely many semi-algebra elements. This is not the case for a
σ-algebra generated by a semi-algebra — we have no idea what the sets look like i.e. there is no
explicit representation.

Without an explicit representation, proving that certain properties hold for all sets in σ(S)
must rely on techniques that don’t leverage such an explicit representation. This will be one of
the major difficulties of extending the set function from a semi-algebra to a σ-algebra generated
by said semi-algebra.

�

Lemma 3.5.5 Let S ⊆ 2X be a semi-algebra. Denote by Alg(S) the algebra generated by S.
Then

Alg(S) =

{⊔
i∈I

Si : I-finite, {Si}i∈I ⊆ S disjoint

}
.

Proof. Denote the collection on the right side by ∆. It’s clear that S ⊆ ∆ because one can
take any Si ∈ S, and let I be a singleton. If it can be shown further that ∆ is an algebra, then
Alg(S) ⊆ ∆.

(i) X ∈ S =⇒ X ∈ ∆

(ii) Let
⊔
i∈I

Si and
⊔
j∈J

Tj be two elements of ∆. Then

(⊔
i∈I

Si

)
∩
( ⊔

j∈J
Tj

)
=

⊔
(i,j)∈I×J

Si ∩ Tj

which is an element of ∆ since S is closed under finite intersections, and {Si∩Tj}(i,j)∈I×J ⊆ S
is a finite, disjoint collection.

(iii) Is ∆ closed under complementation? Let
⊔

i∈I Si ∈ ∆. Since each Si ∈ S-semi-algebra, we
may write the complement of Si as a disjoint union of finitely many sets {Sij}j∈Ji ⊆ S i.e.

Sc
i =

⊔
j∈Ji

Sij ∈ ∆

By De Morgan’s law, (⊔
i∈I

Si

)c
=
⋂
i∈I

Sc
i

(ii)
∈ ∆.

Thus, ∆ is an algebra containing S and so Alg(S) ⊆ ∆.
For the reverse inclusion, note that any element of ∆ is a disjoint union of elements of S, and

because S ⊆ Alg(S)-algebra the aforementioned disjoint union is also an element of Alg(S). ■

This representation makes our first extension theorem easier to prove:

Theorem 3.5.6 Let S be a semi-algebra on X, and ν : S → [0,+∞] a pre-pre-measure on S.
Then, there exists a pre-measure µ0 uniquely extending ν to Alg(S) which is defined by:

µ0
(⊔
i∈I

Si
)
=
∑
i∈I

ν(Si).
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Proof. First off, is µ0 well-defined?
Suppose that A ∈ Alg(S) has two distinct representations

A =
⊔
i∈I

Si =
⊔
j∈J

Tj .

We wish to show that
µ0(A) =

∑
i∈I

ν(Si) =
∑
j∈J

ν(Tj).

Since Si ⊆ A and Si ∈ S, we can see that

S ∋ Si = Si ∩A = Si ∩
⊔
j∈J

Tj =
⊔
j∈J

Si ∩ Tj︸ ︷︷ ︸
∈S

.

By the additivity of ν on S, we have that

ν(Si) =
∑
j∈J

ν(Si ∩ Tj)

which implies
µ0(A) =

∑
i∈I

ν(Si)

=
∑
i∈I

∑
j∈J

ν(Si ∩ Tj).

This argument was symmetric in Si and Tj so we simply repeat the same argument to get that:

µ0(A) =
∑
j∈J

ν(Tj)

=
∑
j∈J

∑
i∈I

ν(Tj ∩ Si).

An analogous statement holds for when A has both a finite and countably infinite representation,
the proof of which leverages σ-additivity in the obvious place. Thus, µ0 is well-defined.

Is µ0 a pre-measure on Alg(S)?

• Is µ0(∅) = 0?

Since ν is a (pre-pre-)measure, ν(∅) = 0 and so ν(∅) = 0.

• Is µ0 countably additive?

Let {Ai}i∈N ⊆ Alg(S) be a pairwise disjoint collection whose union A =
⊔

i∈NAi ∈ Alg(S).
We wish to show that

µ0(A) =
∑
i∈N

µ0(Ai).

Each Ai ∈ Alg(S) has a disjoint representation

Ai =
⊔
j∈Ji

Si,j .

Thus, we can write A as
A =

⊔
i∈N

⊔
j∈Ji

Si,j .

Furthermore, we demanded that A ∈ Alg(S) so it has its own disjoint union representation
as

A =
⊔
k∈K

Tk.

Leveraging the first part of this proof, we make two observations:
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(∗) S ∋ Tk = Tk ∩A = Tk ∩
⊔
i∈N

Ai =
⊔
i∈N

(
Tk ∩

⊔
j∈Ji

Sij
)
=
⊔
i∈N

⊔
j∈Ji

Tk ∩ Sij

(∗∗) S ∋ Sij = Sij ∩A =
⊔
k∈K

Sij ∩ Tk

∴ µ0(A) ..=
∑
k∈K

ν(Tk)
(∗)
=
∑
k∈K

ν
( ⊔

i∈N

⊔
j∈Ji

Tk ∩ Sij
)

=
∑
k∈K

∑
i∈N

∑
j∈Ji

ν(Tk ∩ Sij) by the σ-additivity of ν

=
∑
i∈N

∑
j∈Ji

∑
k∈K

ν(Tk ∩ Sij)

=
∑
i∈N

∑
j∈Ji

ν
( ⊔

k∈K
Sij ∩ Tk

)
by the additivity of ν

(∗∗)
=
∑
i∈N

∑
j∈Ji

ν(Sij)

=..
∑
i∈N

µ0(Ai)

Is µ0 an extension of ν? Any A ∈ S can be written as a trivial5 union of itself and so
µ0(A) = ν(A) so µ0 and ν coincide on S.

Is µ0 unique? Suppose that µ0 and µ̃0 are two such extensions. They agree on the semi-algebra
S. We wish to show they coincide on Alg(S). Let A ∈ Alg(S) so it has a representation A =

⊔
i∈I Si

where {Si}i∈I ⊆ S is a pairwise disjoint collection. Then

µ0(A)
σ-add
=

∑
i∈I

µ0(Si)

=
∑
i∈I

µ̃0(Si) since they agree on S

σ-add
= µ̃0(A).

■

Under certain conditions, we can go even further beyond and uniquely extend
this pre-measure µ0 on Alg(S) to a measure µ : σ(S) → [0,+∞].

3.5.2 EXTENSION FROM Alg(S) TO σ(S)

We’ve done most of the hard work already.
Using Proposition 3.3.3, we can replace ρ with our pre-measure µ0 and K with Alg(S) (which

is also a cover). Then µ∗ : 2X → [0,+∞] defined for all A ⊆ X by:

µ∗(A) ..= inf

{ ∞∑
i=1

µ0(Ei) : {Ei}i∈N ⊆ Alg(S), A ⊆
⋃
i∈N

Ei

}

is an outer measure.
By Theorem 3.4.3, we’ve also demonstrated that the collection Σ of Carathéodory measurable

sets (with respect to µ∗) is a σ-algebra, and that µ∗
∣∣
Σ

is a complete measure. With the extra
structure of the pre-measure µ0 on the algebra Alg(S), we can show that A ⊆ Σ:

5Is this the right word?
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Let A ∈ A and E ⊆ X. We wish to show that A ∈ Σ. The inequality holds trivially if
µ∗(E) =∞. WLOG, assume µ∗(E) <∞. Thus, given ε > 0, we can find a covering {Ei}i∈N ⊆ A
of E that almost achieves the infimum i.e. s.t.

µ∗(E) ⩽
∑
i∈N

µ0(Ei) ⩽ µ∗(E) + ε.

In particular, Ei ∩ A ∈ A and (E ∩ A) ⊆
⋃

i∈NEi ∩ A i.e. {Ei ∩ A}i∈N is a covering of E ∩ A.
Therefore,

µ∗(E ∩A) ⩽
∑
i∈N

µ0(Ei ∩A).

By the same logic,
µ∗(E ∩Ac) ⩽

∑
i∈N

µ0(Ei ∩Ac).

Then
µ∗(E ∩A) + µ∗(E ∩Ac) ⩽

∑
i∈N

µ0(Ei ∩A) +
∑
i∈N

µ0(Ei ∩Ac)

=
∑
i∈N

µ0((Ei ∩A) ⊔ (Ei ∩Ac)) by additivity

=
∑
i∈N

µ0(Ei)

⩽ µ∗(E) + ε by construction.

Let ε ↓ 0 to conclude that A ∈ Σ.
Since A ⊆ Σ and Σ is a σ-algebra, it follows that σ(A) ⊆ Σ.
What remains is to show that µ∗

∣∣
Σ

is a unique extension of µ0.

IS IT AN EXTENSION?

Let A ∈ Alg(S). If we let E1 = A ∈ Alg(S) and Ei = ∅ ∈ Alg(S) for i > 1, then {Ei}i∈N is a cover
of A. Therefore,

µ∗(A) ⩽
∑
i∈N

µ0(Ei) = µ0(A).

For the reverse inequality, let {Ei}i∈N ⊆ Alg(S) be a covering of A. Then we can “disjointify” this
cover by defining F1 = E1 and for i > 1:

Fi = Ei \
( i−1⋃
j=1

Ej

)
.

Note that the union of the Ei and Fi is the same and they both cover A. Thus, {Fi∩A}i∈N ⊆ Alg(S)
is a pairwise disjoint collection whose union is A.

∴ µ0(A)
σ-add
=

∑
i∈N

µ0(Fi ∩A) ⩽
∑
i∈N

µ0(Fi) ⩽
∑
i∈N

µ0(Ei).

The final two inequalities follow from monotonicity of µ0. Taking the infimum over all covers
{Ei}i∈N yields the reverse inequality µ0(A) ⩽ µ∗(A).

∴ µ∗
∣∣
Alg(S) = µ0.
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3.5.3 UNIQUENESS OF OUR EXTENSION

We’ll prove uniqueness on σ(Alg(S)). This will require the further assumption of σ-finiteness. The
reason for this is to break up each A ∈ σ(Alg(S)) into “finite pieces” so a statement about the
equality can be made by passing through a limit.

Proposition 3.5.7 Suppose that µ1, µ2 : σ(Alg(S)) → [0,+∞] are two measures extending a
measure µ0 : Alg(S)→ [0,+∞] s.t.

µ1
∣∣
Alg(S) = µ2

∣∣
Alg(S),

and that both measures are σ-finite on X. Then µ1 = µ2.

Proof. Since µ1 is σ-finite on X, and because Alg(S) is a cover of X, there exists a sequence
{Ei}i∈N ⊆ Alg(S) s.t. X =

⋃
i∈NEi and µ1(Ei) < ∞ for every i ∈ N. Since µ1 and µ2 coincide

on Alg(S), they coincide on every Ei in particular, and so µ1 is σ-finite on X iff µ2 is σ-finite on
X.

The rest of the proof relies on the concepts of a monotone class, and the characterisation of
σ-additive functions by continuity from above/below of σ-additive functions.

Monotone Classes

Definition 3.5.8 A collectionM⊆ 2X is called a monotone class if:

• M is closed under increasing limits i.e.

If {Aj}j∈N ⊆M is s.t. Aj ⊆ Aj+1 for every j, then A ..=
⋃
j∈N

Aj ∈M.

• M is closed under decreasing limits i.e.

If {Bj}j∈N ⊆M is s.t. Bj ⊇ Bj+1 for every j, then B ..=
⋃
j∈N

Bj ∈M.

The intersection of any collection of monotone classes is also a monotone class. Thus, we
introduce the notion of the monotone class generated by a collection C ⊆ 2X , denoted by M(C),
as the intersection of all monotone classes containing C.

Theorem 3.5.9 (Monotone Class Theorem) Let A ⊆ 2X be an algebra. ThenM(A) = σ(A).

Continuity From Above/Below

Let C ⊆ 2X .

Definition 3.5.10 A set function ξ : C → [0,+∞] is called

• continuous from below at E ∈ C if for any increasing sequence C ⊇ {Ei}i∈N ↑ E ..=⋃
i∈NEi, then we have that

ξ(En)
n→∞−→ ξ(E).

• continuous from above at E ∈ C if for any decreasing sequence C ⊇ {Ei}i∈N ↓ E ..=⋂
i∈NEi s.t.

∃N0 ∈ N s.t. ξ(EN0) <∞,

then we have that
ξ(En)

n→∞−→ ξ(E).

• continuous at E if ξ is both continuous from below and above at E.
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Remarks 3.5.11

• Whenever there is no explicit reference to a set, any mention of continuity from be-
low/above is a blanket reference applying to all sets in the domain of ξ.

• The stipulation of the finiteness condition after some point in the definition of continuity
from below at E is to avoid a scenario like the following:

Example Let X = R and consider λ (the measure extending the notion of length on R).
Let En = [n,+∞). It’s clear that λ(En) =∞ for every n ∈ N. We have that⋂

n∈N
En = ∅

and we note that λ(∅) = 0. However,

λ(En)
n→∞
̸−→ λ(∅).

Lemma 3.5.12 Let A ⊆ 2X be an algebra, and ξ : A → [0,∞] be additive on A. Then,

1. If ξ is σ-additive, then ξ is continuous at E for all E ∈ A.

2. If ξ is continuous from below, then ξ is σ-additive.

3. If ξ is continuous from above at ∅ and ξ is finite on X, then ξ is σ-additive.

Proof.

1. Suppose that ξ is σ-additive.

• We wish to show that ξ is continuous from below at any E ∈ A.
Consider any increasing sequence A ⊇ {En}n∈N ↑ E. By disjointification, we con-
struct a pairwise disjoint sequence {Fn}n∈N with the same union as the En. This allows
us to leverage the σ-additivity of ξ. Since the En are increasing, our Fn take the sim-
plified form F1 = E1 and Fn = En \ En−1. Note that

n⊔
j=1

Fj = F1 ⊔
⊔
j⩾2

Fj

= F1 ⊔
⊔
j⩾2

(Ej \ Ej−1)

= E1 ⊔ (E2 \ E1) ⊔ . . . ⊔ (En \ En−1)

= En

Then, we conclude that

ξ(E) = ξ
( ⋃

n∈N
En

)
= ξ
( ⊔

n∈N
Fn

)
σ-add
=

∑
n∈N

ξ(Fn)

= lim
n→∞

n∑
j=1

ξ(Fj)

= lim
n→∞

ξ
( n⊔

j=1

Fj

)
by additivity

= lim
n→∞

ξ(En)
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• We wish to show that ξ is continuous from below at any E ∈ A. Consider any decreasing
sequence A ⊇ {En}n∈N ↓ E, that after some point N0 is finite i.e.

∃N0 ∈ N s.t. n ⩾ N0 =⇒ ξ(En) <∞.

The idea is to transform the decreasing sequence into an increasing one.

E1

. . .
EN0

EN0+1

EN0+2

. . .

E

G1
..= EN0 \ EN0+1

G2
..= EN0 \ EN0+2

Figure 3.2: A visualisation of the construction of our increasing sequence.

Note that G1, G2 ∈ A. Proceeding inductively, define

Gk
..= EN0 \ EN0+k ∈ A.

This sequence A ⊇ {Gk}k∈N ↑ (EN0 \ E). Thus, by the first part

ξ(Gk) ↑ ξ(EN0 \ E).

Writing it out more explicitly,

lim
k→∞

(ξ(EN0)− ξ(EN0+k)) = lim
k→∞

ξ(EN0 \ EN0+k) = ξ(EN0 \ E) = ξ(EN0)− ξ(E),

the first and final equality of which are possible thanks to µ(EN0) <∞ and the mono-
tonicity of ξ. Therefore, ξ is continuous from above.

2. Let ξ be continuous from below. Take any set E =
⊔

k∈N ∈ A where A ⊇ {Ek}k∈N ↑ E is a
pairwise disjoint increasing sequence. By monotonicity, for any n:

ξ
( n⊔

k=1

Ek

)
⩽ ξ(E).

The left-hand side is equal to
∑n

k=1 ξ(Ek) by additivity and taking the limit as n→∞ gives∑
k∈N

ξ(Ek) ⩽ ξ(E).

This holds generally. We haven’t used continuity from below yet — we’ll do so for the reverse
inequality:
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Consider the sequence {Fn}n∈N defined by

Fn =
n⊔

k=1

Ek.

Fn ∈ A for every n ∈ N and Fn increases to E. Since ξ is continuous from below, ξ(Fn) ↑ ξ(E).
By the additivity of ξ, the reverse inequality follows. Thus, ξ is σ-additive.

3. Suppose that ξ is continuous from above at ∅ and ξ(X) <∞. Since ξ is finite, it is therefore σ-
finite on X. Consider a sequence of pairwise disjoint sets A ⊇ {Ek}k∈N ↑ E ..=

⊔
k∈NEk. We

want to construct a sequence that decreases to the empty set. Define the sequence {Fn}n∈N
by

Fn =
⊔
k⩾n

Ek.

Despite Fn being a countable union (and algebras being closed only under finite unions), we
can write it as a finite difference of elements of A:

Fn = E \
( n−1⊔

j=1

Ej

)
.

Thus, {Fn}n∈N ⊆ A. Then Fn ↓ ∅ and ξ(F1) <∞ because F1 ⊆ X and ξ(X) <∞. Thus,

ξ(Fn)→ ξ(∅) = 0.

Now we write:

ξ(E) = ξ
(( n⊔

k=1

Ek

)
⊔
( n⊔

k>n

Ek

))
= ξ
( n⊔

k=1

Ek

)
+ ξ(Fn+1)

=

n∑
k=1

ξ(Ek) + ξ(Fn+1)

j→∞−→
∞∑
k=1

ξ(Ek) + 0

■

Proof of Proposition 3 (Continued). Fix n ∈ N. Define

Bn = {E ∈ σ(Alg(S)) : µ1(E ∩ En) = µ2(E ∩ En)}.

Note that both quantities µi(E ∩ En) are finite. Bn ⊆ σ(Alg(S)) by definition. We wish to prove
that this is in fact an equality.

If E ∈ Alg(S), then E∩En ∈ Alg(S) and so µ1(E∩En) = µ2(E∩En). Therefore, the inclusion
Alg(S) ⊆ Bn holds. It’s very difficult to show that Bn is a σ-algebra but it’s easier to show that
it’s a monotone class.

• Consider an increasing sequence Bn ⊇ {Aj}j∈N ↑ A ..=
⋃

j∈NAj . We must show that A ∈ Bn.
Since Aj ∈ Bn, we know that

µ1(Aj ∩ En) = µ2(Aj ∩ En).

Note that Aj ∩ En is increasing towards A ∩ En. Since, µ1 and µ2 are σ-additive, they are
continuous from below. Thus,

µ1(A ∩ En)
∞←j←− µ1(Aj ∩ En) = µ2(Aj ∩ En)

j→∞−→ µ2(A ∩ En)

and because the jth terms of both sequences are equal, they have the same limit. Thus,
µ1(A ∩ En) = µ2(A ∩ En) and so A ∈ Bn.
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• Consider a decreasing sequence Bn ⊇ {Bj}j∈N ↓ B ..=
⋂

j∈NBj . Since Bj ∈ Bn,

µ1(Bj ∩ En) = µ2(Bj ∩ En).

Since µ1 and µ2 are σ-additive, they are both therefore continuous from above. In particular,
µ1 is continuous from above at B ∩E i.e. for any decreasing sequence (Bj ∩En) ↓ (B ∩En),
if we have that ∃N0 ∈ N s.t. µ1(BN0 ∩ En) <∞, then

µ1(Bj ∩ En)
j→∞−→ µ1(B ∩ En).

The σ-finiteness of µ1 guarantees our finiteness condition above because for every j ∈ N:

(Bj ∩ En) ⊆ En
µ1-monotone

=⇒ µ1(Bj ∩ En) ⩽ µ1(En)

<∞.

Finally,
µ1(B ∩ En)

∞←j←− µ1(Bj ∩ En) = µ2(Bj ∩ En)
j→∞−→ µ2(B ∩ En)

and we conclude that B ∈ Bn.

Since Bn is a monotone class that contains Alg(S), it also containsM(Alg(S)). Combining all
of the above, we’ve shown that

Alg(S) ⊆M(Alg(S)) ⊆ Bn ⊆ σ(Alg(S)).

By the Monotone Class Theorem,M(Alg(S)) and we conclude that Bn = σ(Alg(S)).
Now to show that both measures agree on all of σ(Alg(S)). Let A ∈ σ(Alg(S)). Equivalently,

A ∈ Bn i.e.
µ1(A ∩ En) = µ2(A ∩ En).

Since En ↑ X, we can use that µ1, µ2 being σ-additive implies continuity from below to conclude
that

µ1(A) = µ1(A ∩X)
∞←n←− µ1(A ∩ En) = µ2(A ∩ En)

n→∞−→ µ2(A ∩X) = µ2(A).

Thus concludes the proof of uniqueness. ■

All our work is summarised in the following result:

Theorem 3.5.13 (Carathéodory’s Extension Theorem For Semi-Algebras) Let ν be a
pre-pre-measure on a semi-algebra S. Then there exists a unique pre-measure
µ0 : Alg(S)→ [0,+∞] on X extending ν. Define µ∗ by

µ∗(A) ..= inf

{ ∞∑
i=1

µ0(Ei) : {Ei}i∈N ⊆ Alg(S), A ⊆
⋃
i∈N

Ei

}

for every A ⊆ X, and let Σ denote the Carathéodory measurable sets with respect to µ∗. Then
there is a unique, complete measure µ : Σ→ [0,+∞] defined by µ = µ∗

∣∣
Σ

on a σ-algebra Σ
containing S. This measure extends µ0 from Alg(S) ⊆ Σ.
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3.6 Defining the Lebesgue Measure

Recall the semi-algebra

S = {(a, b] : a, b ∈ R} ∪ {(a,∞) : a ∈ R} ∪ {(−∞, b] : b ∈ R} ∪ {∅}.

If we can demonstrate that the set function ν : S → [0,+∞] defined for any I ∈ S by ν(I) = len(I),
is a pre-pre-measure, then we may apply Carathéodory’s extension theorem for semi-algebras —
this will extend our notion of interval length to a full measure on Σ.

Claim ν is a pre-pre-measure.

Proof. Let {Ii}i∈N ⊆ S be a pairwise disjoint collection whose union I =
⊔

i∈N In is in S. We wish
to show that

ν(I) =
∑
i∈N

ν(Ii).

For any finite N ∈ N, it’s clear that

ν(I) ⩾
N∑
i=1

ν(Ii).

Since this holds for every N , it follows that

ν(I) ⩾
∞∑
i=1

ν(Ii).

For the reverse inequality, there are two cases:

• If I ∈ S is a finite interval i.e. I = (a, b] for a, b ∈ R, if we order the constituent Ii = (ai, bi]
from left to right (i.e. ai < bi ⩽ ai+1 < bi+1 for every i ∈ N) then for each ε > 0 we can cover
each Ii = (ai, bi] by an open interval Ĩi = (ai, bi + ε2−i). This collection {Ĩi}i∈N

◦ satisfies ν(Ĩi) = ν(Ii) + ε2−i

◦ and is an open cover of [a+ ε, b].

By compactness, we may extract a finite sub-cover and extract a finite sub-cover {Ĩij}Kj=1 of
[a+ ε, b]. Since it’s a cover, we certainly have that

b− a− ε = len([a+ ε, b]) ⩽
K∑
j=1

ν(Ĩij ) =
K∑
j=1

(
ν(Iij ) + ε2−ij

)
⩽ ε+

K∑
j=1

ν(Iij )

Rearranging gives
K∑
j=1

ν(Iij ) ⩾ b− a︸ ︷︷ ︸
= ν(I)

−2ε

from which it follows that
∞∑
i=1

ν(Ii) ⩾
K∑
j=1

ν(Iij ) ⩾ ν(I)− 2ε.

Let ε ↓ 0 and the result follows.

• If I is an interval of infinite length, then for each n ∈ N, {Ii∩(−n, n]}i∈N is a pairwise disjoint
collection with union I ∩ (−n, n]. From the argument for finite I,

ν(I ∩ (−n, n]) =
∞∑
i=1

ν(Ii ∩ (−n, n]) ⩽
∞∑
i=1

ν(Ii).

The above inequality is true for every n so let n → ∞, and note that ν(I ∩ (−n, n]) = ∞,
concluding that

∞∑
i=1

ν(Ii) =∞ = ν(I).
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■

Thus, ν is a pre-pre-measure on S, and by the Carathéodory extension theorem for semi-
algebras there exists a unique and complete measure λ on Σ (which we shall call L, the collection
of Lebesgue-measurable sets) s.t. for every interval I: λ(I) = len(I). This is the Lebesgue
measure on R.

3.7 Product Measures

So far we’ve constructed measures, and covered the important example of the Lebesgue measure
on R. Problems in probability aren’t limited to a single trial of an experiment — we often repeat
experiments to obtain a sample of values on which we perform numerical computations. Sometimes
we’re even interested in considering what happens in two different experiments at the same time.

The natural object to support this is, of course, the Cartesian product of two outcome spaces.
However, now we must construct an appropriate σ-algebra on this product to describe such events,
and on top of that an appropriate measure. The construction we follow naturally builds indepen-
dence into a model of such experiments.

Since there’s no point in re-writing a perfectly good resource, I link here a set of lecture notes
by John K. Hunter, Professor Emeritus at UC Davis. Chapter 5 discusses product measures. I
enclose here a very brief summary of the main points.

Let (X1,F1, µ1) and (X2,F2, µ2) be measure spaces. We want to construct a
product measure µ1 × µ2 on an appropriate σ-algebra that satisfies the product
rule

(µ1 × µ2)(A×B) = µ1(A)µ2(B)

for all A ∈ F1 and for all B ∈ F2.

• Define a rectangle to be a subset of the form A1 × A2 ⊆ X1 ×X2 where
Ai ⊆ Xi for i = 1, 2. The sides of the rectangle are A1 and A2.

• Define a measurable rectangle to be a set of the form R = A×B where
A ∈ F1 and B ∈ F2.

• Prove that the collection R of measurable rectangles is a semi-algebra.

◦ Denote by F1 ⊗F2, the σ-algebra on σ-algebra on X1 ×X2 generated
by R. We call this the product σ-algebra on X1 ×X2.

• Define ν : R → [0,+∞] by ν(A × B) = µ1(A)µ2(B). Prove that ν is a
pre-pre-measure on R.

• By Carathéodory’s extension theorem for semi-algebras, there exists a mea-
sure µ1 × µ2 on the σ-algebra6 generated by R, denoted by F1 ⊗F2, such
that ∀A ∈ F1, ∀B ∈ F2:

(µ1 × µ2)(A×B) = µ1(A)µ2(B).

• If µ1 and µ2 are σ-finite measures, then µ1 × µ2 is unique and called the
product measure of µ1 and µ2.

One of the most important examples of a product measure is the Lebesgue measure on Rn.

Example The Lebesgue measure on Rn is the completion of the n-fold product of the Lebesgue
measure on R i.e.

λRn =

n⊗
1

λR.

6This σ-algebra is called the product σ-algebra and will be seen again in the chapter on random vectors. It
is defined differently but is the same object.

https://www.math.ucdavis.edu/~hunter/measure_theory/measure_theory.html
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CHAPTER 4

Measurable Functions

4.1 Random Variables

Now that we have measures on σ-algebras in our toolbox, it’s natural to consider functions be-
tween measurable spaces that preserve/respect the σ-algebra structure. Such functions are called
measurable. If the domain of such a function is a probability space, then we call the function a
random variable.

From a practical perspective, one carries out a random experiment and observes some quantity
exhibited by its outcome — not the outcome itself.

From a probabilistic perspective, the outcome space Ω is often too granular to work with
directly. To remedy this we can shift our focus to some (observable) numerical quantity, typically
in R, that depends on the outcomes of a random experiment. One can think of such numerical
quantities as summarising agents e.g. there are several outcomes that correspond to the sum of
two dice rolls being 9.

In either case, the correspondence between outcomes ω ∈ Ω and such numbers x ∈ E defines a
function X : Ω→ E which models the outcomes of a random experiment.

Example Gamblers are more concerned with their losses over many trials (of a game) than with
the details of the games that give rise to them.

E = R

...

...

b

a

Ω

Figure 4.1: A visualisation of a finite space Ω, a mapping X into E = R, and an interval sum-
marising a collection of outcomes.

Take E = R. Since the outcomes in Ω are governed by randomness, so too are these output
numbers. The numbers serve to summarise the outcomes in Ω, so in a sense we’d expect the numbers
in E to respect the event structure. We wish to find the probabilities that X assumes values in some
regions of E as proxy for the direct probabilities which may be harder to work with. Thus, we’re
concerned with quantities like P(X ∈ B) ..= P

(
X−1(B)

)
where X−1(B) = {ω ∈ Ω : X(ω) ∈ B}.
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Since P is defined on F , a statement like P(X ∈ B) is only well-defined if X−1(B) ∈ F . This
condition is what it means for X to respect the σ-algebra structure of both domain and codomain:

Definition 4.1.1

• Let (X,F) and (E, E) be measurable spaces. A function f : X → E is called
(F , E)-measurable if for every B ∈ E ,

f−1(B) ∈ F .

• The class of (F , E)-measurable functions shall henceforth be denoted by MeasF , E(X ;E).

• Let (Ω,F ,P) be a probability space. A measurable, real-valued function on Ω i.e.

X ∈ MeasF ,BR(Ω ;R)

is called a (real-valued) random variable.

Remarks 4.1.2

• When it’s understood that f : (X,F) → (R,BR) (resp. (C,BC)), then the following are
equivalent shorthands for (F ,BR) (resp. (F ,BC))-measurability:

◦ f is F-measurable,
◦ f is measurable.

• The Borel σ-algebra BX on X is the smallest/minimal σ-algebra F on X s.t. all continuous
functions f : X → R are (F ,BR)-measurable.

• Let f : R→ C. [8]

◦ f is Borel measurable if it’s (BR,BC)-measurable.
◦ f is Lebesgue measurable if it’s (L,BC)-measurable.

Likewise for f : R→ R.

• We don’t (typically) consider Lebesgue or even (L,L)-measurable functions, choosing instead
to work with Borel measurable functions.

Reasons for this include the asymmetry of (L,BR)-measurability i.e. f, g ∈ MeasL,BR(R ;R)
≠⇒ f ◦ g ∈ MeasL,BR(R ;R), and when it comes to (L,L)-measurable functions, continuous
functions need not be (L,L)-measurable — this is a big drawback compared to continuous
functions being automatically Borel measurable.

◦ A fantastic write-up by Nate Eldredge on Math Stack Exchange encapsulates the
different types of measurability, their scopes and limitations. I won’t make any attempt
to paraphrase it, and readily encourage you to read the full thing.

In practice, one checks the measurability of f : X → E on a sub-collection C ⊆ E that generates
E i.e. σ(C) = E .

Lemma 4.1.3 Let C ⊆ E be a generating set i.e. σ(C) = E . Then

f ∈ MeasF , E(X ;E) ⇐⇒ ∀A ∈ C : f−1(A) ∈ F .

Proof. The forward implication is clear. For the reverse implication, define

I ..=
{
A ⊆ E : f−1(A) ∈ F

}
.

Note that this is a σ-algebra that contains C, and therefore σ(I) ⊇ σ(C). However, σ(I) = I and
σ(C) = E so I ⊇ E , and therefore f is (F , E)-measurable. ■

https://mathoverflow.net/a/31609
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Here are some examples of random variables:

Example Let A ∈ F . The indicator of A is the function 1A : Ω→ {0, 1} that indicates whether
an event A occurs or not. It’s defined for any ω ∈ Ω by

1A(ω) =

{
1 if ω ∈ A,
0 if ω ̸∈ A.

We consider {0, 1} to be equipped with 2{0,1} = {∅, {0}, {1}, {0, 1}}. Let B ∈ 2{0,1}. Then:

1−1A (B) =


Ω if 0 ∈ B ∋ 1

Ac if 0 ∈ B ̸∋ 1

A if 0 ̸∈ B ∋ 1

∅ if 0 ̸∈ B ̸∋ 1

In every case, the pre-image is in F . Thus, 1A ∈ MeasF , 2{0,1}(Ω ; {0, 1}).

Example Suppose that we roll two independent and identical fair die. The outcome space is the
collection of pairs (i, j). The random variable X : Ω → R defined by X((i, j)) = i + j returns the
sum of the two rolls. This summarises the outcome space from 36 elements to the natural numbers
from 2 to 12 (inclusive).

4.2 Properties of Measurable Functions

From the perspective of modelling nature, I don’t think we typically define random variables that
can attain the values ±∞. However, when it comes to measure-theoretical work, especially to do
with convergence, we work with random variables X : Ω→ R ..= [−∞,+∞]. The natural topology
associated with R is the order topology. We take {x ∈ R : x > a} = (a,+∞] with a ∈ R to be a
neighbourhood of +∞. The Borel σ-algebra of (R, Tord) is generated by the intervals {(a,+∞]}a∈R.

Definition 4.2.1 A function f : X → R is F-measurable if for every a ∈ R, f−1((a,+∞]) ∈ F .

I’ll also denote f−1((a,+∞]) by {f > a}.

Lemma 4.2.2 Let f, g : X → R be F-measurable. The following sets are measurable:

• {f = +∞} =
⋂

n∈N{f > n} and an analogous statement can be made for {f = −∞}.

• {f > g} ≡ {x : f(x) > g(x)} =
⋃

q∈Q({f > q} ∩ {g < q})
and equality holds by the density of the rationals in the reals.

• {f ⩾ g} = {f < g}c

• {f = g} = {f ⩾ g} ∩ {f ⩽ g}

• {f + g is undefined} = ({f = +∞} ∩ {g = −∞}) ∪ ({f = −∞} ∩ {g = +∞})

• {f + g is well-defined} = {f + g is undefined}c

■

Conventionally, we set f(x) + g(x) = 0 and f(x)/g(x) = 0 wherever the sums or ratios are not
well-defined.

Proposition 4.2.3 Let f, g : X → R be F-measurable, and c ∈ R. Then c · f , f + g, f/g, |f |,
max(f, g), min(f, g), and fg are F-measurable functions.

Proof.
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• If c = 0, then

{c · f > a} =

{
∅ if a ⩾ 0,

X if a < 0.

For c ̸= 0,

{c · f > a} =

{
{f > a/c} if c > 0,

{f < a/c} if c < 0.

• Let A ..= {f + g is well-defined}. Then

{f + g > a} = A ∩ {f + g > a} = A ∩ {f > g − a} = A ∩
⋃
q∈Q

({f > q} ∩ {a− g < q}︸ ︷︷ ︸
= {g>a−q})

• 1/g is defined on A = X \ {g = 0}. All sets henceforth are intersected with A.

◦ If a = 0, then {1/g > a} = {1/g > 0} = {g > 0} \ {g = +∞}.
◦ If a > 0, then {1/g > a} = {g > 0} ∩ {g < 1/a}.

◦
If a < 0, then {1/g > a} = ({1/g > a} ∩ {g > 0}) ∪ ({1/g > a} ∩ {g < 0})

= {g > 0} ∪ {g < 1/a}.

• {|f | > a} = {f > a} ∪ {f < −a}

• {max(f, g) > a} = {f > a} ∪ {g > a}

• {min(f, g) > a} = {f > a} ∩ {g > a}

• Prove that f2 is F-measurable, and it follows that fg =
(f + g)2 − (f − g)2

4
is measurable?

Indeed,

(f2)−1((a,∞]) = {x ∈ X : (f(x))2 > a} =

{
X if a < 0,

{f < −
√
a} ∪ {f >

√
a} if a ⩾ 0

and both of these are in F . The claim follows.

■

Proposition 4.2.4 Let {fn}n∈N ⊆ MeasF ,BR(X ;R). Then both supn∈N fn and infn∈N fn are
F-measurable.

Proof. (
sup
n∈N

fn

)−1
((a,+∞]) =

⋃
n∈N

f−1n ((a,+∞])

■

Corollary 4.2.5 Let {fn}n∈N ⊆ MeasF ,BR(X ;R). Then:

• lim sup
n→∞

fn and lim inf
n→∞

fn are measurable.

• A ..= {x s.t. limn→∞ fn(x) exists} is measurable, and defining limn→∞ fn(x) = 0 where it
doesn’t exist, limn→∞ fn(x) is measurable.

Proof.
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• Since both supn fn and infn fn are F-measurable, it follows that

lim sup
n→∞

fn ..= inf
n⩾1

(
sup
k⩾n

fk

)
is measurable. The lim infn fn is analogously measurable.

• A = {lim supn→∞ fn = lim infn→∞ fn} which is measurable. For every x ∈ A,

f(x) = lim
n→∞

fn(x) = lim sup
n→∞

fn(x)

so f is measurable. Otherwise, on X \ A we have that f is constant and hence f−1({0}) =
X \A ∈ F . Thus, f is measurable.

■

Corollary 4.2.6 The limit of a monotone sequence {fn}n∈N ⊆ MeasF ,BR(X ;R) is F-measurable.

Proof. By 2.4.3, every monotone sequence has a limit in R. For any x ∈ X, the sequence
{fn(x)}n∈N is a monotone sequence and thus has a limit

lim inf
n→∞

fn(x) = lim
n→∞

fn(x) = lim sup
n→∞

fn(x).

Thus, limn→∞ fn(x) is measurable. ■

Here is the main result of this section that will be used repeatedly1 throughout these notes.

Theorem 4.2.7 Every non-negative measurable function f : X → R is the pointwise limit of a
non-decreasing sequence of non-negative, simple, measurable functions {sn}n∈N i.e.

∀x ∈ X : lim
n→∞

sn(x) = f(x).

Proof. For every n ∈ N, if f is unbounded above then we may cut the height of f off at n, and
then consider sub-dividing [0, n] into intervals of equal height 2−n and then approximating f by its
floor over this partition of the range. Pictorially:

sn

f
n

2−n

X

R

Figure 4.2: A visualisation of sn(x) approximating f for some n ∈ N.

1I’m typing this in post.
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i.e. for k = 1, 2, . . . , n2n:

sn(x) =
n2n∑
k=1

(
k − 1

2n

)
1{

k−1
2n ⩽ f <

k
2n

}(x) + n1{f⩾n}(x)

=

n2n∑
k=1

(
k − 1

2n

)
1
f−1
([

k−1
2n ,

k
2n

)︸ ︷︷ ︸
∈B[0,+∞]

)(x) + n1
f−1
(
[n,+∞]︸ ︷︷ ︸
∈B[0,+∞]

)(x)
Since f ∈ MeasF ,B[0,+∞]

(X ; [0,+∞]), each sn is a sum of finitely many indicator functions on sets
in F , and is therefore simple and measurable.

• Do the {sn}n∈N constitute a non-decreasing sequence?

I’ll just perform the inductive step. Say we begin with sn(x) and consider sn+1(x). At
n + 1, each interval in the range is further sub-divided in half e.g. for all x that satisfy
f(x) ∈

[
k−1
2n ,

k
2n

)
, sn(x) = k−1

2n . Now note that:

f(x) ∈
[
k−1
2n ,

k
2n

)
=
[
k−1
2n ,

(
k−1
2n + k

2n

)
/2
)
⊔
((

k−1
2n + k

2n

)
/2, k

2n

]
=
[
2(k−1)
2n+1 ,

2k−1
2n+1

)
⊔
(
2k−1
2n+1 ,

2k
2n+1

]
=
[
2k−2
2n+1 ,

2k−1
2n+1

)
⊔
(
2k−1
2n+1 ,

2k
2n+1

]
On the first sub-interval, we have that

sn+1(x) =
2k − 2

2n+1
=
k − 1

2n
= sn(x)

and on the second sub-interval,

sn+1(x) =
2k − 1

2n+1
>

k

2n
= sn(x),

and for x s.t. f(x) ∈ [n,+∞], we may again sub-divide [n,+∞] = [n, n + 1) ⊔ [n + 1,+∞].
Over the first sub-interval, sn+1(x) ⩾ sn(x) since we may run the same argument as above,
and for the second we have that sn+1(x) = n+ 1 ⩾ n = sn(x).

• Is the pointwise limit equal to f?

◦ If f(x) <∞, then ∃n ∈ N s.t. n > f(x) so that |sn+1(x)− sn(x)| < 2−n.
◦ If f(x) = +∞, then sn(x) = n

n→∞−→ +∞.

Therefore, for every x ∈ X:
lim
n→∞

sn(x) = f(x)

and by Corollary 4.2.6, f is measurable because it’s the monotone limit of a sequence

{sn}n∈N ⊆ MeasF ,BR(X ;R).

■

Corollary 4.2.8 Any non-negative, bounded function f : X → R is measurable iff it is the
uniform limit of a sequence of measurable functions.

Proof. Since f is bounded, the construction above works for any x to bound f by

sn(x) ..=
k − 1

2n
⩽ f(x) ⩽

k

2n
= sn(x) +

1

2n
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where k is suitably chosen. This implies that

0 ⩽ f(x)− sn(x) ⩽
1

2n

i.e. 0 ⩽ |f(x)− sn(x)| ⩽
1

2n

The upper bound doesn’t depend on x and so we have the uniform bound

sup
x∈X
|f(x)− sn(x)| ⩽

1

2n
.

Thus, the convergence of {sn}n∈N −→ f as n→∞ is uniform. ■

The general case where f is not necessarily non-negative follows from writing it as the difference
of two non-negative functions f = f+ − f− where f+ = max(f, 0) and f− = max(0,−f). This
proof follows because f is measurable iff f+ and f− are measurable:

=⇒ If f is measurable, then the constant function 0 is certainly measurable and it follows from
Proposition 4.2.3 that max(f, 0) and max(−f, 0) are measurable.

⇐= f is the difference of two measurable functions and is therefore measurable by the same
proposition.

4.3 Probability Distribution of X

Continuing on from Section 4.1, the discussion about P(X ∈ B) was good motivation for the
concept of a map “pushing forward” a measure from one space onto another i.e. to describe the
distribution of the outputs of a measurable function on a measurable space.

Definition 4.3.1 If Φ is a measurable map from one measurable space (X,F) into a second (E, E),
then the distribution of Φ under a measure µ (or the law of Φ with respect to µ) on (X,F)
is the unique pushforward measure Φ♯µ defined on (E, E) by

(Φ#µ)(B) = µ(Φ−1(B)) for B ∈ E .
Proof. We must prove that (Φ#µ) is indeed a measure.

• (Φ#µ)(∅) ..= µ(Φ−1(∅)) = µ(∅) = 0

• Let {Bi}i∈N ⊆ E be a pairwise disjoint collection. Then,

(Φ#µ)
( ⊔

i∈N
Bi

)
..= µ

(
Φ−1

( ⊔
i∈N

Bi

))
= µ

( ⊔
i∈N

Φ−1(Bi)
)

=
∑
i∈N

µ(Φ−1(Bi)) since Φ is measurable, each Φ−1(Bi) ∈ F

=..
∑
i∈N

(Φ#µ)(Bi) ■

Example A real-valued random variable X defined on a probability space (Ω,F ,P) induces a
unique probability distribution PX on (R,BR) as the push-forward measure X#P of P via X ac-
cording to the following diagram:

(Ω,F) (R,BR)

[0, 1]

P

X

PX
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The conventions of my diagrams are:

• A single-headed arrow represents an “ordinary” map e.g. a random variable X : Ω→ R
between measurable spaces (Ω,F) and (R,BR)

• A double-headed arrow represents a (probability) measure (e.g. P : F → [0, 1])

◦ There’s an extra meaning for the double head — the probability measures will be
from a measurable space’s second entry e.g. the σ-algebra F in (Ω,F).

• A dashed line represents an induced map

• A dotted line represents a map induced by an induced map (we’ll see this shortly)

Thus, the probability distribution PX : BR → [0, 1] of the real-valued random variable X is
defined for B ∈ BR by:

PX(B) ..= X#P(B) = P
(
X−1(B)

)
= P({ω ∈ Ω: X(ω) ∈ B}).

In order to specify the probability measure associated with a random variable, sometimes it’s
more convenient to specify alternative representations (CDFs, PMFs and PDFs) of the measure
from which the corresponding experiment is clear.

One alternative specification that always exists is the distribution function of X. In the same
way that one can reduce the problem of checking measurability of X from all sets in BR to a
generating set {(−∞, x]}x∈R, we can characterise PX by its behaviour on {(−∞, x]}x∈R:

All random variables admit a cumulative distribution function — a function FX : R→ [0, 1]
that specifies a probability measure by returning the probability that the random variable X
assumes a value less than or equal to x:

FX(x) ..= PX((−∞, x])
..= P({ω ∈ Ω: X(ω) ⩽ x})
= P(X ⩽ x)

Note that FX is a non-decreasing function that satisfies:

• FX(x)→ 0 as x→ −∞

• FX(x)→ 1 as x→ +∞

• FX is right-continuous2 i.e. FX(x) = limy→x+ FX(y) for all x ∈ R.

Conversely, for any distribution function F that satisfies the above properties, we can always
construct a probability space and random variable such that F is the distribution function of X.

4.4 Support of Probability Distribution

Loosely speaking, the support of a probability measure P on (Ω,F) can be thought of as where P
lives in Ω. The traditional definition of the support of a function speaks of the closure of a subset

2Note: A cumulative distribution function is not necessarily continuous — it’s very possible to have FX(x−) ̸=
FX(x+). For example, in the next section we will see that the CDF of a discrete probability measure is a step
function.
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of the function’s domain. However, we don’t have a topology to speak of on Ω so we can’t speak
of support.

Practically speaking, the random variables of interest will map into a space like (R,BR), (R,BR),
(Rn,BRn) etc.3 These are examples of Borel spaces.

4.4.1 BOREL SPACES

Definition 4.4.1 First, some terminology:

• Let (E, E) and (S,S) be two measurable spaces. A map ϕ : E → S is called bimeasurable
if ϕ is measurable, invertible, and ϕ−1 is also measurable.

• Two spaces (E, E) and (S,S) are measurably isomorphic (or Borel isomorphic) if there
exists a bimeasurable map between them. We denote this by

(E, E) ∼=Meas (S,S).

• A Polish space is a topological space (Y, TY ) that is metrisable and separable.

Now for the definition of such spaces:

Definition 4.4.2 Let (E, E) be a measurable space. If there exists a bimeasurable map φ : E → B
where B is a Borel subset of R, then (E, E) is a Borel space.

As a small spoiler for what’s to come and why this is important, it’s a fact that a
regular conditional distribution of F = σ(X) given a sub-σ-algebra G ⊆ F exists
if X maps into a Borel space (E, E).

Definition 4.4.3 A measurable space (E, E) is called a standard Borel space if it satisfies the
following equivalent conditions:

• (E, E) is measurably isomorphic to a Polish space (Y, TY ) equipped with its Borel σ-algebra
BY = σ(TY ) i.e.

(E, E) ∼=Meas (Y,BY ).

• (E, E) is measurably isomorphic to some Borel subset B of some Polish space (Y, TY ),
equipped with its subspace4 Borel σ-algebra BY |B = {F ∩B : F ∈ BY } = {F ∈ BY : F ⊆ B}.
i.e.

(E, E) ∼=Meas (B,BY |B).

Remarks

• These parts of the above two definitions highlight their equivalence5 because (R,BR) is a
Polish space.

• Henceforth, I will simply refer to such spaces as Borel spaces.

• The topology on E is given by the pullback of TY under the bimeasurable map ϕ i.e.

TE =
{
ϕ−1(U) : U ∈ TY

}
.

Theorem 4.4.4 Let {(Ei, Ei)}i∈N be a collection of Borel spaces. Then(
E =

∏
i∈N

Ei, E =
⊗
n∈N
Ei
)

is a Borel space.
3Or (Rn,BRn) in the case of a random vector which shall be seen later.
4The second equality follows because B ∈ BY implies that F ∩B ∈ BY .
5From the bottom of my heart, this has been an unholy pain in the ass. Everyone uses different names, nobody

bothers to explain the equivalence of definitions. Everyone uses a different canonical uncountable Borel space. I’m
doing the opposite of authors and I state them as definitions, the theorems that link them, and refuse to prove any
of them.
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4.4.2 MEASURABLE CLASSIFICATION OF BOREL SPACES

The following theorem in [8, p. 83], crediting Kuratowski, classifies Borel spaces in the sense of
measurable isomorphism:

Theorem 4.4.5 Suppose that (E, E) is Borel isomorphic to a Borel subset B of a complete,
separable metric space Y (equipped with the σ-algebra {F ∈ BY : F ⊆ B}). Then either:

• E is at most countably infinite and E = 2E , or

• (E, E) is Borel isomorphic to (R,BR).

So the isomorphism theorem above says that:

• All finite and countable Borel spaces are trivial in the sense that all subsets are measurable,
and

• up to measurable isomorphism, there is “the” uncountable Borel space.

4.4.3 TOPOLOGICAL SUPPORT OF PROBABILITY MEASURE

Now we’re in a position to define the support of a (probability) measure:

Definition 4.4.6 The topological support of a measure µ on a Borel space (E, E) is the set of
all points x ∈ E for which every neighbourhood Nx ∈ T s.t. x ∈ Nx has positive measure:

supp(µ) ..= {x ∈ E | ∀Nx ∈ T : (x ∈ Nx =⇒ µ(Nx) > 0)}.

Henceforth, any mentions of random variables will map into Borel spaces. Nothing really changes
from the measurability point of view — we simply also have the ability to discuss topological
concepts such as closure, support, separability, metrisability etc.

Remarks 4.4.7

• An equivalent definition is the largest C ∈ BE (with respect to inclusion) such that every
open set which has non-empty intersection with C has positive measure i.e. the largest C s.t.
∀U ∈ T :

U ∩ C ̸= ∅ =⇒ µ(U ∩ C) > 0.

• Under some regularity6 assumptions, the support of µ is the smallest closed set of full
measure

i.e. the smallest closed set with µ-“almost empty” complement

i.e. it is a closed set C s.t.

◦ µ(E \ C) = 0

◦ If C1 is closed and µ(E \ C1) = 0, then C ⊆ C1.

If the support exists, it’s equal to the intersection of all closed subsets of E whose complements
have measure 0.

6I should fill the blank in on these assumptions. I read somewhere (Math Stack Exchange perhaps?) that such
assumptions will generally hold for the measures in these notes.
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CHAPTER 5

Measuring Functions (Integral)

So far we’ve defined measures — set functions which associate a general notion of “size” to mea-
surable sets. Last chapter was about measurable functions. We can use measures to define a “way”
to compute the “size” of measurable functions — the Lebesgue integral with respect to a given non-
negative measure. Historically speaking, the Riemann integral (and other integrals at the time)
were inadequate — most acutely in the sense that we can quite easily formulate a function of
interest for which its Riemann integral does not exist. To remedy such woes, Henri Lebesgue and
Emile Borel formulated a more satisfactory theory of integration. Let’s explore an example where
the Riemann-Darboux integral falls short.

5.1 Historical Shortcomings

Suppose that one poses the question “What is the probability that a number between 0 and 1
(inclusive) chosen uniformly at random is a rational number?” If you’ve already seen the uniform
distribution, great. If not, it doesn’t matter — just keep in mind that the integral of an indicator
function over a subset of R gives the length (Lebesgue measure) of that set i.e.

b− a = λ([a, b]) =

∫ b

a
dx =

∫
R
1[a,b](x) dx,

and the problem of finding that probability is closely linked (for reasons that will become apparent
later on) to the integral

“
∫ 1

0
1Q(x) dx.”

Just because we can write such a collection of symbols down, that doesn’t mean we’ve written
something meaningful down. At first glance, one would expect that because both Q and R \Q are
dense in R, but Q is countable (and therefore its complement is uncountable), that a satisfactory
theory of integration would assign the value 0 to the integral of 1Q∩[0,1](·). This function vanishes
“almost everywhere” on [0, 1]. Recall the definition of the Riemann-Darboux1 integral:

Definition 5.1.1

• A partition P of [a, b] is a set of n ⩾ 1 points {ti}ni=0 s.t. a ..= t0 < t1 < . . . < tn−1 < tn =.. b.

• The lower sum L(f, P ) of f with respect to a partition P = {ti}ni=0 of [a, b] is defined by

L(f, P ) =
n−1∑
i=0

(ti+1 − ti) inf
t∈[ti,ti+1]

f(t).

The upper sum U(f, P ) is defined analogously — replace inf with sup.

• A function f : [a, b]→ R is Riemann-Darboux integrable if for every partition P = {ti}ni=0

of [a, b], we have that
sup
P
L(f, P ) = inf

P
U(f, P ). (Riem)

In the case that (Riem) holds, the common value is denoted by
∫ b
a f(x) dx and called the Riemann

integral of f over [a, b].

1This formulation is equivalent to the original Riemann integral but is easier to use.
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For any partition P , any interval [ti−1, ti] will contain rational and irrational points (by the
completeness of R) so the infimum and supremum of 1Q over [ti−1, ti] will be 0 and 1 respectively.
Thus, L(f, P ) = 0 and U(f, P ) = 1. These two values don’t agree and so the Riemann integral of
1Q over [0, 1] does not exist.

To extend the woes by 1, we can construct a sequence to demonstrate that the class of Riemann
integrable functions aren’t closed under pointwise limits! Let q1, q2, . . . denote an enumeration of
Q ∩ [0, 1], and consider the sequence of step functions fn defined by

fn(x) =

{
1, if x ∈ {q1, . . . , qn}
0, otherwise.

Each fn(x) is Riemann integrable over [0, 1] with Riemann integral 0, the fn(x) converge pointwise
to 1Q∩[0,1] pointwise, but we know the latter isn’t Riemann integrable.

We can somewhat see the issue here — the Riemann integral is insufficient insofar as it depends
on the limit of Riemann sums which requires us to partition the domain of functions we wish to
integrate. Instead of partitioning the domain, Henri Lebesgue and Emile Borel developed a theory
of integration that relies on partitioning the range of a function, and fitting a sequence of simple
functions to serve as the analogue to the ‘upper’ and ‘lower sums’ in the Riemann case. The benefit
of this approach is that we may consider functions with more exotic domains (e.g. Q) as long as
we have some notion of their “size.” This is the theory of Lebesgue integration.

I wrote the following section after watching Nicolas Lanchier’s video lectures which are based
on his book Stochastic Modeling [2]. I’ve tried to fill in some details so all errors henceforth are
especially my own.

5.2 Definition of the Lebesgue Integral

We’re going to define the Lebesgue integral of a measurable function X : Ω→ R with respect to
any non-negative measure µ in four steps:

STEP 1 - (MEASURABLE) INDICATOR FUNCTIONS

Let A ⊆ Ω and X = 1A be measurable. We define the Lebesgue integral of X = 1A with respect
to µ by ∫

Ω
1A dµ ..= µ(A).

This definition is inspired by the earlier comment on the Riemann integral of an indicator function.
Is our definition well-defined? Since X = 1A ∈ MeasF ,BR(Ω ;R), for any B ∈ BR, 1−1A (B) ∈ F . In
particular, A = 1−1A ({1}) ∈ F . Thus, µ(A) is well-defined.

STEP 2 - SIMPLE (MEASURABLE) FUNCTIONS

A function X : Ω → [0,+∞) is called simple iff X is measurable and the image of X is a finite
subset of [0,+∞) i.e.

Im(X) ..= {x ∈ R : ∃ω ∈ Ω s.t. X(ω) = x}
= {a1, . . . , am}.

Equivalently, note that if Ai
..= X−1({ai}), then Ω =

⊔m
i=1Ai and so X may be written as a finite

linear combination of indicator functions

X =

m∑
i=1

ai1Ai .

This is called the standard representation of X.
Then we define

https://www.youtube.com/watch?v=qGsHiHwgInU
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∫
Ω
X dµ =

∫
Ω

(
m∑
i=1

ai1Ai

)
dµ ..=

m∑
i=1

ai

∫
Ω
1Ai dµ

Step 1
=

m∑
i=1

aiµ(Ai).

We must check to see if this definition is well-defined i.e. that the value of the integral is the same
whichever representation2 one chooses for X.
Proof. Let X be simple, measurable and have two representations i.e. {Ai}ni=1 ⊆ F ⊇ {Bj}mj=1

are two partitions of Ω and ai, bj > 0 are s.t.

X =
n∑

i=1

ai1Ai =
m∑
j=1

bi1Bi .

Now we construct a refinement {Cij}ni,j=1 of both partitions by Cij = Ai ∩Bj ∈ F . Then we may
compute the integral of X. For the first representation:∫

Ω
X dµ =

n∑
i=1

aiµ(Ai)

=

n∑
i=1

aiµ(Ai ∩ Ω)

=

n∑
i=1

aiµ
(
Ai ∩

m⊔
j=1

Bj

)
=

n∑
i=1

aiµ
( m⊔

j=1

(Ai ∩Bj)
)

=
n∑

i=1

aiµ
( m⊔

j=1

Cij

)
=

n∑
i=1

ai

m∑
j=1

µ(Cij)

An analogous computation shows that∫
Ω
X dµ =

m∑
j=1

biµ(Bi) =
m∑
j=1

bj

n∑
i=1

µ(Cij).

If ω ∈ Cij , then X(ω) = ai = bj . Thus, we may define cij = ai = bj and note that both integral
representations give the same value. ■

STEP 3 - NON-NEGATIVE (MEASURABLE) FUNCTIONS

We’ve already seen that for the Riemann integral, subdividing the domain and trying to approxi-
mate a non-negative measurable function like 1Q(x) with a simple function (corresponding to the
Riemann sum) failed when taking the limit. Instead, we sub-divide the range of X, and approxi-
mate X from below by a non-negative, simple, and measurable function. By Step 2, the Lebesgue
integral of such simple functions are non-negative and well-defined. The Lebesgue integral of X
with respect to µ is then defined as ∫

Ω
X dµ ..= sup

0⩽s⩽X

∫
Ω
s dµ.

This supremum is still well-defined if equal to +∞, and the supremum definition avoids any de-
pendence on how one may go about constructing a sequence of simple functions that converges to
X.

2By representation of a simple function, one refers to the collection of pairs (Ai, ai) that define the linear
combination. If Ai and Aj are disjoint, for example, then 1Ai⊔Aj = 1Ai + 1Aj for example.
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STEP 4 - ANY MEASURABLE FUNCTIONS

We follow a similar approach in that we wish to use Step 3 to define our integral. We can write
X as the difference of two non-negative functions, namely the positive and negative parts of X,
denoted by X+ ..= max(X, 0) and X− ..= max(0,−X) respectively.

X = X+ −X−

Ω

Ω

Figure 5.1: Graphs of the measurable function X, and its positive and negative parts.

Then we define the Lebesgue integral of X with respect to the non-negative measure µ by∫
Ω
X dµ =

∫
Ω
X+ dµ−

∫
Ω
X− dµ

If the integrals of the positive and negative parts are both equal to +∞, we have the problem
of ∞ − ∞ not being well-defined. Thus, our definition requires that both integrals (which are
non-negative) are finite and we impose the condition that the Lebesgue integral of |X| is finite i.e.∫

Ω
X+ dµ−

∫
Ω
X− dµ =

∫
Ω
|X|dµ <∞.

Since the sum of the non-negative integrals is finite, the difference is certainly finite and so
∫
ΩX dµ

makes sense.

Definition 5.2.1 We say that X is Lebesgue integrable with respect to a non-negative measure
µ (on F), also denoted by X ∈ L1(Ω,F , µ), if∫

Ω
|X|dµ <∞.

Lemma 5.2.2 (Properties of the Lebesgue Integral)

• If f, g ⩾ 0 are measurable and equal µ-a.e. then∫
Ω
f dµ =

∫
Ω
g dµ.

• Linearity: If f, g ∈ L1(Ω,F , µ), and a, b ∈ R, then af + bg is Lebesgue integrable and∫
Ω
(af + bg) dµ = a

∫
Ω
f dµ+ b

∫
Ω
g dµ.
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• Monotonicity: If f ⩽ g, then ∫
Ω
f dµ ⩽

∫
Ω
g dµ.

Remarks 5.2.3

• In the context where X : Ω→ R is a map from a probability space (Ω,F ,P) into the
measurable space (R,BR) i.e. X is a real-valued random variable, then the Lebesgue
integral of X with respect to P is defined as the expectation of X:∫

Ω
X dP =.. E(X).

Furthermore, the expectation inherits all the properties of the Lebesgue integral.

• If X is Riemann integrable, then X is Lebesgue integrable with respect to the Lebesgue
measure λ, and these two integrals coincide.

Calling back to our motivating example at the beginning, we wanted to find the probability
that a number chosen uniformly at random in (0, 1) is rational. Recall that we can enumerate
Q ∩ [0, 1] with a countable set {qi}i∈N.

P(X ∈ Q ∩ [0, 1]) =

∫
Ω
1Q∩[0,1] dλ

= λ(Q ∩ [0, 1])

= λ
( ∞⊔

i=1

{qi}
)

by enumerating (Q ∩ [0, 1])-countable

=

∞∑
i=1

λ({qi}) by σ-additivity of λ

= 0 because λ([qi, qi]) = 0.

5.3 MCT, Fatou, DCT, and Fubini

The results are stated here and their proofs (with some neat visualisations) can be found in
Appendix C.

The first two theorems give conditions under which one can exchange limit and integral for a
sequence of measurable functions.

Theorem 5.3.1 (Monotone Convergence Theorem) Let {Xn}n∈N be a non-decreasing sequence of
non-negative measurable functions with pointwise limit X. Then, X is measurable and

lim
n→∞

∫
Ω
X dµ =

∫
Ω

(
lim
n→∞

Xn

)
dµ.

The statement of the theorem can be rephrased as a probability statement by letting µ = P. In
this case, the statement is that for a non-decreasing sequence {Xn}n∈N of random variables with
pointwise limit X, then X is also a random variable and limn→∞ E(Xn) = E(X).

Theorem 5.3.2 (Dominated Convergence Theorem) Let {Xn}n∈N be a sequence of measurable
functions dominated by some integrable function and with pointwise limit X. Then X is integrable,

lim
n→∞

∫
Ω
|Xn −X| dµ = 0 and lim

n→∞

∫
Ω
Xn dµ =

∫
Ω

(
lim
n→∞

Xn

)
dµ.
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• Proving the DCT requires the following theorem that doesn’t guarantee any convergence but
we can still define a lim inf and the result is an inequality:

Theorem 5.3.3 (Fatou’s Lemma) Let {Xn}n∈N be a sequence of non-negative measurable
functions. Then ∫

Ω

(
lim inf
n→∞

Xn

)
dµ ⩽ lim inf

n→∞

∫
Ω
Xn dµ.

This third theorem gives sufficient conditions under which two integrals, of a measurable func-
tion of two variables, can commute:

Theorem 5.3.4 (Fubini-Tonelli Theorem) Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite mea-
sure spaces. Define:

• Ω = Ω1 × Ω2

• F = σ({A×B : A ∈ F1, B ∈ F2})

• The unique product measure µ on F satisfying µ(A×B) = µ1(A)µ2(B)

For every measurable function X : Ω → R that is either non-negative or integrable on a σ-finite
measure space (Ω,F , µ),∫

Ω
X dµ =

∫
Ω1

∫
Ω2

X dµ2 dµ1 =

∫
Ω2

∫
Ω1

X dµ1 dµ2.

The case where f is non-negative is often stated as a separate theorem called Tonelli’s theorem.
In that case, we don’t need to check if f is integrable. One may also Fubini’s theorem stated as
above but without the non-negativity criterion.

5.4 Absolute Continuity & Radon-Nikodým Derivative

The Radon-Nikodym Theorem justifies the existence and uniqueness of conditional expectation. It
also does many other things that we’ll see more immediately in this chapter!

The motivation for the theorem is as follows: Let ϕ : (Ω,F , µ) → (R,BR) be a non-negative,
measurable function. Define

ν(A) ..=

∫
A
ϕ dµ =

∫
Ω
ϕ1A dµ

for all A ∈ F . Since ϕ ⩾ 0 and measurable, the integral is well-defined and non-negative (possibly
+∞). Now take a pairwise disjoint collection {An}n∈N ⊆ F whose union we denote by A ∈ F .
Then

ν
( ∞⊔

n=1

An

)
..=

∫
Ω
ϕ1⊔∞

n=1 An
dµ

=

∫
Ω

∞∑
n=1

ϕ1An dµ

=

∫
Ω

lim
k→∞

k∑
n=1

ϕ1An dµ
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This is a non-decreasing sequence of measurable functions so we can apply the MCT.

MCT
= lim

k→∞

∫
Ω

k∑
n=1

ϕ1An dµ

lin.
= lim

k→∞

k∑
n=1

∫
Ω
ϕ1An dµ

=
∞∑
n=1

∫
Ω
ϕ1An dµ

=..
∞∑
n=1

ν(An)

Therefore, ν is σ-additive and so ν : F → [0,+∞] is a measure on F .
The Radon-Nikodym Theorem is related to the above notion but instead it tells us that if we

have two measures µ and ν (on the same space), whether or not one can find a ϕ s.t.

∀A ∈ F : ν(A) =

∫
A
ϕ dµ. (⋆)

Can we always find a ϕ for which
(⋆) is true for every A ∈ F?

Answer No! If there exists an A ∈ F s.t. µ(A) = 0 and ν(A) > 0, then no matter which ϕ is
chosen, the Lebesgue integral of ϕ over A w.r.t. µ is an integral over a set of µ-measure zero so the
integral must always be zero.

This motivates the definition of absolute continuity as a way to avoid the existence of such an
A ∈ F with µ(A) = 0 but ν(A) > 0.

Definition 5.4.1 ν is absolutely continuous with respect to µ, denoted3 ν ≪ µ, if for all
A ∈ F :

µ(A) = 0 =⇒ ν(A) = 0.

This condition of absolutely continuity and the σ-finiteness of µ and ν are precisely the things
that guarantee there exists (in a µ-almost everywhere sense) a ϕ s.t. (⋆) is true:

Theorem 5.4.2 (Radon-Nikodym Theorem) Let µ and ν be two σ-finite measures on the same
measurable space s.t. ν ≪ µ. Then there exsts a function ϕ ∈ MeasF ,BR(Ω ; [0,+∞)) s.t. for all
A ∈ F :

ν(A) =

∫
A
ϕ dµ

which is unique in the sense that two such versions of ϕ are equal µ-almost everywhere. We denote
ϕ by dν

dµ and call it the Radon-Nikodym derivative of ν w.r.t µ.

5.5 Pushforward Measure & Change of Variables

Recall that for a real-valued random variable X on a probability space, one can define a probability
measure PX on the Borel σ-algebra BR by setting

PX(B) ..= P(X ∈ B) = P
(
X−1(B)

)
=

∫
Ω
1X−1(B) dP for all B ∈ BR.

(The last expression with the Lebesgue integral is new and follows from P(A) = E(1A).) This is
called the measure induced by X in measure theory, and the distribution of X in probability theory.
To study a random variable in practice, probabilists don’t work with the probability measure P but
with its distribution PX (a nicer, friendlier measure defined on BR) by using the following result:

3This notation is inspired by the case µ(A) = 0 forcing ν(A) = 0.
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Theorem 5.5.1 (Change of Variables Formula) Let X ∈ MeasF ,BR(Ω ;R) be a random variable,
and h : R→ R a measurable function. If h is non-negative or integrable, then∫

Ω
h(X) dP =.. E(h(X)) =

∫
R
hdPX .

Remarks 5.5.2

• The greyed out expression is simply the definition of E(h(X)). The integral is well-defined
because h(X) is a measurable function on Ω taking values in R. It’s not exactly clear what
it means to integrate with respect to a probability measure but we do know how to integrate
on R, and so this theorem connects the two notions.

• Why are we using the quantity E(h(X))?

We can use it to generate many things e.g. h = idR gives us E(X), and if we then consider
X = 1A for some measurable set A, then we can recover PX(A). Higher order moments can
also be generated with E(h(X)).

Proof. The steps of the proof will follow the construction of the integral:

1. Assume first that h = 1B for some B ∈ BR. Note that

(h ◦X)(ω) = (1B ◦X)(ω) =

{
1, if X(ω) ∈ B
0, otherwise

=

{
1, if ω ∈ X−1(B)

0, otherwise
..= 1X−1(B)(ω).

Then

E(h(X)) = E(1B(X)) = E
(
1X−1(B)

)
= P

(
X−1(B)

)
= PX(B) =

∫
R
1B dPX

2. Let h be a simple, measurable function with standard representation

h =
n∑

i=1

ai1Ai .

Then

E(h(X)) = E

(( n∑
i=1

ai1Ai

)
◦X

)

= E

(
n∑

i=1

ai(1Ai ◦X)

)

=
n∑

i=1

aiE(1Ai ◦X)

=

n∑
i=1

ai

∫
R
1Ai dPX by Step 1

=

∫
R

n∑
i=1

ai1Ai︸ ︷︷ ︸
=..h

dPX by linearity.
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3. Let h ⩾ 0 be measurable. Then there exists a non-decreasing sequence of simple, measurable
functions with pointwise limit h e.g.

sn(x) = min(n, 2−n⌊2nh(x)⌋) ∀x ∈ R.

This sequence was the 2−n sub-division of the range in the construction of the Lebesgue
Integral. By the Monotone Convergence Theorem,

E(h(X)) = E
((

lim
n→∞

sn

)
◦X

)
= E

(
lim
n→∞

(sn ◦X)
)

MCT
= lim

n→∞
E((sn ◦X))

= lim
n→∞

∫
R
sn dPX by Step 2 since sn-simple

MCT
=

∫
R

lim
n→∞

sn dPX

=

∫
R
hdPX

4. Let h be integrable i.e.
∫
R |h|dPX < ∞. Any measurable function that changes sign can be

written as its positive part minus its negative part, both non-negative measurable functions.

E(h(X)) ..= E
(
(h+ − h−) ◦X

)
= E

(
h+ ◦X

)
− E

(
h− ◦X

)
=

∫
R
h+ dPX −

∫
R
h− dPX by Step 3

=

∫
R
(h+ − h−) dPX by linearity

=..

∫
R
hdPX

■

5.6 Types of Random Variables

5.6.1 ABSOLUTELY CONTINUOUS

Now we combine the notion of distribution and the Radon-Nikodym derivative to properly define
probability mass and density functions of random variables.

Definition 5.6.1 A (real-valued) random variable X is called absolutely continuous if its dis-
tribution PX is absolutely continuous with respect to the Lebesgue measure on R.

We now only need the σ-finiteness of both measures PX and λ in order to apply the Radon-
Nikodym theorem. Since PX is a probability measure, it’s finite and hence σ-finite on BR. The
Lebesgue measure on R is σ-finite because R can be covered with a countable sequence of measurable
sets each with finite λ-measure e.g.

R =
⋃
n∈N

[−n, n]

where each [−n, n] ∈ BR and λ([−n, n]) = 2n <∞.
By the Radon-Nikodým Theorem (5.4.2), ∃λ-a.e. unique ϕX ..= dPX

dλ which is what we in-
terpret as the probability density function of X. Applying Theorem 5.5.1 and then the
Theorem 5.4.2 gives:

E(h(X))
CVF
=

∫
R
hdPX

RNT
=
?

∫
R
hϕX dλ.
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It’s not immediately clear to me why ? is true. Let’s verify it.

Claim (KEB) Let PX ≪ λ, and h : R→ R be a non-negative measurable or integrable function.
Then: ∫

R
hdPX =

∫
R
hϕX dλ

Proof.

1. Consider h = 1B for some B ∈ BR.∫
R
1B dPX =.. PX(B)

RNT
=

∫
B
ϕ dλ

=

∫
R
ϕ1B dλ

=

∫
R
hϕ dλ

2. Let h be simple, non-negative and measurable. By linearity, we have that∫
R

n∑
i=1

ai1Ai dPX =

n∑
i=1

ai

∫
R
1Ai dPX

=
n∑

i=1

ai

∫
R
1Aiϕ dλ by Step 1

=

∫
R

n∑
i=1

ai1Aiϕ dλ

..=

∫
R
hϕdλ

3. Let h ⩾ 0 be measurable. Then h is the pointwise limit of a non-decreasing sequence of
simple functions {sn}n∈N. ∫

R
hdPX =

∫
R

lim
n→∞

sn dPX

MCT
= lim

n→∞

∫
R
sn dPX

= lim
n→∞

∫
R
snϕ dλ by Step 2

MCT
=

∫
R

lim
n→∞

snϕ dλ

=

∫
R
hϕ dλ

In the case that h is integrable i.e.
∫
R |h|dPX < ∞, I’m guessing that one can decompose

h = h+ − h− and then ∫
R
hdPX =

∫
R
h+ dPX −

∫
R
h− dPX

=

∫
R
h+ϕ dλ−

∫
R
h−ϕ dλ by Step 3

=

∫
R
(h+ − h−)ϕ dλ

=

∫
R
hϕ dλ.

■
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So overall we went from having no idea how to integrate with respect to P, to still not really
knowing how to integrate with respect to PX in practice, and finally arrived at an integral with
respect to λ which we know how to compute if the function happens to be Riemann integrable:

E(h(X)) ..=

∫
Ω
h(X)dP

CVF
=

∫
R
hdPX

KEB
=

∫
R
hϕXdλ

This final integral is something that we use a lot in practice i.e. to compute the probability or
expected value involving a random variable X, we need only look at the integral of some function
of X multiplied by the density function. Indeed, when we take h = id the expression

E(X) =

∫
R
idϕX dλ

has the natural interpretation as a one-number summary of the centre of its distribution — a
measure of its central tendency.

Further to this, we can recover a formula to calculate pushforward probabilities:

PX(B) = P
(
X−1(B)

)
=.. E

(
1X−1(B)

)
= E(1B(X)) =

∫
Ω
1B(X) dP =

∫
R
1B dPX =

∫
R
1BϕX dλ

=

∫
B
ϕX dλ.

5.6.2 DISCRETE

Definition 5.6.2 A random variable X ∈ MeasΩ, E(F ; E) is called discrete if its distribution has
at most countably infinite support.

Remarks (!!)

• In particular, if X has at most countably infinite image, then the support of PX is certainly
at most countably infinite and so X is discrete.

• If X is discrete, then it follows that PX is absolutely continuous with respect to the counting
measure µsupp(X) on supp(X) ⊆ E defined by

µsupp(X)(B) = card(B ∩ supp(X)).

Proof. Let µsupp(X)(B) = 0. Then B ∩ supp(X) = ∅ and so B ⊆ E \ supp(X). This
means that for every x ∈ B, there exists some open neighbourhood TE ∋ Nx ∋ x s.t.
PX(Nx) = 0. The {Nx}x∈B form an open cover of B. Since (E, E) is a Borel space, the
underlying topological space is Polish i.e. metrisable and separable. This tells us that it’s
also second-countable so we can extract a countable subcover {Nxi}i∈N of the {Nx}x∈B.
Therefore,

PX(B) ⩽ PX

( ⋃
i∈N

Nxi

)
=
∑
i∈N

PX(Nxi) = 0.

Thus, PX ≪ µsupp(X). ■

Following the same logic as the absolutely continuous case, if we use the Change of Variables
formula 5.5.1, followed by the KEB Claim (which involves the Radon-Nikodym Theorem, noting
that PX ≪ µsupp(X)) then we arrive at

E(h(X)) ..=

∫
Ω
hdP CVF

=

∫
R
hdPX

KEB
=

∫
R
hϕX dµsupp(X) =

∑
x∈supp(X)

h(x)ϕX(x)
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Example If we let h = id, then

E(h(X)) = E(X) =
∑

x∈supp(X)

xϕX(x)

which is the usual formula4 of the expected value of a discrete random variable X. Note that
the condition for E(X) (an integral w.r.t the counting measure) existing is that of the sum being
absolutely convergent.5

We interpret ϕX(x) as PX({x}) and so ϕX is the familiar probability mass function of a
discrete random variable X.

Example We can also recover a familiar expression for the pushforward probability of some B ∈
BR. Note that µsupp(X) is σ-finite on supp(X). Thus, the Radon-Nikodým theorem applies and:

PX(B) = P
(
X−1(B)

)
=.. E

(
1X−1(B)

)
= E(1B(X)) =

∫
Ω
1B(X) dP =

∫
R
1B dPX

=

∫
R
1BϕX dµsupp(X)

=

∫
B
ϕX dµsupp(X)

=
∑

x∈B∩supp(X)

ϕX(x)

=
∑
x∈B

ϕX(x).

So in summary:

• An absolutely continuous random variable is characterised by a density function.

• A discrete random variable is characterised by a probability mass function.

But both density and mass functions can be viewed under a unifying framework as the Radon-
Nikodym derivatives of PX with respect to a reference measure — a measure for which we can
better understand

∫
functiond(ref. measure) e.g. λ and µN respectively.

4If the numbers ϕX(x) = PX({x}) are regarded as masses at the points x, then E[X] represents the position of
the centre of gravity of their sum. Sometimes it’s said that X has an atom or point mass of size pX(x) at x.

5Absolute convergence guarantees that we avoid the situation where the value of the infinite sum E(X) can
change upon reordering the x by Riemann’s rearrangement theorem.
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CHAPTER 6

Random Vectors

The natural extension to a single random variable X, defined on a probability space (Ω,F ,P) and
representing one observation from a single trial of an experiment, is a collection of random variables
X1, . . . , Xn formalising the act of carrying out n successive trials of an experiment.

Say we perform the same experiment n times. Each trial (represented byXi) results in observing
xi. Once we complete the successive trials, we have a collection of observations x1, . . . , xn. The
event corresponding to this collection is of course equal to the intersection of all possible outcomes
that result in each Xi outputting xi:

{X1 = x1, . . . , Xn = xn} ..=
n⋂

i=1

{Xi = xi} ..=
n⋂

i=1

{ω ∈ Ω̃ : Xi(ω) = xi}.

Note that the underlying probability space Ω̃ (and its corresponding σ-algebra) is abstract,
and changes its structure to support the random variables defined on it. This is a subtle point
that will be expanded on later (in Chapter 13) but in this case, we think of Ω̃ as a collection
of tuples (ω1, . . . , ωn) representing the n successive outcomes of the experiment, and each Xi as
the composition of X with the natural ith coordinate projection. Each ωi certainly lives in Ω so
Ω̃ = Ωn. Henceforth, I will commit the heinous crime against precision of notation and refer to the
underlying space as Ω.

We represent the collection of outcomes by an n-tuple (x1, . . . , xn). The reason for this is
because the mathematical object that formalises the idea of modelling multiple random variables
at a time is called a random vector:

Definition 6.0.1 A real random vector on a probability space (Ω,F ,P) is a map X : Ω→ Rn

that is (F ,BRn)-measurable i.e. ∀B ∈ BRn , X−1(B) ∈ F .

Proposition 6.0.2 Any mapping X : Ω → Rn must be of the form ω 7−→ (X1(ω), . . . , Xn(ω)),
where each component Xi(ω) ∈ R for all i = 1, . . . , n. We shall see that X is (F ,BRn)-measurable
iff for each i = 1, . . . , n, Xi is (F ,B)-measurable.

The reason for this can be found in Section 1.2 from Folland [8, pp. 22–24].
The cliffnotes version is that for a collection of non-empty measurable spaces
{(Xα,Fα)}α∈A, if we denote by

πα :
∏
α∈A

Xα︸ ︷︷ ︸
=..X

→ Xα

the canonical projections (sending every element of X to its Xα component), then
we may define a σ-algebra on X called the product σ-algebra on X, denoted
⊗α∈AFα. This σ-algebra is generated by the collection of pre-images under πα

of all measurable sets Eα ∈ Fα:

{π−1
α (Eα) : Eα ∈ Fα, α ∈ A}.

The sets π−1
α (Eα) or the finite intersection of such sets are called cylindrical sets.

(The product σ-algebra is the coarsest one that makes the coordinate maps fα
measurable.) If A is countable, then ⊗α∈AFα is generated by{∏

α∈A

Eα : Eα ∈ Fα

}
because π−1

α (Eα) =
∏

β∈A Eβ for Eα ∈ Fα where Eβ = Xβ for β ̸= α. With
another technical lemma and under the assumption that X1, . . . , Xn are separable
metric spaces (A = {1, . . . , n}-countable), we have as a corollary that

BRn =

n⊗
i=1

BR
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from which we can prove the following proposition:

Proposition 6.0.3 (Proposition 2.4 [8]) Let (Y,A) and (Xα,Fα) for α ∈ A be
measurable spaces, X =

∏
α∈A Xα, F = ⊗α∈AFα be the product σ-algebra on

X, and πα : X → Xα be the canonical projections. Then f : X → Y is (A,F)-
measurable iff fα = πα ◦ f is (A,Fα)-measurable for all α ∈ A.

Let (Y,A) = (Ω,F) and (X,⊗α∈AFα) = (Rn,⊗n
i=1BR) = (Rn,BRn) and the

claim follows.

Indeed, by Proposition 6.0.3 a random vector is simply an n-tuple X = (X1, . . . , Xn) of random
variables and a realisation of X is denoted by an n-tuple (x1, . . . , xn).

An important thing to mention here is that, in greater generality, one can consider a random
vector of random variables Xi : (Ω,F)→ (Ei, Ei) where each (Ei, Ei) is a Borel space. By
Theorem 4.4.4, the product space (

E =
n∏

i=1

Ei, E =
n⊗

i=1

Ei
)

is also a Borel space, and hence X = (X1, . . . , Xn) maps into the Borel space (E, E).

6.1 Probability Distribution of X

Similar to the case of a (univariate) real random variable, every real random vector is a measurable
map that induces a unique probability distribution PX as the push-forward measure X♯P of P via
X:

(Ω,F) (Rn,BRn)

[0, 1]

P

X

PX

The probability distribution of a real random vector X = (X1, . . . , Xn) : Ω→ Rn (under
P) is the map PX : B(Rn)→ [0, 1] defined for all B ∈ BRn by:

PX(B) ..= P
(
X−1(B)

)
= P(X ∈ B)

= P({ω ∈ Ω: X(ω) ∈ B}).

We also call PX the joint probability distribution of the random variables X1, . . . , Xn.

6.1.1 JOINT CDF

We follow the beaten path once more by discussing the ways in which we can specify the probability
distribution of a random variable. We already have that BRn = ⊗n

i=1BR because Rn is a separable
metric space. A technical lemma states that if each Fα in (Xα,Fα) is generated by Cα, A is
countable and Xα ∈ Cα for all α ∈ A, then F = ⊗α∈AFα is generated by

F2 =

{∏
α∈A

Eα : Eα ∈ Cα

}
.

Let Xα = R, Fα = BR for all α ∈ A = {1, . . . , n}. If we consider Cα = {(−∞, x] : x ∈ R} for
all α ∈ A, it follows that an alternative specification (that again, always exists) of our PX is the
cumulative distribution function of X:
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Definition 6.1.1 All random vectors X = (X1, . . . , Xn) admit a joint cumulative distribution
function FX : Rn → [0, 1] defined for any x ∈ Rn by:

FX(x) ..= PX((−∞, x1]× . . .× (−∞, xn])
= P({ω ∈ Ω: X1(ω) ⩽ x1, . . . , Xn(ω) ⩽ xn)

= P({X ⩽ x}),

where (a1, . . . , an) = a ⩽ x = (x1, . . . , xn) iff ai ⩽ xi for all i = 1, . . . , n.

Example 6.1.2 (Bivariate Joint Distribution) Let (X,Y ) : Ω→ R2 be a random vector. Suppose
that F : R2 → [0, 1] is a function satisfying the following:

1. F (−∞, y) = F (−∞,−∞) = F (x,−∞) = 0, F (∞,∞) = 1

2. (x, y) ⩽ (u, v) =⇒ F (x, y) ⩽ F (u, v)

3. Continuity from above: limu,v↓0 F (x+ u, y + v) = F (x, y)

4. If (x, y) ⩽ (u, v) then F (u, v)− F (u, y)− F (x, v) + F (x, y) ⩾ 0

These are sufficient conditions to construct a probability space and random variable such that F
is the cumulative distribution function of (X,Y ).

Proof Sketch. We can define a set function ν on the semi-algebra of half-open rectangles by
µ((x, u] × (y, v]) ..= F (u, v) − F (u, y) − F (x, v) + F (x, y) and extend it via the Carathéodory
extension theorem to a Borel measure (which we call µ). Then the random variable (X,Y ) on
(R2,BR2 , µ) has distribution function F .

(u, v)

(x, y)

x

y

(x, v)

(u, y)

(u, v)

(x, y)

x

y

Figure 6.1: A visualisation of the doubly-subtracted region (−∞, x]× (−∞, y], represented by the
orange overlap of the red and yellow regions, needing to be compensated for by adding F (x, y) to
F (u, v)− F (u, y)− F (x, v).

The resulting half-open rectangle looks like:

(x, v)

(u, y)

(u, v)

(x, y)

■

I believe that this argument extends analogously to an n-dimensional random vector.
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6.2 Types of Random Vectors

This section is largely analogous to the earlier discussion of types of random variables.

Definition 6.2.1 A real random vector X : Ω→ Rn is discrete ifa there exists an at most
countably infinite set Γ such that PX(Γ) = 1.

aThis is an equivalent way to say supp(PX) is at most countably infinite.

Remarks 6.2.2 If X : Ω→ Rn is discrete, then:
• We say that X1, . . . , Xn are jointly discrete,

• By the RNT, PX admits a joint probability mass function pX : Rn → [0, 1] defined for
all x ∈ Rn by

pX(x) = PX({x}) = P({X = x}).
Thus, for any B ∈ BRn :

PX(B) = P({X ∈ B})
= P({ω ∈ Ω: X(ω) ∈ B})

= P
( ⋃

x∈B
{ω ∈ Ω: X(ω) = x}

)
=
∑
x∈B

pX(x).

Definition 6.2.3 A real random vector X is absolutely continuous if its probability
distribution PX is absolutely continuous with respect to the Lebesgue measure λRn .

Remarks 6.2.4 If X = (X1, . . . , Xn) : Ω→ Rn is absolutely continuous, then:
• We say that the components X1, . . . , Xn are jointly absolutely continuous.

• By the RNT, PX admits a (λR-a.e. unique) density function fX : Rn → R+ s.t. ∀B ∈ BRn :

PX(B) =

∫
B
fX dλRn .

This density fX is called the joint probability density of X.

6.3 Marginal Distributions

The ith marginal distribution of X is the distribution of the ith component of the random
vector X = (X1, . . . , Xn), denoted PXi . Let πi : Rn → R denote the projection map onto the ith

coordinate. Then Xi
..= πi ◦X.

(Ω,F) [0, 1]

(Rn,BRn) (R,BR)

X

Xi

P

πi

PX PXi
..=(Xi)♯P=(πi)♯PX
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From the diagram above, PXi is the pushforward (Xi)♯(P) : BR → [0, 1] of P via Xi. This map
is defined for any B ∈ BR by

((Xi)♯P)(B) = P
(
X−1i (B)

)
= P

(
(πi ◦X)−1(B)

)
= P

(
X−1(π−1i (B)

)
= PX

(
π−1i (B)

)
= ((πi)♯PX)(B)

= PX

(
R× . . .× R︸ ︷︷ ︸
(i−1) times

×B×R× . . .× R︸ ︷︷ ︸
(n−i) times

)
Note that the diagram also suggests that (Xi)♯(P) should be equal to the pushforward of PX via πi
(which is indeed a (BRn = ⊗n

i=1BR,BR)-measurable function with respect to the product σ-algebra
on Rn). This relationship reveals itself as the (πi)♯PX term in the above equation above and I make
this explicit in the following pushfoward diagram:

(Xi)♯P = πi♯PX

P X♯P =.. PXX

Xi
πi

The process of marginalisation isolates the behaviour of a random vector’s component from
its joint distribution by “summing” over all values that can be assumed by the other components
(excluding the ith) of the random vector. This is represented by the Cartesian product R × . . . ×
R×B × R× . . .× R. In essence, this process collapses the random vector onto the single random
variable Xi of interest.

• If X : Ω → Rn is discrete with joint probability mass function pX(x1, . . . , xn), the marginal
probability mass function of Xi is given by

pXi(xi) =
∑

xj : j ̸=i

pX(x1, . . . , xn).

• If X : Ω → Rn is absolutely continuous with density fX(x1, . . . , xn), then for each i =
1, . . . , n : Xi is absolutely continuous and its marginal probability density is given by

fXi(xi) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
fX(x1, . . . , xi−1, xi, xi+1, . . . , xn) dx1 . . . dxi−1 dxi+1 . . . dxn.

Proof.

P(Xi ⩽ t)

=

∫ +∞

−∞
· · ·
∫ +∞

−∞

∫ t

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
fX(x1, . . . , xi−1, xi, xi+1, . . . , xn) dx1 . . . dxn

=

∫ t

−∞

(∫ +∞

−∞
· · ·
∫ +∞

−∞
fX(x1, . . . , xi−1, xi, xi+1, . . . , xn) dx1 . . . dxi−1 dxi+1 . . . dxn

)
dxi

Since fX is non-negative and measurable on Rn, we were permitted to use Tonelli’s theorem
to exchange the order of integration. The integrand on the last line is precisely fXi(xi). ■
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In the spirit of marginalisation, for each i the joint CDF of X is related to the marginal CDF of
Xi by

FXi(xi) = lim
xj→+∞
∀j ̸=i

FX(x1, . . . , xn).

6.4 Conditional Distributions

The opposite of marginalisation is the idea of conditioning — a concept that represents how we
update our beliefs given prior information e.g. computing the value of an event occurring given the
knowledge that some events have already happened. Some keywords I had at the time of writing
this chapter were conditional density, and disintegration theorem. I answer what these are
affirmatively in Chapter 17.

For the time being, I offer a very brief summary of the undergraduate-level treatment of con-
ditioning because I use it in an exercise 7 before I give the proper treatment in a later chapter.

When discussing marginalisation, we looked at a single component of a random
vector in isolation. If instead, we wish to consider the values some components
of a random vector will take given that the remaining components have already
assumed a value in some set, then we’re in the realms of conditioning.

For the following exposition, let X = (X1, X2) : R2 → R be a 2-dimensional real
random vector.

6.4.1 JOINTLY DISCRETE

Suppose that X1 and X2 are jointly discrete with joint probability mass func-
tion p(x1, x2), and marginal probability mass functions p1(x1) and p2(x2). The
discrete conditional probability function of X1 given {X2 = x2} is given1

by

p(x1 | x2) =
pX(x1, x2)

p2(x2)

provided that p2(x2) > 0.

6.4.2 JOINTLY ABSOLUTELY CONTINUOUS

In the case that X1 and X2 are jointly absolutely continuous, we can’t define
a conditional probability function of X1 given X2 = x2 since both {X1 = x1}
and {X2 = x2} are evens with probability zero. Instead, a useful and consistent
definition for a conditional density function can be found if we’re interested in
probabilities of the form

P({X1 ⩽ x1 |X2 = x2}) =.. F (x1 | x2)

which as a function of x1 for a fixed x2 is called the conditional distribution
function of X1 given {X2 = x2}.

If we could multiply F (x1|x2) by each value of P({X2 = x2}), we would hopefully
recover FX1(x1) but each value of P({X2 = x2}) is 0. We can do something
analogous by instead multiplying by the density fX2(x2) and integrating:

FX1(x1) =

∫ +∞

−∞
F (x1|x2)fX2(x2) dx2

This term in blue can be thought of as the approximate probability that X2 takes
on a value within a small interval about x2 and then the integral can be thought
of as a generalised sum.

1This expression is analogous to the conditional probability expression for events P(A |B) = P(A ∩B)/P(B).
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From previous considerations:

FX1(x1) =

∫ x1

−∞
fX1(t1) dt1

=

∫ x1

−∞

(∫ ∞

−∞
fX(t1, x2) dx2

)
dt1

=

∫ ∞

−∞

∫ x1

−∞
fX(t1, x2) dt1 dx2

For now, this is the best we can do. Watch this space in Chapter 17.

6.5 Independence of Random Variables

We shall build on our prior definition of mutually P-independent sub-σ-algebras. Let (Ω,F ,P) be
a probability space.

Definition 6.5.1 The σ-algebra σ(X) generated by a random vector X : Ω → Rn is the
coarsest2 σ-algebra on Ω that makes X measurable i.e.

σ(X) ..= {X−1(B) : B ∈ BRn}.

Any collection of random variables X1, . . . , Xn defined on the same probablity space are mu-
tually P-independent if {σ(Xi)}1⩽i⩽n are mutually P-independent.

Example 6.5.2 Let’s follow the definition for a random vector X = (X1, X2). Suppose thatX1 and
X2 are independent. This means that σ(X1) = {X−11 (A) : A ∈ BR} and σ(X2) = {X−12 (A) : A ∈
BR} are mutually P-independent i.e. for any choice of A ∈ σ(X1) and B ∈ σ(X2)

P(A ∩B) = P(A) · P(B).

Since A ∈ σ(X1) and B ∈ σ(X2), there exist B1 ∈ BR ∋ B2 s.t. A = X−11 (B1) and B = X−12 (B2).
This means that:

• P(A ∩B) = P
(
X−11 (B1) ∩X−12 (B2)

)
= P

(
X−1(B1 ×B2)

)
= P(X1,X2)(B1 ×B2)

• P(A) · P(B) = P
(
X−11 (B1)

)
· P
(
X−12 (B2)

)
= PX1(B1) · PX2(B2).

Finally, we recover the familiar expression

P(X1,X2)(B1 ×B2) = PX1(B1) · PX2(B2).

This example extends to the general case:

Theorem 6.5.3 Suppose that the components Xi of a real random vector X = (X1, . . . , Xn) are
independent. Then the joint distribution PX of X is the3 product measure

⊗n
i=1 PXi :

⊗n
i=1 BR →

[0, 1] defined for every Bi ∈ B by

(⊗nPXi) (B1 × . . .×Bn) = PX1(B1) · . . . · PXn(Bn).

As before, we can choose a generating set for each σ-algebra i.e. consider the half-open rays
(−∞, x] that generate BR. Then we have a representation of the above theorem in terms of CDFs!
For simplicity, we consider a 2-dimensional real random vector X = (X1, X2).

Lemma 6.5.4 Let X have CDF FX(x1, x2) and the marginals of X1 and X2 be FXi(xi) for i = 1, 2
respectively. Then X1 and X2 are (mutually P-)independent iff

FX(x1, x2) = FX1(x1) · FX2(x2)

for every pair of real numbers (x1, x2).
2Smallest.
3This is unique because of σ-finiteness of the constituent prodands.
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If X1 and X2 are not independent, they are said to be dependent.
There are also example expressions for discrete and absolutely continuous random vectors X:

• If X is discrete with joint probability mass function pX(x1, x2), and marginal mass functions
pX1(x1) and pX2(x2) respectively, then X1 and X2 are independent iff for every pair of real
numbers (x1, x2):

pX(x1, x2) = pX1(x1) · pX2(x2).

• If X is absolutely continuous, admitting joint probability density function fX(x1, x2), then
X1 and X2 are absolutely continuous with respective marginal density functions fX1(x1) and
fX2(x2). Then X1 and X2 are independent iff for every pair of real numbers (x1, x2):

fX(x1, x2) = fX1(x1) · fX2(x2).

Here are two very general but powerful theorems that will help to simplify our lives many times
over for the remainder of these notes:

Theorem 6.5.5 (Theorem 4.6.11 [1]) Let X1, . . . ,Xn be random vectors defined on the same
probability space. Then X1, . . . ,Xn are mutually independent random vectors if and only if there
exist non-negative real-valued functions gi(xi) for i = 1, . . . , n such that the joint density f of
(X1, . . . ,Xn) factors into

f(x1, . . . ,xn) = g1(x1) · . . . · gn(xn).

Theorem 6.5.6 (Theorem 4.6.12 [1]) Let X1, . . . ,Xn be mutually independent random vectors
defined on the same probability space. Let gi(xi) be a function of only xi for i = 1, . . . , n. Then
the random vectors Ui = gi(Xi) for i = 1, . . . , n are mutually independent.
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CHAPTER 7

Averages, Dispersion, and Correlation

The word ‘average’ can mean many things. There are multiple ways to take an average of numbers;
mean, median, mode, weighted averages etc. Without clarification, average in these notes means
‘mean’ or ‘expected value.’

When discussing types of random variables, we’ve already seen the expectation of a random
variable as a Lebesgue integral that quantifies its central tendency. We can also calculate measures
of variability (variance, standard deviation etc.) to describe how spread out a random variable’s
distribution is:

7.1 Variance

The variance of a random variable is a measure of how concentrated around the mean, the distri-
bution of a random variable is.

Definition 7.1.1 The variance of a random variable X is defined as

Var(X) ..= E
(
(X − E(X))2

)
if E
(
X2
)

exists and is finite (the reason for which is explained by the following corollary).

Corollary 7.1.2 By the linearity of expectation:

E[(X − E[X])2] = E[X2 − 2E[X]X + E[X]2]

= E[X2]− 2E[X]E[X] + E[X]2

= E[X2]− E[X]2.

If the random variables under consideration are independent, we can sometimes simplify the
work involved in finding expectations.

Theorem 7.1.3 Let Y1 and Y2 be independent random variables on the same probability space
and let g(Y1) and h(Y2) be functions of only Y1 and only Y2 respectively. Then

E(g(Y1)h(Y2)) = E(g(Y1))E(h(Y2))

provided the expectations exist.

Continuous Case. Let fY(y1, y2) be the joint density of Y = (Y1, Y2). The product g(Y1)h(Y2)
is a function of Y1 and Y2 — call it i(Y1, Y2). Then

E(g(Y1)h(Y2)) = E(i(Y1, Y2)) =
∫ ∞
−∞

∫ ∞
−∞

i(y1, y2)fY(y1, y2) dy1 dy2

=

∫ ∞
−∞

∫ ∞
−∞

g(y1)h(y2)fY(y1, y2) dy1 dy2

=

∫ ∞
−∞

∫ ∞
−∞

g(y1)h(y2)fY1(y1)fY2(y2) dy1 dy2 by independence

=

∫ ∞
−∞

h(y2)fY2(y2)

(∫ ∞
−∞

g(y1)fY1(y1) dy1

)
︸ ︷︷ ︸

=.. E(g(Y1))

dy2

= E(g(Y1))
∫ ∞
−∞

h(y2)fY2(y2) dy2

= E(g(Y1))E(h(Y2))
■
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7.2 Covariance

Intuitively, we think of the dependence of two random variables Y1 and Y2 as implying that one
variable, say Y1, either increases or decreases as Y2 changes. Two measures of dependence are the
‘covariance’ between two random variables and the correlation coefficient of two random variables.
Consider the following scatter plot of observations of (Y1, Y2):

µ1

µ2

y1

y2

Figure 7.1: A figure of (seemingly?) dependent observations for (y1, y2).

• Suppose that µ1 = E(Y1) and µ2 = E(Y2).

• Measure the deviations (y1 − µ1) and (y2 − µ2).

• For any point (y1, y2) in the figure, both deviations assume the same sign so their product is
positive.

• On average (over all observations), the product is large and positive.

Now consider the following scatter plots:

y1

y2

y1

y2

• Had the relationship sloped downward and to the right, as shown in the scatter plot on the
left, all corresponding pairs of deviation would have had opposite signs and the average value
of their product (y1 − µ1)(y2 − µ2) would have been a large negative number.

• For the plot on the right, we can see that there’s little dependence between Y1 and Y2. The
corresponding deviations will have the same sign for some points and opposite signs for others.
The average of these products will be some value around zero.

Definition 7.2.1 The average value of (Y1 − µ1)(Y2 − µ2) provides a measure of the dependence
between Y1 and Y2. This quantity E((Y1 − µ1)(Y2 − µ2)) is called the covariance of Y1 and Y2,
denoted Cov(Y1, Y2).



Averages, Dispersion, and Correlation 81

A convenient computational formula for covariance is:

Cov(Y1, Y2) = E((Y1 − µ1)(Y2 − µ2))
= E(Y1Y2 − Y1µ2 − µ1Y2 + µ1µ2)

= E(Y1Y2)− µ2E(Y1)− µ1E(Y2) + µ1µ2

= E(Y1Y2)− µ2µ1 − µ1µ2 + µ1µ2

= E(Y1Y2)− µ1µ2
Corollary 7.2.2 (Independent Random Variables Are Uncorrelated) If Y1 and Y2 are random
variables that are independent, then Cov(Y1, Y2) = 0.

Proof.
Cov(Y1, Y2) = E(Y1Y2)− µ1µ2

= E(Y1)E(Y2)− µ1µ2 by independence

= 0

■

The converse is not true. Uncorrelated ≠⇒ Independence.
�

7.3 Correlation

It’s difficult to employ covariance as an absolute measure of dependence because its value depends [4]
on the scale of measurements. This problem can be rectified by standardising its value:

The correlation coefficient ρ is defined by

ρ ..=
Cov(Y1, Y2)

σ1σ2

where σi is the standard deviation of Yi.

Proposition 7.3.1 The correlation coefficient ρ ∈ [−1, 1].

Proof.

Exercise 1 (5.137 [6], 5.167 [7])

(a) Show that (E(Y1Y2))2 ⩽ E
(
(Y1)

2
)
E
(
(Y2)

2
)
.

Hint: Observe that E
(
(tY1 − Y2)2

)
⩾ 0 for any t ∈ R, or equivalently,

t2E
(
(Y1)

2
)
− 2tE(Y1Y2) + E

(
(Y2)

2
)
⩾ 0.

(b) Using the inequality in (a), show that ρ2 ⩽ 1.

(a) E
(
(tY1 − Y2)2

)
is a non-negative quadratic in t which is equivalent to its discriminant being

non-positive.
∴ 0 ⩾ b2 − 4ac = (2E(Y1Y2))2 − 4E

(
(Y1)

2
)
E
(
(Y2)

2
)

from which the result follows.

(b) By definition,

ρ2 =
(Cov(Y1, Y2))

2

(σ1)2(σ2)2
=

(E((Y1 − µ1)(Y2 − µ2)))2

Var(Y1)Var(Y2)

(a)
⩽

E
(
(Y1 − µ1)2

)
E
(
(Y2 − µ2)2

)
Var(Y1)Var(Y2)

= 1

The intermediate step takes for granted that Zi = Yi − µi satisfy the requirements of (a)
i.e. that (Z1, Z2) admits a joint density and that each Zi has finite variance (which is true
because variance is translationally invariant).
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■

• A value of ρ = 0 indicates the lack of linear relationship between the two variables (absence
of correlation) but not necessarily independence.

• The limiting values indicate perfect negative (ρ = −1) or positive (ρ = +1) correlation —
the sample values fall on a straight line.

Definition 7.3.2 [4]

• A correlation coefficient in general is a measurement (that’s unchanged by both addition
and multiplication of the random variable(s) by constants) which describes the tendency of
two random variables X and Y to vary together.

• An estimator of ρ obtained from n samples values (x1, y1), . . . , (xn, yn) of the two random
variables of interest is Pearson’s product moment correlation coefficient, denote by r
and given by

r =

n∑
i=1

(xi − x)(yi − y)√√√√( n∑
i=1

(xi − x)2
)(

n∑
i=1

(yi − y)2
) .

• More generally, if a score is allotted to each pair of individuals, say aij for the x-group and
bij for the y-group, a generalised coefficient of correlation may be defined as

Γ =

∑
aijbij√(∑

a2ij

)(∑
b2ij

)
where

∑
is a summation over all values of i, j (i ̸= j) from 1 to n. This general coefficient

includes:

◦ Kendall’s τ
◦ Spearman’s ρ
◦ Pearson’s PMCC r i.e. aij = xi − xj and bij = yi − yj

7.4 Calculating Expectations and Variances of Linear Combinations

Let Y1, . . . , Yn and X1, . . . , Xm be random variables with E(Yi) = µi and E(Xj) = ξj . Define

U1 =
n∑

i=1

aiYi and U2 =
m∑
j=1

bjXj

for constants a1, . . . , an and b1, . . . , bm. Then

(a) E(U1) =

n∑
i=1

aiµi

(b) Var(U1) =
n∑

i=1

a2iVar(Yi) + 2
∑

1⩽i<j⩽n

aiajCov(Yi, Yj)

(c) Cov(U1, U2) =
n∑

i=1

m∑
j=1

aibjCov(Yi, Xj)
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Proof.

(a) Follows from linearity.

(b) Expand out the expression for Var(U1)

Var(U1) = E
(
(U1 − E(U1))

2
) (a)
= E

( n∑
i=1

aiYi −
n∑

i=1

aiµi

)2


= E

( n∑
i=1

ai(Yi − µi)

)2


and note the following general expansion(
n∑

i=1

ai

)2

=
n∑

i=1

ai

n∑
j=1

aj =
n∑

i=1

n∑
j=1

aiaj

=
n∑

i=1
i=j

aiaj +
n∑

i=1
i ̸=j

aiaj

=

(
n∑

i=1

a2i

)
+ 2

n∑
i=1
i>j

aiaj

(7.1)

in order to conclude that

Var(U1) = E

 n∑
i=1

a2i (Yi − µi)2 + 2
n∑

i=1

∑
j>i

aiaj(Yi − µi)(Yj − µj)


=

n∑
i=1

a2i E
(
(Yi − µi)2

)︸ ︷︷ ︸
= Var(Yi)

+2
n∑

i=1

∑
j>i

aiaj E((Yi − µi)(Yj − µj)).︸ ︷︷ ︸
= Cov(Yi,Yj)

i

j

The diagonal elements correspond to when i = j.
The off-diagonal entries are symmetric about
i = j so their sum is equal to twice the entries
strictly above (resp. strictly below) the line

i = j.

(c)
Cov(U1, U2) = E((U1 − E((U1))(U2 − E((U2)))

= E

( n∑
i=1

ai(Yi − µi)

) m∑
j=1

bj(Xj − ξj)


= E

 n∑
i=1

m∑
j=1

aibj(Yi − µi)(Xj − ξj)


=

n∑
i=1

m∑
j=1

aibj E((Yi − µi)(Xj − ξj)).︸ ︷︷ ︸
= Cov(Yi,Xj)

■
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CHAPTER 8

Discrete Probability Distributions

This chapter will go over some examples of different experiments, their associated discrete random
variables of interest, and their respective probability distributions. Unless stated otherwise, the
σ-algebra associated with any finite set is simply its power set.

8.1 Uniform

The simplest available distribution to mankind. A uniform experiment is formalised by a prob-
ability space (Ω = {ω1, . . . , ωn},F = 2Ω,P) in which all outcomes have equal selection probability
i.e. P({ωi}) = 1/ card(Ω). Such a probability measure is called uniform on Ω.

Once we carry out a uniform experiment, we observe some element ei = X(ωi) of a population
(E, E) that corresponds to the theoretical outcome ωi ∈ Ω.

The associated random variable X : Ω → E maps into the population E (e.g. students in a
class E = {Marshall,Chad, . . . , Shamrock}). Note that in this case X is a bijection i.e. for every
i = 1, . . . , n: X(ωi) = ei.

The probability distribution of X is determined entirely by its behaviour on each element
ei ∈ E:

PX({ei}) = P
(
X−1({ei})

)
= P({ωi}) =

1

n

i.e. the mass function at each singleton is simply the reciprocal of the cardinality of the outcome
space. Thus, we say that X has a uniform distribution if its law PX is uniform on E.

(Ω,F) (E, E)

[0, 1]

P

X

PX

Informally, we could also identify Ω and
E via X = id. In this case, our setup is
as follows:

(Ω,F)

[0, 1]

P PX

X = idΩ

I’m not a big fan of this because it con-
flates the observable X(ω) with the the-
oretical underlying random outcome ω to
which the observable corresponds.

8.2 Bernoulli

A Bernoulli experiment is a random experiment with only two outcomes Ω = {ωs, ωf}, success
ωs with a fixed probability p ∈ [0, 1], or failure ωf with probability q = 1 − p. The associated
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random variable Y : Ω→ E = {0, 1} denotes the values we observe by:

Y (ω) =

{
1, if ω = ωs

0, if ω = ωf .

The associated diagram is as follows:

(Ω = {ωs, ωf}, 2Ω) ({0, 1}, 2{0,1})

[0, 1]

Y

P
PY

Y is said to have a Bernoulli p distribution, denoted Y ∼ Bern(p), if its probability distribution
is defined by:

PY ({y}) = P
(
Y −1({y})

)
=

{
P({ωs}) if y = 1

P({ωf}) if y = 0

=

{
p if y = 1

q = 1− p if y = 0.

Uses:

• Coin flip — success/failure experiments.

The expected value of Y ∼ Bern(p) is given by the following sum over y ∈ supp(PY ):

E(Y ) =
∑
y

y · PY ({y}) = 1 · P({Y = 1}) + 0 · P({Y = 0}) = p.

8.3 An Important Point!

This is a good place to mention an important point: The Kolmogorov formulation of probability
defines an abstract probability space to model the randomness of an experiment. A random variable
X formalises a quantity that we may observe depending on the outcomes of said experiment, and
its distribution is the pushforward of P via X — this distribution models the observables.

Consider the following examples:

• The experiment of flipping a coin is just the Bernoulli experiment above with success param-
eter 1/2, ωs = H, and ωf = T . As before, define X({H}) = 1, X({T}) = 0.

Thus, X ∼ Bern(1/2).

• Consider an experiment formalised by (Ω̃ = {ω1, ω2, γ1, γ2}, with probability measure P̃
defined by P̃({ωi}) = 1/4 = P̃({γi}). Let Y be defined by Y (ωi) = 1, Y (γi) = 0. The law of
Y is given by:

◦ P̃Y ({1}) = P̃(Y −1({1})) = P̃({ω1, ω2}) = P̃({ω1}) + P̃({ω2}) = 1/2

◦ P̃Y ({0}) = P̃(Y −1({0})) = P̃({γ1, γ2}) = P̃({γ1}) + P̃({γ2}) = 1/2

Thus, Y ∼ Bern(1/2)

This demonstrates that we have two different underlying probability spaces and random variables
giving rise to the same law. From the perspective of the values we observe, which is the case in
mathematical statistics, the underlying randomness is immaterial.
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When context dictates that only the observables in (E, E) matter, we may simply refer to PX

(defined on E) which makes no explicit reference to (Ω,F ,P). This is reflected in the notation, for
example, that Y ∼ Bern(p).

8.4 Binomial

A binomial experiment consists of the observation of a sequence of n independent1 and identically
distributed Bernoulli p random variables Xi ∼ Bern(p) for i = 1, . . . , n. The random variable of
interest Y is the number of “successes” in n trials. The overall picture is as follows:

(Ω = {ωs, ωf}n, 2Ω) ({0, 1}n, 2({0,1}n)) ({0, 1, . . . , n}, 2{0,1,...,n})

[0, 1]

X=(X1,...,Xn)

P

Y

PX =⊗nP
Y♯(PX)=PY ◦X

• On the left, we perform the same Bernoulli experiment n times and independently which is
represented by X mapping into the space of tuples of length n with entries as either 0 or
1. The resulting distribution of these samples/tuples is given by the product measure of the
original distribution P of the underlying Bernoulli experiment space.

• On the right, we define the random variable Y as the sum of the entries in such a tuple
(X1, . . . , Xn).

The probability distribution of Y is given by

(Y♯PX)({y}) = PX

(
Y −1({y})

)
= (⊗nP) (Y −1({y}))

= (⊗nP)

({
(x1, . . . , xn) ∈ {0, 1}n :

n∑
i=1

xi = y

})

Using the sample point method, we can identify the event {ω ∈ Ω: Y (ω) = y} of y successes in
n trials as a disjoint union of elementary events. Each elementary event can be written as a string
of y successes and n− y failures. Since each Bernoulli trial is independent, the probability of this
sample point is py(1 − p)n−y. The selection of y successes from a total of n trials is equivalent to
partitioning the n objects into 2 groups, the y selected and n− y remaining. The number of ways
to do so is (

n

y, n− y

)
=

n!

y!(n− y)!
=

(
n

y

)
We combine all of the above information and complete our calculation of the probability of the

event in which Y assumes the value y:

1It’s important to note that the assumption of each trial being independent and identically distributed is con-
ceptually equivalent to a scenario in which one samples n elements from a population of N -large (relative to n) or
infinitely many elements (N = ∞) without replacement.
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(Y♯PX)({y}) = . . . = (⊗nP)

({
(x1, . . . , xn) ∈ {0, 1}n :

n∑
i=1

xi = y

})

=
∑

(x1,...,xn)∈Y −1({y})

(
n∏

i=1

PXi({xi})

)

=
∑

(x1,...,xn)∈Y −1({y})

py(1− p)n−y

=

(
n

y

)
py(1− p)n−y

This is the probability mass function of a binomial distribution with parameters n and p.
We say that Y is binomially distributed with parameters n and p (denoted by Y ∼

Binom(n, p)) if its law PY is as above.

Remarks (Sampling) In the case that the sample size n is relatively small when compared to the
population size N from which we are sampling the X1, . . . , Xn, then the conditional probability
of success on a later trial given the number of successes on previous trials will remain approxi-
mately constant. This suggests that the Bernoulli trials are approximately independent. Sampling
problems of this type are approximately binomial.

In the case that n is large relative to N and we’re sampling without replacement, the conditional
probability of “success” on a later trial will be affected by previous draws. Thus, the trials are no
longer independent. A more appropriate probability model to use is called the hypergeometric
distribution.

Uses:

• To model counts.

Let Y ∼ Binom(n, p). Then

E(Y ) =
n∑

k=0

kP({Y = k})

=
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k

= np

n−1∑
j=0

(
n− 1

j

)
pj(1− p)n−1−j

= np

8.5 (Discrete) Geometric

A geometric experiment exhibits some similarities to the binomial experiment. In particular, a ge-
ometric experiment entails observing/drawing an infinite sequence of identical and independent
Bernoulli trials (modelled as iid Xi ∼ Bern(p) for i = 1, 2, . . .).

The random variable Y of interest is how many trials it takes to draw the first success, including
the first success. Denote the shared outcome space of the Xi by Ω. Then the outcome space of
Y is the Cartesian product Ω∞ = {(ω1, ω2, . . .)}. We therefore define Y : Ω∞ → N for a particular
ω ∈ Ω∞ by2

Y (ω) ..= min{i ⩾ 1: Xi(ωi) = 1},
2I’m not mentioning the σ-algebra over Ω∞, the σ-algebra associated with N (though it’s probably just 2N), and

therefore measurability of Y .
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where ωi is the outcome of the ith trial.
The probability distribution of Y , for y ∈ N, is given by

PY ({y}) = P
(
Y −1({y})

)
= P({ω ∈ Ω∞ : X1(ω1) = 0, . . . , Xy−1(ωy−1) = 0, Xy(ωy) = 1, Xy+1(ωy+1) ∈ {0, 1}, . . .})

=

(
y−1∏
i=1

P({Xi = 0})

)
P({Xy = 1})

 ∞∏
i=y+1

P({Xi ∈ {0, 1}})

 by independence

= (1− p)y−1p.

This is called the geometric distribution.

8.5.1 MEMORYLESSNESS

Exercise 2 (3.55 [6]) Let Y denote a discrete random variable that has a geometric distribution
with probability of success p.

1. Show that for a positive integer a,

P({Y > a}) = qa

2. Show that for positive integers a and b,

P({Y > a+ b} | {Y > a}) = qb = P({Y > b}).

This result implies that, for example, P({Y > 7} | {Y > 2}) = P({Y > 5}). Why do you
think this property is called the memoryless property of a discrete geometric distribution?

Solution:

1. For any positive integer a:

P({Y > a}) = 1− P({Y ⩽ a})

= 1−
a∑

y=1

P({Y = y}) since the events {Y = y} are mutually exclusive

= 1−
a∑

y=1

(1− p)y−1p

= 1− p
a−1∑
y=0

(1− p)y

= 1− p

(
1((1− p)(a−1)+1 − 1)

(1− p)− 1

)
= 1− (−1)((1− p)a − 1)

= (1− a)p

= qp (where q = 1− p)

2. By the definition of conditional probability:

P(A |B) =
P(A ∩B)

P(B)



Discrete Probability Distributions 89

Let A = {Y > a+ b} and B = {Y > a}. Then A ∩B = A and

P({Y > a+ b} | {Y > a}) = P(A |B) =
P(A ∩B)

P(B)
=

P(A)
P(B)

=
P({Y > a+ b})
P({Y > a})

=
qa+b

qa

= qb

= P({Y > b})

This is called the memoryless property because we can, in terms of probabilities, forget all
activity prior to the “current time” a and the subsequent probabilities would be the same had
the process begun at time 0.

t

b

0 a a+ b

t

0 b

Figure 8.1: The time a already spent waiting for an event to occur i.e. {Y > a} does not affect
how much longer the wait will be. Our new origin when conditioning is a — we re-label it to 0 in
the second visualisation.

Uses:

• Modelling the distribution of the waiting time
until an event occurs.
(As we shall see later, this is the discrete-time analogue of
an exponential distribution.)

8.6 Negative Binomial

A negative binomial experiment can be considered a generalisation of the geometric experiment
where we are instead interested in the random variable Y representing the number of trials it takes
to achieve the rth success. If we denote the number of cumulative successes after y trials as

Sy =

y∑
i=1

Xi,

then Y = min{y ∈ N : Sy = r}.

• Let event A denote exactly r − 1 successes in the first y − 1 trials

A = {ω ∈ Ω∞ : Sy(ω) = r − 1}

• Let B denote the event that the yth trial is a success

B = {ω ∈ Ω∞ : Xy(ω) = r − 1}

There are
(
y−1
r−1
)

ways to arrange r−1 successes in y−1 trials. Each sample point of r−1 successes
and (y − 1)− (r − 1) failures has probability pr−1(1− p)y−1−(r−1). The yth trial is a success so B
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has probability p. The trials are independent so A and B are independent. Therefore,

PY ({y}) = P
(
Y −1({y})

)
= P({ω ∈ Ω∞ : Y (ω) = y})
= P(A ∩B)

= P(A) · P(B) =

(
y − 1

r − 1

)
pr−1(1− p)y−r · p.

This is the probability mass function of the negative binomial distribution.

There are two forms of the geometric and negative binomial experiments:

• Failures until the first success

• The number of trials including the first success

�

Uses:

• Modelling times to rth success in a sequence of
independent Bernoulli trials.
(As we shall see later, this is the discrete-time analogue of
a gamma distribution.)

8.7 Hypergeometric

Suppose that a population contains a finite number N of elements. In a hypergeometric experiment,
we suppose that we’re randomly sampling n elements without replacement from a finite population
of N elements, with each element possessing one of two characteristics: red and black.

• r elements are red

• b = N − r elements are black

We think of the sampling process as generating outcomes tied to indicator random variables for
each draw. Each draw can be represented by a random variable Xi for i = 1, . . . , n. However,
these variables are dependent and not identically distributed. This is because sampling without
replacement means that the conditional probability of “success” (drawing a red) on a later trial will
be affected by previous draws. The random variable of interest Y is the number of red elements in
the sample.

An appropriate sample space Ω consists of all possible subsets3 of size n drawn from the pop-
ulation of N elements. There are

(
N
n

)
elements in Ω.

For each outcome, let Y be the number of red elements drawn. Therefore, the probability of y
red elements in the sample of n elements, PY ({y}), is given by the number of subsets with exactly
r elements divided by

(
N
n

)
. The total number of sample points containing y red elements is equal

to the number of ways of choosing y red elements from r red elements multiplied by the number
of ways we can select n− y black elements from the N − r black elements

PY ({y}) = P
(
Y −1({y}

)
=

(
r
y

)(
N−r
n−y
)(

N
n

) .

This is the mass function of the hypergeometric distribution.

3This is in contrast to the binomial experiment which tracked the order of outcomes as a sequence of random
variables. The order of the draws for the hypergeometric experiment does not matter.
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8.8 Hypergeometric Approximates Binomial

Recall the hypergeometric experiment and how n is large relative to N . Under certain circum-
stances, one would expect the probabilities assigned by a hypergeometric distribution to approach
those assigned by a binomial distribution as N grows large and n remains fixed. Stated more
precisely:

Lemma 8.8.1 Let Y be a hypergeometrically distributed random variable with probability mass
function pY (y). For fixed n and y, as N → +∞ and r = r(N) is such that r

N is held constant at
some value p, it follows that

lim
N→∞

pY (y) ..= lim
N→∞

(
r

y

)(
N − r
n− y

)
(
N

n

) =

(
n

y

)
py(1− p)n−y.

Proof. Omitted from the Wackerly textbook so I decided to derive it on my own.

pY (y) =
r!

y!(r − y)!
(N − r)!

(n− y)!((N − r)− (n− y))!
n!(N − n)!

N !

=

(
n

y

)
r!

(r − y)!
(N − r)!

((N − r)− (n− y))!
(N − n)!
N !

(∗)
=

(
n

y

)
r(r − 1) · . . . · (r − y + 1) · (N − r)(N − r − 1) · . . . · (N − r − (n− y) + 1)

N(N − 1) · . . . · (N − n+ 1)

(∗∗)
=

(
n

y

)
r(r − 1) · . . . · (r − y + 1)

N(N − 1) · . . . · (N − y + 1)
· (N − r)(N − r − 1) · . . . · (N − r − (n− y) + 1)

(N − y)(N − y − 1) · . . . · (N − n+ 1)

=

(
n

y

)
·

(
y−1∏
a=0

r − a
N − a

)
·

(
n−y−1∏
b=0

N − r − b
N − y − b

)

n→∞−→
(
n

y

)( r
N

)y (N − r
N

)n−y

=

(
n

y

)( r
N

)y (
1− r

N

)n−y
=..

(
n

y

)
py(1− p)n−y

(∗): The denominator was broken up into two products of “length” y and (n− y), respectively.

(∗∗): This final term is equal to (N−y+y−n+1) which continues the pattern in the denominator.

■
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CHAPTER 9

Point Processes (Random Scatters)

I wrote this section after Chapter 22, so I already had some familiarity with the type of objects
seen by that point (kernels). There’s little reason why the following exposition wouldn’t make sense
when read now, but I thought it was worth adding when I studied it.

This chapter is largely based on the video lectures on Poisson point processes by Prof.
Nicolas Lanchier which follow chapter 9 from his book [2]. I’ve tried to fill in some details on the
types of objects being considered.

9.1 Point Processes

Consider an experiment in which we observe a random scattering of at most countably many points
in some state space (S,S). The state space S is typically Rd for some d ∈ N. Upon realisation of
the random scatter, each point is called1 a “hit”. Consider some bounded Borel subset B ∈ B(Rd).
The number of hits in B is a random variable we denote by N(B). If one knows exactly the number
of hits in each B i.e. if one knows the collection of random variables {N(B)}B∈BRd , then one has
a full description of the scatter.

The perspective that Lanchier takes is to give this collection a name N, and
demand certain natural properties of its elements. Let A,B ∈ BRd . Then:

• N(∅) = 0

• For non-overlapping A and B, N(A ⊔B) = N(A) +N(B)

• If A ⊆ B, then N(A) ⩽ N(B).
• Set-difference, inclusion-exclusion etc.

All of these properties follow from one property; that N is σ-additive i.e.

N
( ⊔
j∈N

Bj

)
=
∑
j∈N

N(Bj).

These are the same properties one would expect for a positive measure, so we
may think of N as more or less the same as a positive measure but taking values
in N0.

I enjoy the perspective that such experiments can be modelled by point processes. We first
begin with the definition of a random measure — a measure-valued random element:

Definition 9.1.1 Let (Ω,F ,P) be a probability space. A random measure is a random variable
Φ from Ω to the space2 of counting measures M on a state space (S,S). This means that each
realisation of a point process is a counting measure Φ(ω) : S → N0.

Let (S = Rd,S = BRd). In a sense, we can view Φ as a function N of two variables

N : Ω× BRd → N0,

and fixing each variable gives us a map in its own right.

• Fixing ω ∈ Ω, we can call our map N(ω) : BRd → N0. The act of fixing ω tells us that a
particular random scatter has been realised. Then for each B, N(ω)(B) counts how many
points in this realisation are in B.

This map N(ω, ·) = Φ(ω)(·) is a counting measure.
1In the particular case of a Poisson point process, that we shall soon describe, we call these hits “Poisson points.”
2What’s the associated σ-algebra?

https://www.youtube.com/watch?v=b9Yjs-_h2mM
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• Fixing B ∈ BRd , we can call our map N(B)(ω) : Ω → N0. Thus, we have a fixed region B,
and for each ω, N(B)(ω) is the random count of how many points fall in the set B.

This map N(·, B) =.. N(B)(·) is a random variable.

The formal statement of the above discussion is that a random measure may also be defined
via a(n a.e. locally finite3) transition kernel.

Definition 9.1.2 A transition kernel N from a probability space (Ω,F ,P) to (Rd,BRd) is a map
N : Ω× BRd → R s.t.

• for each ω ∈ Ω, N(ω, ·) is a measure on (Rd,BRd).

• for each B ∈ BRd , N(·, B) is (F ,BRd)-measurable.

This transition kernel defines a random measure because we may think of N as mapping each
ω ∈ Ω to N(ω, ·) ∈M.

Definition 9.1.3 A point process is an integer-valued transition kernel N from (Ω,F ,P) to
(S,S). In our case, S = Rd and so our point processes are maps N : Ω× BRd → N0.

The transition kernel perspective of modelling a random scattering experiment by a point
process lends itself well to Lanchier’s interpretation because the kernel gives us a collection N of
random variables indexed by the bounded (Borel) subregions of the state space S = Rn.

9.2 Poisson Point Processes

A Poisson point process is a point process N that models a random scattering experiment satisfying
a few natural assumptions:

Definition 9.2.1 A point process N , represented by N = {N(B) : BRd ∋ B-bounded}, is called a
Poisson point process with intensity µ if it satisfies the following four criteria:

(1) For any pairwise disjoint collection of bounded subregions {Bi}n1 , the number of hits in these
regions are mutually P-independent i.e.

i ̸= j, Bi ∩Bj = ∅ =⇒ N(B1), N(B2), . . . , N(Bn) are independent.

(2) Homogeneity — In distribution, the number of points in a set depends only on its size.

The distribution of N(B) depends on B only through its Lebesgue measure λ(B).

(3) If you take a Borel set with very small Lebesgue measure, the probability of seeing 1 point
in this set is of the order µ · λ(B) (small but scales with µ · λ(B)).

P({N(B) = 1})
λ(B)

→ µ i.e. P({N(B) = 1}) = µ · λ(B) + o(λ(B)) as λ(B)→ 0.

We view µ as a measure of the density of Poisson points.
This is also called an intensity parameter or a rate per
unit volume.

(4) There is no aggregation of points in a small Borel subset of Rd i.e. the probability of observing
more than 1 hit in said small set is negligible compared to the size of the set.

P({N(B) > 1})
λ(B)

→ 0 i.e. P({N(B) > 1}) = o(λ(B)) as λ(B)→ 0.

We denote this by N = P(µ).

3The locally finite condition means that for P-a.e. ω ∈ Ω, the measure N(ω, ·) are finite for every bounded
B ∈ BRd .
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Theorem 9.2.2 The process N = P(µ) iff

(a) For any pairwise-disjoint collection {Bi}n1 ⊆ BRd , N(B1), . . . , N(Bn) are independent.

(b) For any bounded B ∈ B(Rd), N(B) ∼ Poisson(µ · λ(B)).

The Poisson distribution will be defined in the proof.

Proof. Definition 9.2.1 (1) is equivalent to Theorem 9.2.2 (a).

For the forward implication, we now prove Theorem 9.2.2 (b). Fix a set B ∈ B(Rd). The
idea is to construct a partition of B into cells of equal Lebesgue measure — first into 2, then into
4, ..., then into 2n. For a single division into 2 parts, by the intermediate value theorem, we can
take a hyperplane of constant xp for some p between 1 and d (inclusive) and move it along B until
we attain some unique position where the two subsets are of equal Lebesgue measure. We note,
importantly, that each subset is a Borel set in its own right as the intersection of B and a half-space
(which is a Borel set).

x∗
x

y

Figure 9.1: A lower dimensional B ∈ B(R2) for ease of visualisation. The intersection of B and
[−∞, x∗]× R form the cell B1 — its relative complement in B forms the other cell B2.

Proceeding inductively, we can repeat this for each cell, giving us a partition {Bn,1, Bn,2, . . . , Bn,2n}
of B for every n ∈ N such that λ(Bn,i) = (λ(B))/2n.

A skeleton for the rest of the proof is as follows:

• Since the Bn,i are disjoint, the N(Bn,i) are independent from assumption (1).

• Since all the Bn,i have the same Lebesgue measure, assumption (2) tells us that the N(Bn,i)
are identically distributed.

• For n large enough, since the λ(Bn,i) are small, assumptions (3) and (4) tell that that the
N(Bn,i) can only assume the values 0 (most of the time) and 1 (sometimes).

• In summary, the N(Bn,i) are independent and identically distributed Bernoulli random vari-
ables with specific success probability based on the intensity.

• Therefore, N(B) is a sum of i.i.d. Bernoulli random variables so it has a binomial distribution.
In the limit, we’ll discover the distribution of N(B).
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For n large enough, there is at most one Poisson point in each cell Bn,i by Definition 9.2.1 (3)
and Definition 9.2.1 (4). Now let

Ωn = {N(Bn,i) > 1 for some i = 1, . . . , 2n} =
2n⋃
i=1

{N(Bn,i) > 1}.

The probability of this event is given by

P(Ωn) = P

(
2n⋃
i=1

{N(Bn,i) > 1}

)
⩽

2n∑
i=1

P({N(Bn,i) > 1}) by Boole’s inequality

= 2nP({N(Bn,1) > 1}) by identical distribution

= 2n · o(λ(Bn,1)) by Definition 9.2.1 (3)

= 2n · o(λ(B)/2n)
n→∞−→ 0

The final limit is because that final quantity is negligible compared to λ(B)-fixed.
Note that for each fixed n, Ωn and Ωc

n are subsets of positive probability. By the law of total
probability, it follows that the probability of there being k Poisson points in the set B is

P({N(B) = k}) = P({N(B) = k} ∩ (Ωn ⊔ Ωc
n))

= P({N(B) = k} |Ωn)P(Ωn) + P({N(B) = k} |Ωc
n)P(Ωc

n).

• In the limit as n → ∞, the first term vanishes because P({N(B) = k} |Ωn) ∈ [0, 1] and
P(Ωn)→ 0 as n→∞.

• For the second term, let an ∈ [0, 1] and bn → 1. Then

|anbn − an| = |an(bn − 1)| = |an||bn − 1| ⩽ |bn − 1| −→ 0.

Therefore, anbn −→ limn→∞ an. Let an = P({N(B) = k} |Ωc
n) and bn = P(Ωc

n).

Now we note that k Poisson hits in B is equivalent to k Poisson hits over the partition of B:

P({N(B) = k}) = lim
n→∞

P({N(B) = k} |Ωc
n)

= lim
n→∞

P
({ 2n∑

i=1

N(Bn,i) = k
}
| Ωc

n

)
By Definition 9.2.1 (2), each N(Bn,i) depends only on Bn,i through λ(Bn,i) = λ(B)/2n, and
the Bn,i are pairwise-disjoint, so the N(Bn,i) are independent and identically distributed. Given
the information that Ωc

n provides, the N(Bn,i) may only assume the values 0 or 1. By Defini-
tion 9.2.1 (3), they are i.i.d. Bernoulli random variables with success parameter µ · λ(Bn,i). It
follows that their sum is Binomial with parameter 2nµ · λ(Bn,1):

P({N(B) = k}) = lim
n→∞

P
(
Binomial

(
2n, µλ(B)

2n

) ∣∣∣Ωc
n

)
P(Ωc

n)

= lim
n→∞

(
2n

k

)(
µ
λ(B)

2n

)k (
1− µλ(B)

2n

)2n−k

= lim
n→∞

2n(2n − 1) · . . . · (2n − (k − 1))

k!

(µ · λ(B))k

(2n)k

(
1− µλ(B)

2n

)2n−k

There are k terms in the numerator, all of the order 2n as n grows large. These cancel out with
the (2n)k in the denominator. For the term in red, we may write it as the product(

1− µλ(B)

2n

)2n 1

(. . .)k
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where the second term converges to 1 as n grows large because k is fixed. The behaviour of the
first term is not so clear as the base converges to 1 but the exponent is not fixed and grows without
bound to +∞. To deal with this, let’s take its natural logarithm to obtain

2n log
(
1− µ·λ(B)

2n

)
.

The natural logarithm term, by looking at the behaviour of the Taylor series, behaves like −(µ ·
λ(B))/2n and so the whole term behaves like −µ · λ(B). Thus, by the monotonicity of the natural
logarithm, the original term (

1− µλ(B)

2n

)2n
n→∞−→ e−µ·λ(B).

Finally, we put this limit back into the probability calculation:

P({N(B) = k}) = (µ · λ(B))k

k!
e−µ·λ(B) =.. P({Y = k})

where Y ∼ Poisson(µ · λ(B)) which is defined by:

Definition 9.2.3 A discrete random variable Y that admits a density

pY (k) =
(µλ(B))k

k!
e−µ·λ(B)

is said to be Poisson-distributed with rate parameter µ. We denote this by Y ∼ Poisson(µ).

Therefore, for every bounded B ∈ B(Rd), N(B) ∼ Poisson(µ · λ(B)).

For the reverse implication, suppose that Theorem 9.2.2 (b) holds true and let B ∈ BRd be
s.t. λ(B) is small. Abusing notation slightly by replacing functions f ∈ o(. . .) by o(. . .), it follows
that

P({X(B) = 1}) = (µ · λ(B))1

1!
e−µ·λ(B)

= (µ · λ(B))e−µ·λ(B)

= (µ · λ(B))(1− µ · λ(B) + o(µ · λ(B))

= µ · λ(B)− µ2(λ(B))2 + o(λ(B))

= µ · λ(B) + o(λ(B)).

Dividing through by λ(B) demonstrates Definition 9.2.1 (3). For the final property:

P({X(B) > 1}) = 1− (P({X(B) = 0}) + P({X(B) = 1})
= 1− (e−µ·λ(B) + µ · λ(B)e−µ·λ(B))

= 1− (1 + µ · λ(B))e−µ·λ(B)

= 1− (1− µ2(λ(B))2) + o(λ(B))

= o(λ(B))

Again, dividing through by λ(B) proves Definition 9.2.1 (4). ■

Uses:

• The Poisson distribution provides a good model
for the probability distribution of the count Y
of rare events that occur in a fixed, bounded
space, time, volume, or any other dimension
where µ is the average value (intensity, or rate
per unit time) of Y .
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Example 9.2.4 The Poisson distribution can be used to model a random variable representing
the number of:

• telephone calls handled by a switchboard in a time interval,

• accidents in a given unit of time, or

• errors made by a typist in typing a page.

9.3 Poisson Processes

Consider a Poisson point process in 1 dimension. We may interpret the one-dimensional space as an
axis of time [0,+∞). This point process counts the number of hits in any Borel subset of [0,+∞).
Since we’re in [0,+∞), we may order these Poisson points and reinterpret them as the times of
occurrence of the process. We denote this collection of random variables by {N([0, t])}t∈[0,+∞). We
may plot such a Poisson point process in time with some intensity (or, really, rate per unit time)
µ:

0 N

Given this Poisson point process, we may define a continuous-time stochastic process4 i.e.
a collection of random variables {Xt} indexed by t ∈ [0,+∞), taking values in N0. For any
t ∈ (0,+∞), define

Xt
..= N([0, t]),

and for t = 0, X0
..= 0. This stochastic process, at each time t ∈ [0,+∞) counts the number of

Poisson points in the interval [0, t]. We may visualise the occurrences of events as jumps:

N

Xt

It’s visually clear that given a Poisson point process N , we can construct a Poisson process,
and we can also recover the Poisson point process from the Poisson process {Xt} via the equality
Xt = N([0, t]). Thus, despite being different mathematical objects, a Poisson process with rate µ
is “mathematically equivalent” to a Poisson point process N with intensity µ in one dimension.

Definition 9.3.1 A stochastic process {Xt} is a Poisson process with rate µ iff

4I’ll define these rigorously in a later chapter. The definition for now is sufficient for the purposes of motivating
the connection between a Poisson point process in one dimension, and a Poisson (stochastic) process in time [0,+∞).
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• Increments are independent i.e. for all t1 < t2 < . . . < t2n:

Xt2 −Xt1 , Xt4 −Xt3 , . . . , Xt2n −Xt2n−1 are independent.

• Increments are Poisson i.e. for all s < t, Xt −Xs ∼ Poisson(µ(t− s)).

Proof. For the forward implication:

• The random variables Xt2n−Xt2n−1 = X([0, t2n])−X([0, t2n−1]) = X([t2n−1, t2n]). Now note
that the intervals {[t2i−1, t2i]}ni=1 are pairwise-disjoint, so Definition 9.2.1 (1) tells us the
random variables Xt2n −Xt2n−1 are independent.

• It follows from Theorem 9.2.2 that for a Poisson process, since any increment can be written
as Xt−Xs = X([s, t]), and [s, t] is a bounded Borel subset of [0,+∞), then we conclude that
X([s, t]) ∼ Poisson(µ · λ([s, t])︸ ︷︷ ︸

= t−s

).

I believe the reverse implication involves some kind of approximation or monotone class argu-
ment, building up from intervals [a, b] to any Borel subset B. ■

9.3.1 A BRIDGE TO ABSOLUTELY CONTINUOUS DISTRIBUTIONS

I want to go into more details about Poisson processes but I think some background in conditional
expectation/probability, and stochastic processes will be useful. As a placeholder, I will state some
known facts that will be useful going forward:

0

• For a Poisson process, we define the hitting time at state i by τi ..= inf{t ⩾ 0: Xt = i},
then the inter-arrival times are defined by Ti ..= τi − τi−1.

• The τi are random variables, and the Ti are independent and identically distributed expo-
nential random variables, denoted Ti ∼

i.i.d.
E(µ).

Definition 9.3.2 An absolutely continuous5 real-valued random variable Y is said to have an
exponential distribution with rate parameter λ > 0, denoted Y ∼ E(µ), if its density
function is:

fY (y) =

{
µe−µ·y, 0 ⩽ y <∞
0, otherwise.

Proof. Recall that X0 = 0 and for each t ∈ (0,+∞), Xt
..= N([0, t]) ∼ Poisson(µ · t). The

first jump/hit/arrival occurs after time t if and only if there is no jump by time t. Thus

P({T1 > t}) = P({Xt = 0}) = (µt)0

0!
e−µ·t = e−µ·t.

5With respect to the Lebesgue measure on R.
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Now note that the CDF of Z ∼ E(µ) is given by

FZ(z) =

∫
(−∞,z]

fY 1[0,+∞) dλ

=

∫ z

−∞
µe−µ·y1[0,+∞)(y) dy

=

∫ z

0
µe−µ·y dy

= µ 1
−µe

−µ·y
∣∣∣z
0

= −e−µ·y
∣∣∣z
0

= 1− eµ·z

With this information, we can conclude that

FT1(t) = P({T1 ⩽ t}) = 1− P({T1 > t}) = 1− e−µ·t = FZ(t) where Z ∼ E(µ).

Thus, the waiting time T1 until the first hit/arrival has an exponential distribution with rate
µ. ■

Uses:

• Exponentially distributed random variables are
used to model, for example, the length of life of
an electronic component e.g. a fuse.

As we shall see later on in Proposition 10.5.1, random variables that are exponentially
distributed exhibit a property called memorylessness i.e. if Y ∼ E(µ), and a, b > 0, then

P({Y > a+ b} | {Y > a}) = P({Y > b}).

This fact is used to prove that the Ti are identically distributed.

I won’t do this now because it requires taking more care with conditional probability. When I do,
it will be in a later chapter dedicated to stochastic processes.

0

• Waiting times are in a sense “dual” with the count of events. Let T1 denote the time until
the first event, T2 the time from the first until the second event, etc. Then

{Xt
..= X([0, t]) ⩾ k} ⇐⇒ {T1 + . . .+ Tk ⩽ t}.

This relates Poisson counts to sums of waiting times. The proof of this relationship can be
found in Exercise 3.

• The Gamma distribution with rate parameter naturally arises by summing i.i.d. ex-
ponentially distributed random variables (each representing the waiting time until a rare
Poisson event occurs) e.g. if

T1, T2, . . .
i.i.d.∼ E(µ)

are the inter-arrival times in a Poisson process, then the time of the nth arrival/hit W =
T1 + . . .+ Tn in the same Poisson process is Gamma(n, µ)-distributed.

I define these distributions in the next chapter, but I’ll expand on Poisson processes in a later
chapter.
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CHAPTER 10

Absolutely Continuous Distributions

This chapter will go over some examples of different types of experiments, their associated abso-
lutely continuous random variables of interest and their respective probability distributions.

10.1 Uniform Distribution

The probability of a random variable assuming a value between any two real numbers θ1 and θ2
is proportional to the reciprocal of the length of the interval [θ1, θ2] between them. Sub-intervals
(of [θ1, θ2]) with the same length have the same relative frequencies. We say that Y is uniformly
distributed between θ1 and θ2, denoted by Y ∼ Unif(θ1, θ2), if the density function of the law
PY of Y is

fY (y) =


1

θ2 − θ1
, θ1 ⩽ y ⩽ θ2

0, otherwise.

10.2 Normal Distribution

A random variable X is said to have a normal probability distribution if, for σ > 0 and µ s.t.
|µ| <∞, PX admits a density function defined for x ∈ R by

fX(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
.

In this case, we write X ∼ N (µ, σ2).

Properties Let X ∼ N (µ, σ2). It follows that E(X) = µ and Var(X) = σ2.

Proof. As per the discussion of densities in Section 5.6.1, we can compute the expectation of an
absolutely continuous random variable X by the formula

E(X) =

∫
R
xfX(x) dλ(x).

For X ∼ N (µ, σ2), we have that:

E(X) =

∫
R
xfX(x) dλ(x) =

∫ ∞
−∞

xfX(x) dx

=
1√
2πσ2

∫ ∞
−∞

x exp

(
−(x− µ)2

2σ2

)
dx

=
1√
π

∫ ∞
−∞

x exp

(
−(x− µ)2

2σ2

)
1√
2σ2

dx

=
1√
π

∫ ∞
−∞

(u
√
2σ2 + µ) exp(−u2) du via the substitution u = x−µ√

2σ2

=

√
2σ2√
π

∫ ∞
−∞

u exp(−u2) du+
µ√
π

∫ ∞
−∞

exp(−u2) du

= 0 +
µ√
π

√
π = µ

The last line uses (without proof, but one can easily find the polar co-ordinate proof) the well-
known Gaussian integral over R. The first integral capitalises on the symmetry of exp(−u2) which
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tells us that u exp(−u2) is an odd-function; integrating it over a symmetric domain about the origin
(like R) gives us 0. ■

10.2.1 STANDARD NORMAL

Every normally distributed random variable Y with mean µ and variance σ2 can be transformed
into a standard normal random variable Z via

Z ..=
Y − µ
σ

.

Z represents the position of a point relative to the mean of a normal random variable, with the
distance measured in terms of how many standard deviations away it is from the mean.

y

fY (y)

Figure 10.1: The density of Z ∼ N (0, 1). The y-intercept is 1/
√
2π ≈ 0.3989.

Properties E(Z) = 0 and Var(Z) = 1.

Uses:

• The symmetry and bell shape of normal
distributions are useful properties for modelling
other mound-shaped distributions which often
account for naturally-occurring phenomena.

• The density has some good analytical properties.

• As seen later, central limit theorems offer a way
to asymptotically approximate any population
distribution with a normal distribution.

10.2.2 LINK: NORMAL APPROXIMATES BINOMIAL

For a fixed value of p and for large n, one can approximate the binomial distribution by a normal
distribution when the number of successes is within some appropriate range of np. More precisely:

Theorem 10.2.1 (Theorem 5 [9, p. 214]) Suppose 0 < p < 1; put q = 1− p, and

xn,k =
k − np
√
npq

, 0 ⩽ k ⩽ n.

Clearly xn,k depends on both n and k, but it will be written as xk below.
Let A be an arbitrary but fixed positive constant. Then in the range of k such that |xk| ⩽ A,

we have that (
n

k

)
pkqn−k ∼ 1√

2πnpq
e−x

2
k/2.

The convergence is uniform with respect to k in the range specified above.
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Proof Sketch. Pick A > 0. For k in the specified range, we have that |xk| ⩽ A where A is some
fixed positive constant. Now we do some work to get inequalities that are only satisfied by k in the
specified range.

• The inequality |xk| ⩽ A rearranges to

np−A√npq ⩽ k ⩽ np+A
√
npq

and one can imagine that since A, p, and q are fixed, as n gets very large the dominating
term becomes np on both ends of this inequality so k ∼ np.

◦ From this, we can conclude the other approximation

k ∼ np =⇒ n− k ∼ n− np = n(1− p) = nq.

• By Stirling’s formula1, we can asymptotically approximate the factorial n! in the binomial
density to obtain(

n

k

)
pkqn−k ∼ 1√

2πnpq
φ(n, k) where φ(n, k) =

(np
k

)k ( nq
n−k

)n−k
.

By taking logarithms, expanding the appropriate Taylor series where the expansions are valid
for sufficiently large n, we obtain that

logφ(n, k) ∼ −
n2pqx2k

2k(n− k)
.

Now we use the original inequalities we derived to replace k and n − k. Finally, we end up
with

logφ(n, k) ∼ −
x2k
2

=⇒ φ(n, k) ∼ e−x2
k/2.

Thus concludes the proof sketch.

■

Now we state the main theorem of this subsection — the De Moivre-Laplace Theorem.

Theorem 10.2.2 (Theorem 6 [9, pp. 215–216]) Let Sn ∼ Binom(n, p). For any two constants a
and b, −∞ < a < b < +∞, we have

lim
n→∞

P
(
a <

Sn − np√
npq

⩽ b

)
=

1√
2π

∫ b

a
e−x

2/2 dx.

Historically speaking, this was the first known particular case of “the” central limit theorem, but
more on this later in Section 20.5.

10.3 Gamma Distribution

As we’ve already seen in Chapter 9, the Poisson, Exponential, and Gamma distributions arise
naturally from Poisson processes. I will expand on these in a later chapter but for now I present
these distributions via their densities, describe their shapes, and make a brief comment on a formula
connecting the Poisson and Gamma densities.

1Given by n! =
√
2πn

(n
e

)n(
1 +O

(
1

n

))
, and denoted n! ∼ . . ..
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Definition 10.3.1 Let α, β > 0. A random variable Y is said to have a Gamma distribution
with parameters α and β, denoted Y ∼ Gamma(α, β), if its density function is given by:

fY (y) =


yα−1e−y/β

βαΓ(α)
if 0 ⩽ y <∞,

0 otherwise,

where Γ(α) =

∫ ∞
0

yα−1e−y dy.

The way this Gamma distribution has been defined involves a scale parameter β. This is in
contrast to the rate parameter µ from the exposition on Poisson processes. They are reciprocals
of each other i.e.

β = 1/µ.

The density of Y ∼ Gamma(α, µ), where µ is a rate parameter is given by

fY (y) =
µαyα−1e−µ·y

Γ(α)
1[0,+∞)(y).

�

Properties Let α, β > 0 and Y ∼ Gamma(α, β). Then E(Y ) = αβ and Var(Y ) = αβ2.

Proof. The result follows from a simple integration by parts.

E(Y ) =

∫
R
yfY (y) dλ(y)

=

∫ ∞
−∞

y
yα−1e−y/β

βαΓ(α)
1[0,∞)(y) dy

=
1

βαΓ(α)

∫ ∞
0

yαe−y/β dy

=
1

βαΓ(α)

(
yα(−β)e−y/β

∣∣∣∞
0︸ ︷︷ ︸

=0

−
∫ ∞
0

αyα−1(−β)e−y/β dy
)

= αβ

∫ ∞
0

yα−1e−y/β

βαΓ(α)
dy

= αβ

since the final integral is that of the density fY over its support, and is hence equal to 1. ■

Unfortunately, if α ∈ R>0 \ N and 0 < c < d < ∞, then it’s impossible to give a closed-form
expression for ∫ d

c

yα−1e−y/β

βαΓ(α)
dy.

10.3.1 SHAPE

The number α > 0 is called the shape parameter of the Gamma distribution.
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α = 1

α = 2
α = 4

1

α = 0.5

y

fY (y)

Figure 10.2: Plots for the densities of Y ∼ Γ(α, β = 1) for α = 0.5, 1, 2, and 4.

The plot for α = 1 looks different in shape to the others and is considered a density in its own
right (parameterised by β), called the exponential density.

Curiously, the Gamma density for 0 < α < 1 has an asymptote at y = 0 where
it veers off to +∞. After a bit of searching, this family doesn’t seem to have a
name of its own.

Increasing α leads to a more peaked distribution nearer to 0.

10.3.2 SCALE PARAMETER

Definition 10.3.2 A scale parameter is a parameter that specifies the spread of a distribution.
More precisely, let F (y; s, θ) denote a family of cumulative distribution functions. If the parameter
s is such that

F (y; s, θ) = F (y/s; 1, θ)

then s is called a scale parameter.

Corollary 10.3.3 By differentiating with respect to y, the corresponding density statement says
that s is a scale parameter if

f(y; s, θ) =
1

s
f(y; 1, θ).

Example 10.3.4 In the case of the gamma density, let’s verify that β is indeed a scale parameter.

Proof.
1

β
f(y/β;α, 1) =

1

β

1

1αΓ(α)

(
y

β

)α−1
e−(y/β)/1 =

1

β

1

βα−1
1

Γ(α)
yα−1e−y/β = f(y;α, β) ■

The effect of different values of β for fixed values of α = 1 and α = 2 respectively, are illustrated
below:
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β = 0.5

β = 1
β = 2

1

y

fY (y)

Figure 10.3: Let α = 2. Plots for the densities of Y ∼ Γ(α, β) for β = 0.5, 1, and 2.

β = 0.5

β = 1
β = 2

1

y

fY (y)

Figure 10.4: Let α = 1. Plots for the densities of Y ∼ Γ(α, β) for β = 0.5, 1, and 2. These are
plots for the exponential density.

Notice that increasing β spreads the density out more over its support [0,+∞). Since α = 1 ∈ N,
we can appeal to the Poisson process interpretation of the parameter β. Recall that the rate of
a Poisson process is µ = 1/β. It’s sensible to remark that increasing β > 0 decreases µ > 0, so
the intensity of the process is lower which ostensibly means a longer time required until a Poisson
hit/arrival. Equally, the scale parameter β measures the average time until the first Poisson
arrival/occurrence since E(Y ) = β, where Y ∼ Γ(α = 1, β).

10.3.3 LINK: POISSON AND GAMMA

In the special case that α = n ∈ N, the distribution function of a gamma distributed random
variable can be expressed as a sum of Poisson probabilities.

We default back to the Poisson process example for insight. Let {Xt}t∈[0,+∞) be a Poisson
process with rate µ. Then X0 = 0 and Xt ∼ Poisson(µ · t) for t > 0. The waiting time until the
nth Poisson arrival is the random variable Wn ∼ Gamma(n, µ). Equivalently, we may write it with
a scale parameter satisfying µ = 1/β. The nth arrival happening after time t is equivalent to there
only being n− 1 Poisson arrivals in the interval [0, t]. We can write this relationship as follows:

{Wn > t} ⇐⇒ {Xt ⩽ n− 1}.
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Exercise 3 (Adapted from 4.79 [6]) Given the above setting, take probabilities of the “dual” events
to relate the distribution functions of Wn ∼ Gamma(n, µ) and Xt ∼ Poisson(µ · t) with the formula

P({Wn > t}) =
∫ ∞
t

µn

Γ(n)
yn−1e−µy dy =

n−1∑
x=0

(µ · t)xe−µ·t

x!
= P({Xt ⩽ n− 1}).

Proof. Since n ∈ N, Γ(n) = (n− 1)!. Now we derive a recursive integration formula (⋄) by inte-
grating by parts.

I(n) =

∫ ∞
λ

yn−1e−y dy

= yn−1(−1)e−y
∣∣∣∞
λ
−
∫ ∞
λ

(n− 1)yn−2(−e−y) dy

= λn−1e−λ + (n− 1)I(n− 1)

= λn−1e−λ + (n− 1)
(
λn−2e−λ + (n− 2)I(n− 2)

)
=
(
λn−1e−λ + (n− 1)λn−2

)
e−λ + (n− 1)(n− 2)I(n− 2)

=
(
λn−1e−λ + (n− 1)λn−2 + (n− 1)(n− 2)λn−3

)
e−λ + (n− 1)(n− 2)(n− 3)I(n− 3)

= . . .

=
(
λn−1e−λ + (n− 1)λn−2 + . . .+ (n− 1)(n− 2) . . . (n− (n− 2))λn−(n−1)

)
e−λ

+ (n− 1)!I(1)

=
(
λn−1e−λ + (n− 1)λn−2 + . . .+ (n− 1)(n− 2) . . . (2)λ1

)
e−λ + (n− 1)!e−λ

=
(
λn−1 + (n− 1)λn−2 + . . .+ (n− 1)(n− 2) . . . (2)λ1 + (n− 1)! + 1

)
e−λ

=

n−1∑
k=0

(n− 1)!λke−λ

k!
.

In order to use (⋄), we massage our desired integral into the appropriate form with a substitution:

P({Wn > t}) =
∫ ∞
t

µn

Γ(n)
yn−1e−µy dy

=
1

Γ(n)

∫ ∞
µt

un−1e−u du via u = µy

=
1

Γ(n)

n−1∑
k=0

(n− 1)!(µ · t)ke−µ·t

k!
by (⋄) with λ = µt

= P({Xt ⩽ n− 1})

■

10.4 Gamma(ν/2, β = 2), The Chi-Squared Distribution (ν ∈ N)

Let ν ∈ N. A random variable Y is said to have a chi-squared distribution2 with ν degrees
of freedom, denoted by Y ∼ χ2

ν , iff Y ∼ Gamma(α = ν
2 , β = 2).

Properties

• E(Y ) = ν

2Tables for the Gamma distribution are not as readily available as tables for χ2 distributions which are available
for many values of ν. Using a transformation means one can use χ2 table values for Gamma distributions.
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• Var(Y ) = 2ν

Uses:

• Commonplace in statistical inference. Namely,
this is the distribution of the sum of the squares
of ν independent standard normal random
variables.

10.5 Gamma(α = 1, β), The Exponential Distribution

When α = 1 in a Gamma distribution, we have what is known as the exponential distribution. Y
is said to have an exponential distribution with parameter β > 0, denoted Y ∼ E(β), if its
density function is:

fY (y) =


1

β
e−y/β if 0 ⩽ y <∞,

0 otherwise.

Properties

• E(Y ) = β

• Var(Y ) = β2

10.5.1 MEMORYLESSNESS

Suppose that the length of time a component has already operated doesn’t affect its chance of
operating for at least b additional time units. This is formalised by the following property called
the memorylessness of the exponential distribution:

Proposition 10.5.1 (Example 4.10 [6] Memorylessness of E(β)) Let a, b > 0. If P({Y > a}) >
0, prove that

P({Y > a+ b} | {Y > a}) = P({Y > b}).

Proof. First note that

P({Y > c}) =
∫ +∞

c
fY (y) dy =

∫ +∞

c

1

β
e−y/β dy =

1

β

1

− 1
β

e−y/β

∣∣∣∣∣
+∞

c

= e−c/β.

From the definition of conditional probability:

P({Y > a+ b} | {Y > a}) = P({Y > a+ b} ∩ {Y > a})
P({Y > a})

=
P({Y > a+ b})
P({Y > a})

=
e−(a+b)/β

e−b/β

= e−b/β

=.. P({Y > b})

■

10.5.2 LINK: EXPONENTIAL AND GEOMETRIC

The exponential distribution is the continuous-time analogue of the geometric distribution.

Exercise 4 (4.75 [6]) Let Y ∼ E(β). Define a random variable X in the following way: X = k if
k − 1 ⩽ Y < k for k = 1, 2, . . ..
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(a) Find P({X = k}) for each k = 1, 2, . . ..

(b) Show that the answer to (a) can be written as:

P({X = k}) = (e−1/β)k−1(1− e−1/β), k = 1, 2, . . .

and that X has a geometric distribution with success probability p = 1− e−1/β .

Proof.

P({X = k}) = P({ω ∈ Ω: k − 1 ⩽ Y < k}) =
∫ k

k−1
fY (y) dy

=

∫ k

k−1

1

β
e−y/β dy

=
1

β

1

− 1
β

e−y/β
∣∣∣k
k−1

=
1

e(k−1)/β
− 1

ek/β

= (e−1/β)k−1 (1− e−1/β)︸ ︷︷ ︸
= p

■

10.6 Beta Distribution

Two parameters α, β > 0. Defined over [0, 1]. Y ∼ Beta(α, β) if the density function is

fY (y) =


yα−1(1− y)β−1

B(α, β)
if 0 ⩽ y ⩽ 1

0 otherwise,

where

B(α, β) ..=

∫ 1

0
yα−1(1− y)β−1 dy =

Γ(α)Γ(β)

Γ(α+ β)
.

Despite being defined over [0, 1], we can fit a beta density function to a random variable Y on
any interval e.g. [c, d] by defining a new random variable Y ∗ = Y−c

d−c .

Uses:

• ???

10.6.1 LINK: BETA AND BINOMIAL

The cumulative distribution function for a beta random variable is commonly called the incomplete
beta function and is defined by

FY (y) =

∫ y

0

tα−1(1− t)β−1

B(α, β)
dt = Iy(α, β).

When α, β ∈ Z, Iy(α, β) is related to the binomial probability function: For y ∈ (0, 1) and α, β ∈ Z:

FY (y) =

∫ y

0

tα−1(1− t)β−1

B(α, β)
dt =

n∑
i=α

(
n

i

)
yi(1− y)n−i

where n = α+β−1. That term in blue is a sum of probabilities associated with a binomial random
variable with n = α+ β − 1 trials and p = y probability of “success.”

E(Y ) =
α

α+ β
, Var(Y ) =

αβ

(α+ β)2(α+ β + 1)
.
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10.7 Chebyshev’s Theorem

Theorem 10.7.1 (Chebyshev’s Theorem) Let Y be a random variable with finite mean µ and
variance σ2. Then for any k > 0,

P({|Y − µ| < kσ}) ⩾ 1− 1

k2
or P({|Y − µ| ⩾ kσ}) ⩽ 1

k2

This theorem enables us to find bounds on probabilities that are ordinarily tedious to calculate.
Proof. Let fY (y) denote the density of Y . Then

Var(Y ) = σ2 =

∫ ∞
−∞

(y − µ)2fY (y) dy

=

∫ µ−kσ

−∞
(y − µ)2fY (y) dy +

∫ µ+kσ

µ−kσ
(y − µ)2fY (y) dy︸ ︷︷ ︸

⩾ 0

+

∫ ∞
µ+kσ

(y − µ)2fY (y) dy

⩾
∫ µ−kσ

−∞
(y − µ)2fY (y) dy +

∫ ∞
µ+kσ

(y − µ)2fY (y) dy

The middle integral on the 2nd line is bounded below by 0 and the other two integrals have (y−µ)2
in the integrand bounded below by kσ2.

Var(Y ) = σ2 ⩾ (kσ)2
∫ µ−kσ

−∞
fY (y) dy + (kσ)2

∫ ∞
µ+kσ

fY (y) dy

=.. (kσ)2 · P({Y ⩽ µ− kσ}) + (kσ)2 · P({Y ⩾ µ+ kσ})
=.. (kσ)2 · P({|Y − µ| ⩾ kσ})

The desired inequality follows and the other can be obtained by taking the complement. ■

10.8 Expectations of Discontinuous Functions and Mixed Probability Distributions

• We may be interested in E(g(Y )) where g is discontinuous.

• Y itself may have a distribution function that is continuous over some intervals and such that
some isolated points have positive probabilities.

A mixed distribution can be uniquely written as

FY (y) = c1F1(y) + c2F2(y)

where

• F1(y) is a step distribution function

• F2(y) is a continuous distribution function

• c1 is the accumulated probability of all discrete points

• c2 is the accumulated probability of all continuous portions/intervals

• c1 + c2 = 1

Example 10.8.1 Y is equal to the length of life of electronic components. The components
frequently fail immediately upon insertion into the system with probability 1/4. If it doesn’t fail
immediately, the distribution for its length of life has the exponential density function

f(y) =

{
e−y, y > 0

0, otherwise.



Absolutely Continuous Distributions 110

Since Y = 0 is the only discrete point, c1 = 1/4. This means that c2 = 1 − (1/4) = 3/4. It
follows that Y is a mixture of the distribution of two random variables X1 and X2 where X1 has
probability 1 at point 0, and X2 has the given exponential density f(y). The distribution functions
of X1 and X2 are F1 and F2 respectively:

• F1 =

{
0, y < 0

1, y ⩾ 0.

• F2 =


0, y < 0∫ y

0
e−t dt = 1− e−y, y ⩾ 0.

Therefore, FY (y) =
1

4
F1(y) +

3

4
F2(y) and its graph is:

1

1/4

y

FY (y)

10.8.1 EXPECTATION OF A MIXED RANDOM VARIABLE

As before, let Y have the mixed distribution function

FY (y) = c1F1(y) + c2F2(y).

Let g(Y ) denote a function of Y . Then

E(g(Y )) = c1E(g(X1)) + c2E(g(X2)).

10.9 Summary

• Density functions provide models for population frequency distributions

◦ This yields a mechanism for inferring characteristics of the population based on mea-
surements contained in a sample taken from said population.

• Four types of absolutely continuous random variable were presented — uniform, gamma
(special cases were χ2

ν and exponential), normal and beta.

10.10 Location-Scale Families

In the preceding examples of discrete and absolutely continuous distributions, we’ve (occasionally)
made (implicit) reference to the parameters that determine their properties. Such parameters fall
under different names:

Definition 10.10.1 A location parameter is a parameter that determines the “location” or shift
of a frequency distribution in the sense of defining a central or typical value such as the mean or
mode.

e.g. A common example of a location parameter is µ in the normal distribution N (µ, σ2).
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Definition 10.10.2 A scale parameter is a parameter that specifies the spread of a distribution.

e.g. The example of σ2 in N (µ, σ2) is the squared scale of the normal distribution.

e.g. Let Y ∼ E(β) so the density of the exponential random variable is defined by

fY (y) =
1
β e
−y/β1[0,∞)(y).

The parameter β > 0 is the scale parameter.

Definition 10.10.3 The inverse of a scale parameter is often called a rate parameter.

e.g. For Y ∼ E(β), we could equivalently have let λ = 1/β and written the density as

fY (y) = λe−λy1[0,∞)(y).

In this case, λ is the rate parameter of the distribution.

Probability distributions can be grouped into families with common functional forms.

Definition 10.10.4 A family of probability distributions {Pµ,σ : µ ∈ R, σ > 0} parameterised by a
location parameter µ and a non-negative scale parameter σ > 0 is called a location-scale family
if there exists a fixed probability measure P0 s.t for each (µ, σ):

Pµ,σ = (Tµ,σ)#P0

where Tµ,σ(x) = σx+ µ is an affine transformation.

In the language of random variables, let Z be the random variable with distribution P0. Then
for (µ, σ), we have that X = σZ + µ has distribution Pµ,σ = (Tµ,σ)#P0.

When constructing a location-scale family, one typically takes P0 to be the distribution of a
random variable Z in standard measure — having zero mean and unit variance.

Lemma 10.10.5 A location-scale family {Pµ,σ : µ ∈ R, σ > 0} is closed under affine transforma-
tions.

Proof. Suppose that X ∼ Pµ,σ for some (µ, σ) ∈ R × R>0. Let 0 ̸= a ∈ R ∋ b and Y be an
affine translate of X i.e. Y = aX + b. By definition of the location-scale family, ∃Z ∼ P0 s.t.
X = σZ + µ. Therefore,

Y = a(σZ + µ) + b = (aσ)Z + (µ+ b)

and we can recognise the distribution of Y as the pushforward of P0 under the affine (note that
σ > 0 and a ̸= 0) transformation Taσ,µ+b so Y is a member of the location-scale family. ■

e.g. U [a, b]: Let Z ∼ U [0, 1] and identify µ and σ by letting X ∼ U [a, b] and noticing that we can
scale Z by (b− a) first and then translate by a. Therefore, X = (b− a)Z + a.

e.g. N (µ, σ2): Let Z ∼ N (0, 1) and follow similar logic to the above example.
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CHAPTER 11

Moment-Generating Functions

Moments are values used to characterise the probability distributions of random variables.

• The kth moment of a random variable X about the origin is denoted µ′k and defined
by

µ′k
..= E

(
Xk
)
.

◦ e.g. µ′1 = E(X) = µ

• The kth moment of a random variable X about its mean (also called the kth central
moment of X) is denoted µk and defined as

µk ..= E
(
(X − µ)k

)
.

◦ e.g. µ2 = E
(
(X − µ)2

)
= Var(X) = σ2.

Under certain conditions (Theorem 14.5.2) moments can uniquely determine the probability
distribution of X.

The moment-generating function of a random variable X (or MGF), denoted by MX(t),
is defined as

MX(t) ..= E
(
etX
)
.

We say that a moment-generating function for X exists if the expectation above exists in a neigh-
bourhood of the origin i.e. ∃b > 0 such that |t| < b =⇒ MX(t) <∞.

Example 11.0.1 Let X ∼ N (µ, σ2) with µ and σ finite. The moment-generating function of X
is given by:

MX(t) ..= E(exp(tX))

=

∫
R
exp(tx)fX(x) dx

=

∫
R
exp(tx) · 1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
dx

= . . .

= exp

(
tµ+

t2

2
σ2
)∫

R

1√
2πσ2

exp

(
−(x− (µ+ tσ2))2

2σ2

)
dx︸ ︷︷ ︸

=
∫
R fY (y) dy=1, where Y∼N (µ+tσ2,σ2)

Finally, we conclude that

MX(t) = exp

(
tµ+

t2

2
σ2
)
.

An invaluable theorem (that we’ll again see later as Theorem 14.5.1) tells us that if two
random variables have the same MGF, then they have the same distribution.
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Theorem 11.0.2 (Theorem 6.1 [6]) Let MX(t) and MY (t) denote the moment-
generating functions of random variables X and Y respectively. If both MGFs
exist, and for all t in some neighbourhood of 0: MX(t) = MY (t), then X and Y
have the same probability distribution.

We’ll use this theorem to talk a bit more about location-scale families from the end of last
chapter:

Lemma 11.0.3 If Z ∼ P0 where P0 is a member of the location-scale family {Pµ,σ : µ ∈ R, σ > 0},
then the distribution of Y = aZ + b, where a ̸= 0 and b ∈ R, is also a member of the location-scale
family.

Proof.

MY (t) ..= E(exp(tY )) = E(exp(t(aZ + b))) = etbE(exp(atZ)) =.. etbMZ(at)

Notice that the functional form of the moment-generating function does not change and so this
corresponds to a probability distribution in the location-scale family. ■

Example 11.0.4 Let Z ∼ N (0, 1) and consider X = aZ + b. The MGF of Z is given by

MX(t)
11.0.3..= etbMZ(ta)

11.0.1
= etb

(
exp

(
µt+ (ta)2

2 σ2
)∣∣∣

µ=0, σ=1

)
= exp

(
tµ+ t2

2 σ
2
)

This matches up with our expression from Example 11.0.1 with a = σ and µ = b.

Example 11.0.5 The MGF of X ∼ Gamma(α, β) where α, β > 0 is

MX(t) ..= E(exp(tX))

=

∫
R
etx

xα−1e−x/β

βαΓ(α)
1[0,+∞)(x) dx

=
1

βαΓ(α)

∫ ∞
0

xα−1 exp(−x(−t+ 1
β )) dx

This integral only converges if (−t+ 1
β ) > 0 i.e. t < 1

β . Now we use the substitution u = x(−t+ 1
β )

so that du = (−t+ 1
β ) dx and:

MX(t) =
1

βαΓ(α)

∫ ∞
0

((
−t+ 1

β

)−1
u

)α−1
exp(−u)

(
−t+ 1

β

)−1
du

=
1

βαΓ(α)
((−t+ 1

β )
−1)α

∫ ∞
0

uα−1 exp(−u) du︸ ︷︷ ︸
=..Γ(α)

=
1

(1− βt)α

11.1 Technical Points

This subsection is a paraphrased version of this Cross Validated answer from Stack Exchange
user cardinal.

The right conditions under which we can say something about the moments of X based on its
MGF are contained in the following proposition:

Proposition 11.1.1 If there exist tn < 0 and tp > 0 such that m(tn) <∞ and m(tp) <∞, then
the moments of all orders of X exist and are finite.

The contrapositive of this proposition says that if any of the moments of X are infinite or do
not exist, we can immediately conclude that the MGF is not finite in an open neighbourhood of
the origin.

https://stats.stackexchange.com/a/32787/347443
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Lemma 11.1.2 Suppose that such tn and tp exist. Then for any t0 ∈ [tn, tp], MX(t0) <∞.

Proof. For any such t0, ∃λ ∈ [0, 1] s.t. t0 = tn + λ(tp − tn) = (1− λ)tn + λtp. By the convexity of
exp(·), it follows that

et0X = e((1−λ)tn+λtp)X ⩽ (1− λ)etnX + λetpX .

We conclude by using the monotonicity of expectation:

E
(
et0X

)
⩽ λE

(
etnX

)︸ ︷︷ ︸
< ∞

+(1− λ)E
(
etpX

)︸ ︷︷ ︸
< ∞

<∞.

■

Proposition 11.1.3 The MGF MX(t) is finite in an open neighbourhood (tn, tp) of the origin if
and only if the tails of the distribution of X are exponentially bounded i.e. P({|X| > x}) ⩽ Cet0x

for some C > 0 and t0 > 0.

If MX(t) is finite in some open neighbourhood of the origin, then it determines the distribution
of X i.e. it’s the only distribution with the moments µ′k = E

(
Xk
)
.

11.2 Generating Moments

Suppose that the mgf is well-defined on a neighbourhood N = (tn, tp) of the origin. Consider
δ = min{−tn, tp}. Then MX(t) exists and is finite in (−δ, δ). Since exp(tX) has a Taylor series,
we may write for t ∈ (−δ, δ):

MX(t) ..= E
(
etX
)
= E

( ∞∑
n=0

(tX)n

n!

)
We can exchange the expectation and infinite sum via:

Theorem 11.2.1 (Dominated Convergence Theorem) Suppose that {fn}n ⊆ L1(X,M, µ) is a
sequence such that:

• fn → f a.e.

• The fn are uniformly bounded i.e. there exists a non-negative g ∈ L1(X,M, µ) such that
∀n : |fn| ⩽ g a.e.

Then f ∈ L1 and ∫
lim
n→∞

fn = lim
n→∞

∫
fn.

Let fn =
∑n

k=0
(tX)k

k! . Then the fn are uniformly bounded above by e|tX|. Also note that
e|tX| ⩽ etX + e−tX . Then e|tX| is indeed integrable in (−δ, δ) because monotonicity of the integral
implies that

E
(
e|tX|

)
⩽ E

(
etX + e−tX

)
= E

(
etX
)
+ E

(
e−tX

)
=.. MX(t) +MX(−t) <∞.

Therefore,

MX(t) = E

( ∞∑
n=0

(tX)n

n!

)

=

∞∑
n=0

E
(
(tX)n

n!

)
by the Dominated Convergence Theorem

=
∞∑
n=0

E(Xn)tn

n!
by linearity of E( · )
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With this expression, it’s clearer how we’ll extract/generate the moments of X — successive term
by term differentiation. Can we do so? We’ve shown that MX(t) coincides with a power series
on (−δ, δ). A power series that converges can be infinitely differentiated term-by-term within its
radius of convergence.

Therefore, we can differentiate term-by-term to obtain:

dk

dtk
MX(t) =

dk

dtk

∞∑
n=0

E(Xn)tn

n!

=

∞∑
n=0

dk

dtk
E(Xn)tn

n!

=
∞∑
n=0

E(Xn)
n · (n− 1) · . . . · (n− (k − 1))tn−k

n!

=

∞∑
n=0

E(Xn)
tn−k

(n− k)!
.

At t = 0, we clearly recover the kth term of the series E
(
Xk
)

which is precisely the kth moment of
X, µ′k.

Therefore, the kth moment of X is the coefficient of tk/k! in the series expansion of MX(t).

11.3 Alternative Derivation

Another method to demonstrate that MX(t) can be differentiated term-by-term relies on the fol-
lowing theorem:

Theorem 11.3.1 (Term-by-Term Differentiation) Let {fn}n⩾1 ⊆ C1([a, b];R) and suppose that

• Sn(x0) =
∑n

i=1 fi(x0) converges pointwise as n→∞

• The series of derivatives S′n(x) =
∑n

i=1 f
′
i(x) converges uniformly on [a, b] as n→∞.

Then the series Sn(x) converges uniformly on [a, b] to some function S(x) and

d

dx

∞∑
n=1

fn(x) =

∞∑
n=1

d

dx
fn(x).

Now we must figure out whether fn(t) = E(Xn)tn/n! satisfies the above assumptions. The
series

∑n
i=0 fi(t) clearly converges pointwise to MX(t) for all t ∈ (tn, tp) ⊇ (−δ, δ). Does the series

of derivatives converge uniformly on any compact subset of (−δ, δ)? To figure this out, we can use
the Weierstrass M -test:

Theorem 11.3.2 (Weierstrass M -Test) For a sequence of functions {fn}n⩾1 on A ⊆ R, if
∃{Mk}k⩾1 ⊆ R such that ∀x ∈ A : |fn(x)| < Mn and

∑∞
k=1Mk converges, then

∑∞
n=1 fn converges

uniformly.

In our case, we can note that for any compact subset K ⊆ (−δ, δ), we have that |t| ⩽
maxt∈K |t| =.. U and so we can bound above:

|fn(t)| =
∣∣∣∣E(Xntn)

n!

∣∣∣∣ ⩽ Un

n!
E(|X|n) =.. Mn.

Since the MGF exists in (−δ, δ), the absolute moments of X are all finite. I want to appeal to some
fact about X that limits the growth of E(|Xn|) so the Mn

n↑∞−→ 0 and I can deduce that
∑∞

n=0Mn

converges.



116

CHAPTER 12

Multivariable Distributions

12.1 Multinomial Distribution

Skipped.

12.2 Bivariable Normal Distribution

Also skipped. I will come back to these.
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CHAPTER 13

Population and Sampling

Definition 13.0.1

• A sampling unit is an entity to be selected by a sampling procedure.

• A sampling procedure is a method by which one selects a sample of units from a population
with the purpose of increasing representativeness of the sample.

Sampling
Procedures

With Replacement

Simple Random
Sampling With
Replacement

Bootstrapping

Without Replacement

Equal Probability

Simple
Random
Sampling

Ordered Unordered

Systematic
Sampling

Unequal
Probability

Cluster
Sampling

Stratified
Sampling

Figure 13.1: Some examples of sampling procedures, categorised by whether units are replaced or
not.

Our sampling procedure affects everything downstream. The observed results from an experi-
ment can carry two types of error:

• Bias is the effect of depriving a sample its representativeness of a population. This mani-
fests by introducing a systematic1 error in the sampling procedure. Such procedures are
called biased sampling procedures. Systematic errors like favouring certain elements in the
population, or taking items from a wrong population yield biased samples.

• All error that isn’t systematic is designated as random error. Such errors may distort any
one observation at any given point in the sampling procedure but this typically “balances out
on average.”

13.1 What Really Is A Population?

Many books disagree on (and occasionally don’t define) what a ‘population’ is — this is not entirely
unexpected but is incredibly annoying within the field of mathematical statistics. If different
authors use the same word to represent different mathematical objects, then ‘population’ is
clearly an overloaded term. I want a definition that is both

1‘Systematic’ means non-random in the setting of sampling processes.
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• unambiguous (referring to a single type of mathematical object), and

• compatible with general parlance in academic and non-academic settings.

1. In general parlance, people refer to a population as a collection representing the totality of
(similar) objects with which we’re concerned.

Thus, it follows that a sample is defined2 as a proper subset of the population Π.

2. Some mathematical statistics textbooks, like Mathematical Statistics by Shao, refer to the
population as the probability measure of a probability space.

In statistical inference and decision
theory, the data set is viewed as a
realization or observation of a random
element defined on a probability space
(Ω,F ,P) related to the random
experiment. The probability measure P is
called the population. The data set or the
random element that produces the data is
called a sample from P.

[10, pp. 91–92]

I believe this random element X represents the result of observing a collection of elements
from a population — we call X a sample. The term random element encompasses both
samples of size n > 1, and a sample of size 1; the former being a random vector, the latter a
random variable.

Are those two definitions of ‘population’ compatible? The term ‘sample’ is also somewhat
overloaded. In the second definition, a sample is a random element (but it’s also permissible to use
the term sample for the set, or collection, of realisations of the random variables). The population
in the second definition is a probability measure but for it to be consistent with the first definition
(our general usage of the term), it would also need to be a superset of a sample.

MY INTENT

I want to keep the first definition intact (a population is a set) while living with the duality of
sample referring to a random element or its realisation — context will dictate which ‘sample’ is
meant. I think this is reasonable.

The following two definitions best reflect what I wish for the word population to represent.
The latter emphasises a real population and the former is an umbrella term for either a real or
conceptual population.

2This is the definition I encountered at the beginning of my studies/these notes.
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A (real or hypothetical) totality of objects
or individuals under consideration, of
which the statistical attributes may be
estimated by the study of a sample or
samples drawn from it.

OED 2010

[...] population, which, understood
physically, consists of individuals with
various observable quantities.

[11, p. 3]

The above definitions reflect what I believe best fits the word ‘population’ in the context of
statistics, and I will denote a population by Π. Say we flip a coin 10 times in an experiment. The
population, in the above sense, is the set {H,T} from which we sample with replacement.

13.2 Inadequacies of a Single Space

Earlier commentary begs the obvious question; why are we doing something new? Why does the
way we’ve defined probability spaces, and random variables on them fall short (or perhaps need
re-working) when it comes to formalising sampling?

Remarks 13.2.1 Let’s consider formalising the random experiment of flipping a fair coin n > 1
times.

• Let’s begin with Ω = {H,T}, F = 2Ω, and define P by P({H}) = P({T}) = 1/2. Then we may
define the ith coin flip by the random variable Xi(ω) = 1{ω=H}(ω), and so Xi ∼ Bern(1/2).
These flips do not affect one another so they should be independent. How do we express this
with only the information the probability space (Ω,F ,P) offers us? Trick question — this
probability space doesn’t have enough information to support a description of how multiple
variables interact.

• Instead, we must extend our definition of the outcome space to Ω̃ ..= Ωn = {H,T}n, and define
P̃ to be uniform on Ω̃. If we define each Xi : Ω̃ = {H,T}n → {0, 1} by Xi(ω1, . . . , ωn) =

1{ωi=H}(ω1, . . . , ωn), then the mutual P̃-independence of the Xi presents itself through the
factoring of

P̃ = ⊗nP.

The above remarks inform the following definition:

Definition 13.2.2 A random sample of size n is a collection of random variables

Xi : (Ω,F)→ (E, E)

defined on the same probability space (Ω,F , P̃) that are mutually P̃-independent, and identically
distributed with distribution P s.t. P̃ = ⊗nP. We denote this by

Xi
i.i.d.∼ P.
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Equivalence of Absolute Continuity of Random Vector and
Its Independent Components

I include in this section, the proof of which may be skipped, an important fact
that is often taken for granted when discussing a random sample X, and permits
us to speak of the (joint) density of X.

Theorem 13.2.3 For a collection of mutually independent random variables
X1, . . . , Xn, let X = (X1, . . . , Xn). Then

PX ≪ λRn ⇐⇒ ∀i = 1, . . . , n : PXi ≪ λR.

Proof. Recall that λRn is the completion ⊗nλR.

=⇒ Fix i ∈ {1, . . . , n} and let A ∈ BR be s.t. λR(A) = 0. Assume that
PX ≪ λRn . We wish to show that PXi(A) = 0. Note that

PXi(A) = PX

(
π−1
i (A)

)
= PX(R× . . .× R×A× R× . . .× R)

and that λRn coincides with the product measure ⊗nλR on BRn so

λRn(π−1
i (A)) = (⊗nλR)(π

−1
i (A))

= (⊗nλR)(π
−1
i (A)) ∵ they coincide on BRn

= λR(A) ·
∏

1⩽j⩽n
j ̸=i

λR(R) = 0.

Since PX ≪ λRn , it follows that 0 = PX

(
π−1
i (A)

)
. Thus, PXi(A) = 0 and

so PXi ≪ λR.

⇐= For the reverse implication, suppose that ∀i ∈ {1, . . . , n}: PXi ≪ λR. We
wish to prove that

PX ≪ λRn .

Two intermediate factoids will help us reach the above conclusion.

Lemma 13.2.4 For i = 1, . . . , n, let µi be a σ-finite measure on (Ωi,Fi),
and let νi be a measure on the same measurable space. If for each i,
νi ≪ µi, then

n⊗
i=1

νi ≪
n⊗

i=1

µi.

Proof. I need to think about this... ■

Lemma 13.2.5 Let µ be a measure on (Ω,F) and denote by µ its com-
pletion defined on F . Suppose that ν is another measure on (Ω,F) s.t.
ν ≪ µ. Then ν ≪ µ.

Proof. Let B ∈ F s.t. µ(B) = 0.
◦ Since B ∈ F , there exist A ∈ F and F ∈ Nµ (i.e. ∃N ∈ F s.t. F ⊆ N

and µ(N) = 0) s.t. B = (A ∪ F ) ⊆ (A ∪N).
◦ Note that 0 = µ(B) = µ(A ∪ F ) ..= µ(A).

Now note that ν(B) = ν(A∪F ) ⩽ ν(A∪N) ⩽ ν(A) + ν(N). Since ν ≪ µ,
and 0 = µ(A) = µ(N), it follows that ν(B) = 0. Thus, ν ≪ µ. ■

We can now see that

PX =

n⊗
i=1

PXi by independence

≪ ⊗nλR by Lemma 13.2.4

and conclude from Lemma 13.2.5 that

PX ≪ ⊗nλR =.. λRn .

■
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In a sampling experiment, we can interpret the law/distribution of population elements de-
terministically (e.g. a real, tangible population of people at a fixed point in time is not random
— the people exist), and we can attribute all the randomness to the act itself of sampling from
said population. Thus, it seems sensible to have some kind of framework that supports these two
different probability measures. This is something that is not done by the example above with
Ω = {H,T}n. Indeed, that example conflates the randomness of the sampling experiment with the
distribution of the “population” by encoding both into the probability space (Ω,F ,P).

Below are two examples of sampling frameworks that highlight the separation of experimental
randomness from population law:

Example 13.2.6 This example really made it click for me. Say that a village is running a local
election. We’re in the year 1695, and we wish to conduct an experiment to sample a voter from a
population Π of voters in the village, each identified by a unique ID number. The method to select
this voter is to fill a massive beer barrel with identical balls (labelled with each voter ID) and some
mechanism to randomly eject a ball. This mechanism isn’t influenced at all by the distribution of
voters in the population. Instead, it works entirely according to the random mechanism and this
randomness may be modelled abstractly as its own probability space.

Example 13.2.7 It’s often the case that sampling from a particular distribution is done by com-
puter — one employs an algorithm to generate pseudo-uniformly random numbers from [0,1], and
then a deterministic map S transforms3 these numbers into a sample x1, . . . , xn. Such algorithm-
s/sampling methods are not truly random but we can use these numbers xi to make decisions about
the law of the population.

13.3 The Two-Space Framework

The following framework for sampling, introduced by Yiping Cheng [11], encapsulates all of the
points discussed so far. We opt for two probability spaces:

• (Π,FΠ,PΠ) is called the population probability space. The non-deterministic true dis-
tribution of the population elements is encoded by PΠ.

• (Λ,FΛ,PΛ) is called the experiment probability space. The randomness of the sampling
procedure is captured by PΛ.

The following list summarises the framework:

-1. The population probability space is fixed — it is what it is in nature.

0. We begin with some inferential goal (to estimate a mean, test a hypothesis etc.)

1. We choose a sampling procedure (e.g. random sampling, or systematic sampling) that’s
appropriate for said goal.

• The output of this procedure is a tuple of length n from the set of all possible tuples of
Πn — an element of Πn is called a sample.

• If we could apply this sampling procedure perfectly to the full population, then the
arising distribution of tuples PΠn is called the intended sampling distribution. In
truth, PΠn is a theoretical artefact that serves as the goal of this entire process.

◦ We denote by FΠn the corresponding σ-algebra over which PΠn is defined, and call
(Πn,FΠn ,PΠn) the sampling probability space.

2. We typically have the form of PΠn in mind e.g. if we’re performing random sampling, then
PΠn = ⊗nPΠ despite not knowing PΠ.

3In the language of distributions, S pushes forward this pseudo-uniform randomness to a distribution of our
choosing. In the idealised world of mathematics, the existence of a canonical source of randomness is a deep fact,
and one that will be mentioned in this section.
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3. The experiment probability space is set up to separate the randomness in the experimental
procedure of sampling, from the deterministic mappings that shape said randomness into
complex distributions that model our population.

• The fundamental bridge between the randomness of the experiment and the intended
distribution PΠn of the samples is a deterministic (FΛ,FΠn)-measurable function,
dubbed the sampler mapping

S : Λ→ Πn.

The sampler mapping transforms each experimental outcome e ∈ Λ into a population
sample S(e) ∈ Πn.

(Πn,FΠn) (Λ,FΛ)

[0, 1]

PΠn S♯PΛ

S

PΛ

The measurability of S is so that probabilities are well-defined when pushing PΛ forward.
• If all has been set up correctly, the sampler mapping will faithfully transform the ran-

domness of sampling PΛ into our intended population distribution PΠn on Πn i.e.

S♯PΛ = PΠn .

In summary, we hope that correctly constructing an appropriate sampling framework (which in-
cludes S, and (Λ,FΛ,PΛ)) will yield our intended population distribution PΠn .

13.4 Simple Random Sampling With Replacement (SRSWR)

This subsection deals with incorporating the procedure of simple random sampling with replace-
ment (from a finite population Π) into the two-space framework.

Simple random sampling with replacement is a sampling procedure in which one succes-
sively selects n units from a finite population, after each draw returning the selected unit to the
population, in such a way that that each sample of size n has equal selection probability. Since we
replace each drawn unit, the population remains the same and so we can regard each individual as
independent of any other, and that each draw is governed by the same population law.

Other books (e.g. [4]) define simple random sampling with replacement as a sampling procedure
in which every member of the population has an equal chance of being chosen and successive
drawings are independent, as, for example, in sampling with replacement. This is a consequence
of the above if we let n = 1, and so we may assume the population law is uniform.

To incorporate this into the two-space framework, our assumptions tell us that the intended
sampling distribution PΠn is equal to the product measure ⊗nPΠ which itself is a uniform measure
on Πn. A natural choice for FΠn is the product σ-algebra ⊗nFΠ which is the smallest4 σ-algebra
s.t. the coordinate maps Si are measurable.

S is a map from Λ → Πn and so it is of the form S = (S1, . . . , Sn). Furthermore,
the assumed (FΛ,FΠn = ⊗nFΠ)-measurabilty of S implies, by satisfying the
conditions of Proposition 6.0.3 (Proposition 2.4 [8]), that each coordinate map
Si : Λ → Π is (FΛ,FΠ)-measurable.

These assumptions of simple random sampling with replacement force our framework to obey the
equality

S♯PΛ =
n⊗
1

PΠ.

4For any σ-algebra FΠn smaller than ⊗nFΠ, we don’t have enough information required to speak of the coordi-
nates of S as random variables.
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Visually, we may represent the maps by:

(Πn,FΠn = ⊗nFΠ) (Λ,FΛ)

(Π,FΠ)

[0, 1]

πi

S♯PΛ

Si

PΛ

S

(Si)♯PΛ

Now we can make some comments about the Si:

• Let A ∈ FΠ.

((Si)♯PΛ)(A) = PΛ

(
S−1i (A)

)
= PΛ

(
(πi ◦ S)−1(A)

)
= PΛ

(
S−1(π−1i (A))

)
= (S♯PΛ)(π

−1
i (A))

= (⊗nPΠ)(π
−1
i (A)) by assumption

= (⊗nPΠ)(Π× . . .×Π︸ ︷︷ ︸
(i−1) times

×A×Π× . . .×Π)

= PΠ(Π) · . . . · PΠ(Π) · PΠ(A) · PΠ(Π) · . . . · PΠ(Π)

= PΠ(A)

Therefore, the Si are identically distributed with distribution PΠ.

• It also follows immediately that the Si are mutually PΛ-independent because for any collection
{Ai}ni=1 ⊆ FΠ:

PΛ(S1 ∈ A1, . . . , Sn ∈ An) = (S♯PΛ)(A1 × . . .×An) = (⊗nPΠ)(A1 × . . .×An)

=
n∏

i=1

PΠ(Ai)

=
n∏

i=1

((Si)♯PΛ)(Ai)

=
n∏

i=1

PΛ(Si ∈ Ai).

Thus, the Si constitute a random sample in the traditional sense of Definition 13.2.2. Fur-
thermore, we note that the condition S♯PΛ = ⊗nPΠ is the two-space framework equivalent of
∼

i.i.d.
PΠ and we give it a name:

Definition 13.4.1 The sampler mapping S is simple if for every collection {Aj}nj=1 ⊆ FΠ, we
have that

(S♯PΛ)(A1 × . . . An) =PΛ({e ∈ Λ: S1(e1) ∈ A1, . . . , Sn(en) ∈ An}) =
n∏

j=1

PΠ(Aj).

It’s clear from this definition that simplicity of a sampler mapping depends on the experiment
probability space (Λ,FΛ,PΛ) — something we have so far taken for granted exists and represents
the randomness of the sampling procedure. The reason for this is slightly underhanded; there is
one choice trivial of experiment probability space that always works, and in this particular example
for which a simple sampler mapping always exists:
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Trivial Example (S = id)

Let (Λ = Πn,FΛ = ⊗nFΠ,PΛ = ⊗nPΠ) and S be the identity mapping idΠn . The framework
collapses to the familiar setting of a single probability space on which we have the random variables
Si = πi ◦ idΠn = πi defined (and are equal to the canonical projections).

(Πn,⊗nFΠ)

(Π,FΠ)

[0, 1]

πi Si

S♯Pλ PΛ =⊗nPΠ

S= idΠn

(Si)♯PΛ

This is a special case of the general random sampling framework above so the Si still constitute
a random sample in the traditional sense. In particular, the coordinate maps are the projection
maps Si = πi and we can denote these by Xi.

13.5 Canonical Randomness

Before covering a non-trivial example that incorporates simple random sampling into the two-space
framework, I think it’s appropriate to put an important theorem here that powers the upcoming
examples — any probability measure on a nice enough (standard Borel) space can be realised
as the push-forward of a canonical source of randomness λ[0,1) defined on ([0, 1),B[0,1)) via some
(appropriately) measurable map h.

More precisely:5

Theorem 13.5.1 (Theorem 5.4 [12]) Let (E, E) be a Borel space.a Let µ be a σ-finite measure
on (E, E) and put b = µ(E), possibly +∞. Then, there exists a mapping h from [0, b) into E,
measurable relative to B[0,b) and E such that

µ = h♯λ

where λ is the Lebesgue measure on [0, b).
aÇinlar calls this a standard measurable space.

For our purposes:

• (E, E) is (Π,FΠ) i.e. we assume our population probability space is a Borel space,

• µ is PΠ, so PΠ(Π) = 1 and so b = 1.

We denote h by F−Π and call this map the generalised quantile function6 of PΠ that pushes
forward λ to PΠ i.e. PΠ = (F−Π )♯(λ).

5Çinlar’s book instead uses the notation λ ◦ h−1 for the pushforward of λ via h. I passionately disagree with
writing h−1 because it’s too suggestive for the inverse of h, especially when it’s generally not the case that h is
invertible.

6Or inverse probability transform.
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(Π,FΠ) ([0, 1),B[0,1))

[0, 1]

PΠ

F−
Π

λ[0,1)

Total speculation on my part but thinking about the real case tells me there
should probably be a theorem that states conditions under which we can up-
grade the representation theorem above to an isomorphism i.e. there exists a
measurable function g : E → [0, 1] s.t. g♯(µ) = λ, and one has that g and h are
“inverses” of each other in some sense. I’d call this map g the forward proba-
bility integral transform of PΠ, and denote it by FΠ. Thus, FΠ would push
PΠ forward to λ i.e.

(FΠ)♯PΠ = λ[0,1).

13.5.1 CONSTRUCTIVE PROOF FOR h (Π AT MOST COUNTABLE)

In the case that Π is at most countably infinite, one can explicitly construct a h in the state-
ment of Theorem 13.5.1. We do so by partitioning [0, 1) into intervals with Lebesgue measure
corresponding to appropriate probabilities.

First, observe that (Π,FΠ) is an at most countably infinite Borel space. By Theorem 4.4.5
(the measurable classification theorem), it’s trivial in the sense that FΠ = 2Π. Furthermore, it
inherits an ordering from some subset of R and so we may write

Π = {x1, x2, . . .}.

We call xi the ith population unit.
At the end of this, we want a map h that satisfies

PΠ({xi}) = (h♯λ[0,1))({xi}) = λ[0,1)(h
−1({xi}))

so it seems sensible that we wish for h to map an interval of length PΠ({xi}) to each xi. Let s0 = 0
and for i ∈ N:

si =

n∑
j=1

PΠ({xi}).

Note that 0 = s0 ⩽ s1 ⩽ s2 ⩽ . . . and si → 1 defines a partition Ii = {[si−1, si)}i∈N of [0, 1). Now
we define the map h : [0, 1]→ Π by h(e) = xi for all e ∈ Ii, and define h(1) = xk for any k (doesn’t
matter which because the singleton {1} contributes zero measure).
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s1 s2 s3 s4 1

x1

x2

x3

x4

. . .

...

e

h(e)

Figure 13.2: A plot of an example h for a particular (non-uniform) discrete probability measure
PΠ. Note that the partition widths sum to unity.

Now let A ∈ FΠ i.e. let A be any subset of Π so it looks like

A =
⊔

i : xi∈A
{xi}.

Let JA denote the indexing set {i : xi ∈ A}. Then we may write

(h♯λ[0,1))(A) = λ[0,1)(h
−1(A)) = λ[0,1)

( ⊔
i∈JA

Ii

)
=
∑
i∈JA

λ[0,1)(Ii)

=
∑
i∈JA

(si − si−1)

=
∑
i∈JA

PΠ({xi})

= PΠ

( ⊔
i∈JA

{xi}
)

by σ-additivity

= PΠ(A)

13.5.2 NON-TRIVIAL EXAMPLE (SRSWR)

Now we’re in a position to apply the concept of canonical randomness to SRSWR in the two-space
framework.

We’ll define Λ as the n-fold product of [0, 1] and endow it with a probability distribution
PΛ that mimics a uniform distribution on the components of Λ. Then we’ll use the generalised
quantile function h from the at-most countably infinite case to map into the population probability
space. Note that the same construction for h works if the population is only finite, and the setup
of SRSWR only works for a finite population for there is no uniform probability measure on an
infinite population (set)!

• The population probability space is as before (Π,FΠ,PΠ) where Π is the finite population
from which we’ll draw our samples.

• Λ = [0, 1)n.

• Let FΛ = B[0,1)n = ⊗nB[0,1] and PΛ = λ[0,1)n = ⊗nλ[0,1). This choice of experiment probabil-
ity space tells us that the distribution of each component of a tuple (e1, . . . , en) = e ∈ [0, 1)n

in Λ can be considered to be uniformly distributed7 on [0, 1].
7Perhaps I’ve not yet explicitly written the idea that the Lebesgue measure on [0, 1] corresponds to the probability
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• We define the sampler mapping S : Λ→ Πn by

S(e) = (h(e1), . . . , h(en)),

where h : [0, 1]→ Π is defined as before by h(e) = xi for all e ∈ Ii where Ii = [si−1, si) is an
interval of Lebesgue measure PΠ({xi}), and the si =

∑n
j=1 PΠ({xi}) are the endpoints of a

partition of [0, 1) with s0 = 0 and si → 1.

The diagram for this setup is:

(Πn,FΠn) ([0, 1)n,B[0,1)n)

[0, 1]

PΠn=⊗nPΠ S♯λ[0,1)n

S

λ[0,1)n

It’s sufficient to compute the induced probability measure S♯PΛ for every measurable rectangle
A ∈ FΠn = ⊗nFΠ i.e. for every set of the form A = A1 × . . .×An with Ai ∈ FΠ for every i.

(S#PΛ)(A) = PΛ

(
S−1(A)

)
= PΛ

(
S−1(A1 × . . .×An)

)
= λ[0,1)n(S

−1(A1 × . . .×An))

= λ[0,1)n
(
(h−1(A1)× . . .× h−1(An)

)
=

n∏
i=1

λ[0,1)(h
−1(Ai))

=

n∏
i=1

PΠ(Ai) since PΠ = h♯λ[0,1)

=
( n⊗

1

PΠ

)
(A1 × . . .×An)

=
( n⊗

1

PΠ

)
(A)

= PΠn(A)

which is equal to our intended probability distribution.

Remarks The theorem in this section on a canonical source of randomness finds a natural applica-
tion in how sampling is typically implemented in computer algorithms. Random number generators
produce numbers (approximately) uniformly between 0 and 1, and then we can obtain a sample
from any other distribution via a deterministic transformation (like our sampler mapping S).

13.6 Simple Random Sampling

Simple random sampling differs only from SRSWR only in the sense that we do not replace each
unit selected after each draw. Thus, the underlying population is uniformly distributed. One
can view the same procedure from two perspectives — keep track of the ordered tuples of units,
or simply view the process as selecting some unordered subset of the population. It’s the same

distribution of a uniformly distributed random variable on [0, 1] but it should be clear that for any X ∼ Unif([a, b]),
any subset A ⊆ [a, b] has probability

PX(A) =

∫
A

1

b− a
dx =

1

b− a
λ(A).

Then we simply note that if U ∼ Unif([0, 1]), then b− a = 1 so PU (A) = λ(A).
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procedure either way; just the book-keeping that’s different, and the former allows us to speak
meaningfully of the ith draw.

However, one important to point to keep in mind is that simple random sampling (without
replacement) is materially different between “small” and “large” populations. If Π is a population
that is significantly larger than the sample size n, removing any single observation from Π on any
given draw makes little meaningful impact on the distribution of elements in Π. Thus, for a large
enough population, there isn’t very much of a distinction between simple random sampling without
and with replacement.

In order to make some meaningful comments on each draw of a simple random sampling pro-
cedure (without replacement), I’ll work with ordered tuples so let

Λ = {(i1, . . . , in) ∈ {1, . . . , N}n : ij-distinct}.

Note that the number of such ordered samples is equal to N(N − 1) . . . (N − (n − 1)), and so PΛ

is the uniform probability measure on FΛ = 2Λ is defined by8

PΛ({(i1, . . . , in)}) =
1

card(Λ)
=

1
N !

(N−n)!
.

The intended distribution PΠn is uniform by how simple random sampling is defined. However,
the draws are not independent because we do not replace the units once drawn and we are not9

considering a limiting case where the sample size is very small compared to card(Π).
Since our population is finite, FΠn = 2Π

n . The sampler mapping in this case S : Λ → Πn is
defined by

S(i1, . . . , in) = (xi1 , . . . , xin).

and the pushforward is defined for any {(xi1 , . . . , xin)} ∈ FΠn by

(S♯PΛ)({(xi1 , . . . , xin)}) = PΛ

(
S−1({(xi1 , . . . , xin)})

)
= PΛ({(i1, . . . , in)})
= 1/ card(Λ)

which is the uniform distribution on Πn.
Now to discuss the jth unit observed. Let πj denote the natural projection onto the jth coor-

dinate. Then the jth draw is πj ◦ S =.. Sj : Λ→ Π defined by

Sj(i1, . . . , in) = xij .

Definition 13.6.1 The inclusion probability of the kth unit is the probability that xk will be
included in the sample realised by the sampling procedure.

The distribution of Sj is given by ((Sj)♯PΛ)({xk}) which looks to me like the kth inclusion
probability in the jth slot. Fix ij ∈ {1, . . . , n} and a population unit xk.

((Sj)♯PΛ)({xk}) = PΛ

(
S−1j ({xk})

)
= PΛ({e ∈ Λ = {i1, . . . , in} : Sj(e) = xk})

= PΛ({e ∈ Λ: ij = k})

At this point, we count how many ordered outcomes in Λ put the index k (i.e. the kth unit) in the
jth slot. With the jth coordinate fixed, the remaining indices must be distinct and drawn without

8Had we considered unordered tuples i.e. subsets of Π size n, we could let Λ = {A ⊆ Π: card(A) = n}, and
then PΛ would be defined by

PΛ(A) =
1

#ways to select n elements from N
=

1(
N
n

) .
9At least not yet.
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replacement from the remainingN−1 indices i.e. there are (N−1)(N−2) . . . ((N−1)−(N−(n−1)))
such ordered tuples which means that

((Sj)♯PΛ)({xk}) = . . . = PΛ({e ∈ Λ: ij = k})

=
(N − 1) . . . ((N − 1)− ((n− 1)− 1))

card(Λ)

=
(N − 1) . . . (N − (n− 1))

N(N − 1) . . . (N − (n− 1))
=

1

N

i.e. that each draw is identically distributed.
Unlike SRSWR, the draws are not independent so the Sj do not constitute a random sample

in the traditional sense of Definition 13.2.2.
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CHAPTER 14

Functions of Random Variables

Henceforth, unless stated otherwise, X1, . . . , Xn will denote a random sample.

14.1 Statistics, Estimators and Estimates

When a random sample X = (X1, . . . , Xn) is drawn from a population, we can calculate some
summary T (x1, . . . , xn) of the observed values x1, . . . , xn.

Example 14.1.1 For an observed sample x1, . . . , xn, the sample mean µ is defined as

T (x1, . . . , xn) = µ ..=
1

n

n∑
i=1

xi.

We can view any such summary as a realisation of the function T ◦X of the random sample
X. If T is measurable in a way that’s compatible with the measurability of X i.e. that T ◦X is
measurable, then we call T a statistic.1

Definition 14.1.2 Suppose that X = (X1, . . . , Xn), where Xi
i.i.d.∼ Pθ, is a random sample, where

θ is some fixed and unknown population parameter. Let T be a statistic. If the corresponding
random element T ◦X is used to estimate a population parameter θ, then:

• we call T ◦X an estimator,

• and the observed value θ̂ = T (x1, . . . , xn) of such an estimator T ◦X based on an observed
sample x1, . . . , xn is called an estimate.

Remarks 14.1.3

• We also require that T is not a function of any unknown parameters (including θ). Otherwise,
we wouldn’t be able to compute T ◦X since θ is unknown.

• The probability distribution PT◦X of the corresponding random element T ◦X is called the
sampling distribution of T ◦X.

Example 14.1.4 Examples of T ◦X.

• The sample mean X is the arithmetic average of the values in a random sample, denoted by

X =
X1 + . . .+Xn

n
.

We use the sample mean to estimate the mean θ = µ of the population.

• The sample standard deviation S is the positive square root of the sample variance S2

S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

We use it to estimate the population standard deviation.
1This will be made more precise later on:
• The general measure-theoretic definition is Definition 16.2.1.
• The statistics/estimation-geared definition (which is a specific case of the former) is Definition 21.0.1.
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• X(n) = max{X1, . . . , Xn}

• X(1) = min{X1, . . . , Xn}

• The range R ..= X(n) −X(1)

These definitions suppress the random sample e.g. X is truly X(X1, . . . , Xn). Observed values
are lowercase.

14.1.1 HOW “GOOD” IS AN ESTIMATOR?

I imagine that learning the distribution of an estimator will go some way to helping quantify how
“good” an estimator is.

Consider the problem of estimating a population’s mean µ. Intuitively, one draws a random
sample of n observations x1, . . . , xn from the population and employs the sample mean

x =
1

n

n∑
i=1

xi

as an estimate for µ. How good is this estimate? The answer depends on the behaviour of the
random sample X1, . . . , Xn and its effect on the (sampling) distribution of X.

• One measure of the goodness of the estimator T ◦X = X is the error of its estimation — the
difference between the estimate T (x1, . . . , xn) and the parameter being estimated (e.g. the
difference between x and µ).

• Since T ◦ X is a random variable, we can’t assign a deterministic number to the error in
estimation for each sample.

◦ However, if we can determine the probability distribution PT◦X of the estimator (e.g.
PX), then we can use it to bound the probability that the estimation error falls within
some tolerance.

There are 3 main methods for finding the probability distribution of a function T (X1, . . . , Xn)
of random variables:

14.2 The 3 Methods

Each method works well for different examples. Consider random variables Y1, . . . , Yn and a func-
tion U(Y1, . . . , Yn) denoted simply by U . The 3 methods are summarised as follows:

1. The Method of Distribution Functions:

• Conditions: Typically used when the Y1, . . . , Yn are jointly absolutely continuous random
variables i.e. Y = (Y1, . . . , Yn) admits a density.

• Method: Find FU (u) = P({U ⩽ u}) i.e. find the region in y1, . . . , yn space for which
U ⩽ u and then integrate over this region. Then differentiate FU (u) to find the density
of U .

2. The Method of Transformations

• Conditions: When given the density of a random variable Y , this method results in a
general expression for the density of U = h(Y ) for some strictly increasing or strictly
decreasing function of Y .

• Method: If Y1 and Y2 have a joint distribution, we can use the univariate result to find
the joint density of Y1 and U = h(Y1, Y2). By integrating over Y1, we find the marginal
density of U which is our objective.
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3. The Method of Moment-Generating Functions

• Conditions: Based on a uniqueness theorem: If two random variables have identical
moment-generating functions, the two random variables possess the same probability
distribution.

• Method: Compute the moment-generating function MU (t) for U = h(Y1, . . . , Yn) and
compare it against the moment-generating functions of common discrete or absolutely
continuous random variables (from prior chapters).

These methods are computational, best illustrated with theory and examples.

14.3 Method of Distribution Functions

The following examples (minus the theorems) are from the lecture video series by Professor Un-
nikrishna Pillai which may be found here on YouTube. I’ll continue to use my own notation in
these notes, being as clear as I possibly can.

14.3.1 Z = X + Y

Suppose that X = (X,Y ) admits a density fX(x, y) and let Z = X + Y .
The general idea is to write the unknown quantity FZ(z) in terms of known quantities relating

to the probability distribution of X e.g. fX,Y (x, y). First note that

FZ(z) = P({Z ⩽ z}) = P({X + Y ⩽ z})
= P({ω ∈ Ω: X(ω) + Y (ω) ⩽ z})
= P

(
X−1({(x, y) ∈ R2 : x+ y ⩽ z})

)
= PX

(
{(x, y) ∈ R2 : x+ y ⩽ z}

)
=

∫∫
{(x,y)∈R2 : x+y⩽z}

fX,Y (x, y) dA

z

z

(x, z − x)

(z − y, y)

x

y

Figure 14.1: The region in the codomain R2 of X : Ω→ R2 over which we integrate the joint density
fX in order to find the probability of the event {X + Y ⩽ z} ..= {ω ∈ Ω: X(ω) + Y (ω) ⩽ z} ⊆ Ω.

Now we integrate the joint density fX,Y over this region. One way to integrate over this region
in R2 is:

• Fix x and consider a slice of the region of constant x. This variable slice is the integral of
fX,Y over the possible y values (for each fixed x).

https://www.youtube.com/watch?v=NZQLo6h4wEw
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◦ Then integrate this variable slice over the possible x values.

• Fix y and consider a slice of the region of constant y.

◦ Then integrate over the possible x values (for each fixed y).

Therefore, our cumulative distribution function can be computed as:

FZ(z) = P({X + Y ⩽ z}) =
∫∫
{(x,y)∈R2 : x+y⩽z}

fX,Y (x, y) dA

=

∫ +∞

−∞

(∫ z−x

−∞
fX,Y (x, y) dy

)
dx =

∫ +∞

−∞

(∫ z−y

−∞
fX,Y (x, y) dx

)
dy

We must now differentiate FZ(z) with respect to z to find the density of Z = X + Y . This can be
done with the Leibniz integral rule:

14.3.2 LEIBNIZ’S INTEGRAL RULE

Theorem 14.3.1 (Differentiation of the Integral Depending on a Parameter)
Suppose that f(x, t) and ∂f

∂t
(x, t) are continuous on the rectangle [a, b] × (c, d).

Then ∀t ∈ (c, d)

d

dt

∫ b

a

f(x, t) dx =

∫ b

a

∂f

∂t
(x, t) dx

Proof. Both integrals in the theorem statement

F (t) ..=
∫ b

a

f(x, t) dx and G(t) =

∫ b

a

∂f

∂t
(x, t) dx

exist by the continuity of the respective integrands.

The goal is to show that F ′(t) = G(t).

For any t ∈ (c, d), we can find c1, d1 s.t. c1 < t < d1 and [c1, d1] ⊂ (c, d). Since f

and ∂f
∂t

are continuous on [a, b] × [c1, d1], they are also uniformly continuous on
the same set. Consider the difference quotient

F (t+ h)− F (t)

h
.

Now consider the difference∣∣∣∣F (t+ h)− F (t)

h
−G(t)

∣∣∣∣ ..=

∣∣∣∣∫ b

a

(
f(x, t+ h)− f(x, t)

h
− ∂f

∂t
(x, t)

)
dx

∣∣∣∣
⩽
∫ b

a

∣∣∣∣f(x, t+ h)− f(x, t)

h
− ∂f

∂t
(x, t)

∣∣∣∣ dx
Let h ̸= 0 be such that t + h ∈ [c1, d1]. By the mean value theorem for f ,
∃ξ ∈ (t, t+ h) such that

f(x, t+ h)− f(x, t)

h
=

∂f

∂t
(x, t)

∣∣∣∣
t=ξ

.

Therefore our difference is equal to∣∣∣∣∫ b

a

(
∂f

∂t
(x, ξ)− ∂f

∂t
(x, t)

)
dx

∣∣∣∣ .
Since ∂f

∂t
is uniformly continuous on [a, b]× [c1, d1], ∀ε > 0, ∃δε > 0:

|t− ξ| < δε =⇒
∣∣∣∣∂f∂t (x, ξ)− ∂f

∂t
(x, t)

∣∣∣∣ < ε.

Therefore, for any h < δε, we have that∣∣∣∣F (t+ h)− F (t)

h
−G(t)

∣∣∣∣ ⩽ ∫ b

a

ε dx = ε|b− a|

which implies that F is differentiable at t with derivative F ′ = G. ■
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Here is the main theorem of this section. The FTC is a particular case of the following theorem
where a(x) = a ∈ R is constant, b(x) = x and f(x, t) = f(t) doesn’t depend on x:

Theorem 14.3.2 (Leibniz Integral Rule) Suppose that f(x, t) and its derivative ∂f
∂t are

continuous on [α, β]× (c, d). Suppose further that for all t ∈ (c, d) : a(t) ∈ [α, β] ∋ b(t) and both
a(t) and b(t) are differentiable. Then for any (x, t) ∈ [α, β]× (c, d):

d

dt

∫ b(t)

a(t)
f(x, t) dx =

∫ b(t)

a(t)

∂f

∂t
(x, t) dx+ f(b(t), t) · b′(t)− f(a(t), t) · a′(t).

Proof. Define for (t, a, b) ∈ (c, d)× [α, β]× [α, β] where a ∈ R ∋ b:

I(t, a, b) ..=
∫ b

a

f(x, t) dx

By Theorem 14.3.1,

∂I

∂t
(t, a, b) =

∫ b

a

∂f

∂t
(x, t) dx

and by the fundamental theorem of calculus,

∂I

∂b
(t, a, b) = f(b, t)

∂I

∂a
(t, a, b) = −f(a, t).

Then the chain rule of differentiation implies that

d

dt

∫ b

a

f(x, t) dx

=
d

dt
I(t, a(t), b(t))

=
∂I

∂t
(t, a(t), b(t)) · dt

dt
+

∂I

∂a
(t, a(t), b(t)) · da

dt
+

∂I

∂b
(t, a(t), b(t)) · db

dt

14.3.1
=

∫ b(t)

a(t)

∂f

∂t
(x, t) dx− f(a(t), t) · a′(t) + f(b(t), t) · b′(t).

■

Going back to finding the density of Z:

fZ(z) =
d

dz
FZ(z)

=
d

dz

∫ +∞

−∞

∫ z−y

−∞
fX,Y (x, y) dx dy

=

∫ +∞

−∞

d

dz

(∫ z−y

−∞
fX,Y (x, y) dx

)
dy

=

∫ +∞

−∞

(∫ z−y

−∞

∂

∂z
fX,Y (x, y) dx+ fX,Y (z − y, y) ·

d

dz
(z − y)− fX,Y (−∞, y) ·

d

dz
(−∞)

)
dy

=

∫ +∞

−∞
fX,Y (z − y, y) dy

Example 14.3.3 If we suppose further that X and Y are independent random variables, the joint
density splits and we can recognise the density of Z

fZ(z) =

∫ +∞

−∞
fX(z − y)fY (y) dy =.. fX(z) ⋆ fY (z)

as the convolution of the densities fX(z) and fY (z).
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Example 14.3.4 As a special case, let X and Y be non-negative random variables and Z their
sum. Then the region over which one integrates to find the CDF of Z is the following bounded
triangle:

z

z x

y

since the joint density fX,Y (x, y) is zero for x < 0 and y < 0. Therefore,

FZ(z) = P({Z ⩽ z}) = P({0 ⩽ Z ⩽ z}) = P({0 ⩽ X + Y ⩽ z}) =
∫ y=z

y=0

∫ x=z−y

x=0
fX,Y (x, y) dx dy

so the bounds of integration are different for different problems.

How will you know what to do? Always
do the problem given to you.

Professor Unnikrishna Pillai
One Function of Two Random

Variables Z = X + Y (Part 1 of 6)

There are typically some common sense checks e.g. if X and Y are positive, then Z = X + Y
is positive. If your work doesn’t show this, something’s gone awry.

14.3.3 Z = X − Y

Draw the line z = x− y i.e. y = x− z.

−z

z x

y

Figure 14.2: The region in R2 corresponding to the event {X − Y ⩽ z}.

https://youtu.be/NZQLo6h4wEw&t=1130
https://youtu.be/NZQLo6h4wEw&t=1130
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fZ(z) =
d

dz
FZ(z)

=
d

dz
P({Z ⩽ z})

=
d

dz
P({X − Y ⩽ z})

=
d

dz

∫ ∞
−∞

∫ z+y

x=−∞
fX,Y (x, y) dx dy

=

∫ ∞
−∞

fX,Y (z + y, y) dy by Leibniz’s Integral Rule

= fX(−z) ⋆ fY (y) if X and Y are independent.

14.3.4 Z = X − Y (NON-NEGATIVE X , Y )

In the case that X and Y are positive random variables, Z = X − Y may still be negative or
positive (unlike the previous section with Z = X + Y ).

z x

y

Figure 14.3: Let z > 0. The region in R2 corresponding to the event {X − Y ⩽ z} for positive
random variables X and Y .

The easier way to integrate over this region is horizontally (over lines of constant Y first with
respect to x, and then with respect to y). Doing so vertically would introduce a change of integration
bounds over X = z. This would be inconvenient.

−z

z x

y

Figure 14.4: Let z < 0. The region in R2 corresponding to the event {X − Y ⩽ z} for positive
random variables X and Y . Note that −z > 0 is the Y -intercept.
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∴ FZ(z) =


∫ ∞
y=0

∫ z+y

0
fX,Y (x, y) dx dy, if z > 0∫ ∞

y=−z

∫ z+y

0
fX,Y (x, y) dx dy, if z ⩽ 0

14.3.5 R =
√
X2 + Y 2

LetX and Y be independent, zero-mean, normally distributed random variables with equal variance
σ2. The CDF of the “amplitude” R =

√
X2 + Y 2 is given by

FR(r) = P({R ⩽ r})

= P
(
{
√
X2 + Y 2 ⩽ r}

)
= P

(
{X2 + Y 2 ⩽ r2}

)
= P

(
{ω ∈ Ω: (X(ω))2 + (Y (ω))2 ⩽ r2}

)
=

∫∫
{(x,y)∈R2 : x2+y2⩽r2}

fX,Y (x, y) dA

The region being traced out is the area within a circle of radius r and centre (0, 0), boundary
inclusive. This is where the density of R is defined.

(
√
y2 − r2, y)(−

√
y2 − r2, y)

r

x

y

Thus, the CDF of R is given by

FR(r) =

∫ r

−r

∫ +
√

r2−y2

−
√

r2−y2
fX,Y (x, y) dx dy
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The density can again be found by differentiating the cumulative distribution function:

fR(r) =
d

dr
FR(r)

= 1 ·
∫ +

√
r2−r2

−
√
r2−r2

fX,Y (x, r) dx− (−1)
∫ +
√

r2−(−r)2

−
√

r2−(−r)2
fX,Y (x,−r) dx

+

∫ r

−r

∂

∂r

(∫ +
√

r2−y2

−
√

r2−y2
fX,Y (x, y) dx

)
dy

=

∫ r

−r

∂

∂r

(∫ +
√

r2−y2

−
√

r2−y2
fX,Y (x, y) dx

)
dy

=

∫ r

−r

(
fX,Y (

√
r2 − y2, y) d

dr

(√
r2 − y2

)
− fX,Y (−

√
r2 − y2, y) d

dr

(
−
√
r2 − y2

)
+

∫ +
√

r2−y2

−
√

r2−y2

∂

∂r
fX,Y (x, y) dx

)
dy

=

∫ r

−r

(
r√

r2 − y2
fX,Y (

√
r2 − y2, y) + r√

r2 − y2
fX,Y (−

√
r2 − y2, y)

)
dy

=

∫ r

−r

(
r√

r2 − y2
fX(

√
r2 − y2)fY (y) +

r√
r2 − y2

fX(−
√
r2 − y2)fY (y)

)
dy by indep.

=

∫ r

−r

r√
r2 − y2

2

2πσ2
exp

(
−1
2σ2

(
r2 − y2 + y2

))
dy

=
r

πσ2
exp

(
− 1

2σ2 r
2
) ∫ r

−r

1√
r2 − y2

dy︸ ︷︷ ︸
even

=
2r

πσ2
exp

(
− 1

2σ2 r
2
) ∫ r

0

1√
r2 − y2

dy

=
r

σ2
exp

(
− 1

2σ2 r
2
)

for r ⩾ 0.

The Rayleigh distribution has density

f(x) =
x

β2
exp

(
−x2/(2β2)

)
for x > 0 and β > 0. Comparing the density of R with this, R does indeed have a Rayleigh
distribution with β = σ.

14.3.6 Z = X/Y

FZ(z) = P({Z ⩽ z}) = P({X/Y ⩽ z})

If X and Y were deterministic, we’d have no issues multiplying out by Y but now we have to worry
about whether Y is positive or negative.

Define A = {Y ⩾ 0} so Ac = {Y < 0}. We can use this to partition our event {X/Y ⩽ z}:

FZ(z) = P({X/Y ⩽ z})
= P({X/Y ⩽ z} ∩ (A ⊔Ac))

= P({X/Y ⩽ z} ∩A) + P({X/Y ⩽ z} ∩Ac)

= P({X/Y ⩽ z, Y ⩾ 0}) + P({X/Y ⩽ z, Y < 0})
= P({X ⩽ Y z, Y ⩾ 0}) + P({X ⩾ Y z, Y < 0})
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x = yz

x

y

x

y

Integrating over lines of constant Y first gives:

fZ(z) =
d

dz
FZ(z) =

d

dz

∫ ∞
y=0

∫ yz

x=−∞
fX,Y (x, y) dx dy +

d

dz

∫ 0

−∞

∫ ∞
x=yz

fX,Y (x, y) dx dy

=.. I1 + I2

I1 : The integral with respect to y has integral bounds that don’t depend on z so the boundary
terms in Leibniz’s rule f(x, b(x))b′(x)− f(x, a(x))a′(x) vanish. We’re left with

I1 =

∫ ∞
0

∂

∂z

(∫ yz

−∞
fX,Y (x, y) dx

)
dy

=

∫ ∞
0

(
fX,Y (yz, y)

d

dz
(yz)− fX,Y (−∞, y)

d

dz
(−∞) +

∫ yz

−∞

∂

∂z
fX,Y (x, y) dx

)
dy

=

∫ ∞
0

y · fX,Y (yz, y) dy.

I2 : By similar logic, this term becomes

I2 =

∫ 0

−∞
(−y)fX,Y (yz, y) dy.

In total,

fZ(z) =

∫ ∞
0

y · fX,Y (yz, y) dy +

∫ 0

−∞
(−y)fX,Y (yz, y) dy

=

∫ ∞
−∞
|y| · fX,Y (yz, y) dy

Example 14.3.5 Suppose that X and Y are independent and Gaussian with equal mean 0 and
equal variance σ2 = 1. Then

fZ(z) =

∫ ∞
−∞
|y|fX(yz)fY (y) dy

=
1

2π

∫ ∞
−∞
|y| exp

(
−(yz)2

2

)
exp

(
−(y)2

2

)
dy

=
1

2π
2

∫ ∞
0

y exp

(
−y

2(z2 + 1)

2

)
dy

=
1

π

∫ ∞
0

1

1 + z2
e−u du Let u =

(1 + z2)y2

2
=⇒ 1

1 + z2
du = y dy

=
1

π(1 + z2)
for z ∈ R

This is a Cauchy density that has fat tails in comparison to the Gaussian because it only decreases
quadratically according to its density as |z| → +∞:
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y

fY (y)

Figure 14.5: Visual comparison of the standard normal density and a Cauchy density.

It turns out that one can relax all the other conditions apart from X and Y being jointly
Gaussian for their ratio Z = X/Y to have a Cauchy distribution.

14.3.7 Z = max(X,Y ), W = min(X,Y )

Such random variables naturally occur in the study of order statistics (and reliability analysis).
In general, if you have random variables X1, . . . , Xn representing the outcomes of n trials of some
experiment, one can consider the “best-case analysis” or “worst-case analysis” by ordering each set
of observations:

• Teach a class 10 times

• Each class has 30 students

• Take the best and worst score each time

• This will tell you something about the student performance over various realisations (over
time)

The simplest case is the max or min of two random variables. These are non-linear functions.
We pose the same question as before — what are the densities of Z and W , fZ(z) and fW (w)
respectively? Despite being non-linear, there’s a natural partition that Z and W admit:

Z = max(X,Y ) =

{
X, if X ⩾ Y

Y, if X < Y
W = min(X,Y ) =

{
Y, if X ⩾ Y

X, if X < Y

These are indeed a partition of the outcome space.

Let A denote the set {ω ∈ Ω: X(ω) ⩾ Y (ω)}. Then

• Ac = {ω ∈ Ω: X(ω) < Y (ω)}

• A ∪Ac = Ω

• A ∩Ac = ∅.

We’ll make use of this partition several times in this section for examples including max(X,Y ),
min(X,Y ) and combinations thereof so when we refer to A ⊔Ac, that’s what it is.
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14.3.8 Z = max(X,Y )

Explicitly, the CDF of Z = max(X,Y ) can be written as

FZ(z) = P({Z ⩽ z})
..= P({ω ∈ Ω: Z(ω) ⩽ z})
= P({ω ∈ Ω: max(X(ω), Y (ω)) ⩽ z})
=.. P(B)

= P(B ∩ Ω)

= P(B ∩ (A ⊔Ac))

= P(B ∩A) + P(B ∩Ac)

where
B ∩A = {ω ∈ Ω: max(X(ω), Y (ω)) ⩽ z and X(ω) ⩾ Y (ω)}

= {ω ∈ Ω: X(ω) ⩽ z and X(ω) ⩾ Y (ω)}

B ∩Ac = {ω ∈ Ω: max(X(ω), Y (ω)) ⩽ z and X(ω) < Y (ω)}
= {ω ∈ Ω: Y (ω) ⩽ z and X(ω) < Y (ω)}

We can visually inspect the regions in the codomain (R2) of our real random vector X = (X,Y )
corresponding to the events B ∩A and B ∩Ac:

(z, z)

x

y

(z, z)

x

y

Superimposing these diagrams, we can see that the shaded regions are disjoint and their union
is

{(x, y) ∈ R2 : x ⩽ z, y ⩽ z} = {(x, y) ∈ R2 : (x, y) ⩽ (z, z)}.

(z, z)

x

y

Therefore,
FZ(z) = P(B ∩A) + P(B ∩Ac)

= P({ω ∈ Ω: X(ω) ⩽ z, Y (ω) ⩽ z})
= FX,Y (z, z)
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As a sanity check, if Z = max(X,Y ) ⩽ z, then certainly X ⩽ z and Y ⩽ z. More compactly,
the earlier calculation may be written as:

FZ(z) = P({Z ⩽ z}) = P({Z ⩽ z} ∩ ({X ⩾ Y } ⊔ {X < Y }))
= P({Z ⩽ z, X ⩾ Y }) + P({Z ⩽ z, X < Y })
= P({X ⩽ z, X ⩾ Y }) + P({Y ⩽ z, X < Y })

This method generalises to max(X1, . . . , Xn).

14.3.9 W = min(X,Y )

Explicitly, the CDF of W = min(X,Y ) can be written as

FW (w) = P({W ⩽ w})
..= P({ω ∈ Ω: W (ω) ⩽ w})
= P({ω ∈ Ω: min(X(ω), Y (ω)) ⩽ w})
=.. P(B)

= P(B ∩ Ω)

= P(B ∩ (A ⊔Ac))

= P(B ∩A) + P(B ∩Ac)

where
B ∩A = {ω ∈ Ω: min(X(ω), Y (ω)) ⩽ w and X(ω) ⩾ Y (ω)}

= {ω ∈ Ω: Y (ω) ⩽ w and X(ω) ⩾ Y (ω)}

B ∩Ac = {ω ∈ Ω: min(X(ω), Y (ω)) ⩽ w and X(ω) < Y (ω)}
= {ω ∈ Ω: X(ω) ⩽ w and X(ω) < Y (ω)}

(w,w)

x

y

(w,w)

x

y

Figure 14.6: The intersections of the shaded regions represent the regions in R2 corresponding to
the subsets B ∩Ac (left) and B ∩A (right) of Ω.

Re-combining these two regions gives:
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(w,w)

x

y

Figure 14.7: Superimposition.

Therefore,
FW (w) = P({X ⩽ w}) + P({Y ⩽ w})− P({X ⩽ w, Y ⩽ w})

= FX(w) + FY (w)− FX,Y (w,w)

Example 14.3.6 If X and Y are independent, the density of W can be found by differentiating:

fW (w) =
d

dw
FW (w)

=
d

dw
(FX(w) + FY (w)− FX(w)FY (w))

= fX(w) + fY (w)− (fX(w)FX(w) + FX(w)fY (w))

= fX(w) (1− FY (w)) + fY (w) (1− FX(w))

14.3.10 Z = max(X,Y )/min(X,Y )

Assume that X and Y are non-negative random variables.

FZ(z) = P({Z ⩽ z}) = P
({

max(X,Y )

min(X,Y )
⩽ z

})
=.. P(B)

= P(B ∩A) + P(B ∩Ac)

= P
({

X
Y ⩽ z, X ⩾ Y

})
+ P

({
Y
X ⩽ z, X < Y

})
= P({X ⩽ Y z, X ⩾ Y }) + P({Y ⩽ Xz, X < Y })

Note that max(X,Y )/min(X,Y ) is always greater than or equal to 1 i.e. Z ⩾ 1. The geometric
consequences are that:
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x

y
y = zx

y = zx has a steeper
gradient than y = x

(dashed) since Z ⩾

1.

x

y

y = 1
zx

y = 1
z
x has a less

steep gradient than
y = x because 1/Z ⩽

1.

Both regions are disjoint so we may integrate the joint density over their union to calculate
P(B ∩A) + P(B ∩Ac):

x

y

y = 1
zx

y = zx

Integrating over a slice of constant y first and then with respect to y gives:

fZ(z) =
d

dz
FZ(z) =

d

dz

∫ ∞
0

∫ x= yz

x= y/z
fX,Y (x, y) dx dy

=

∫ ∞
0

(
∂

∂z

∫ x= yz

x= y/z
fX,Y (x, y) dx

)
dy

=

∫ ∞
0

(
fX,Y (yz, y)

d

dz
(yz)− fX,Y (y/z, y)

d

dz
(y/z)

)
dy

=

∫ ∞
0

(
y · fX,Y (yz, y) +

y

z2
· fX,Y (y/z, y)

)
dy

14.4 Method of Transformations

An offshoot of the method of distribution functions. Provided that g is either strictly increasing or
strictly decreasing, we can find a simple method of writing down the density function of Y = g(X).

Lemma 14.4.1 If g : A → B is strictly monotone, then g−1 exists. Also g is strictly increasing
(resp. strictly decreasing) if and only if g−1 is strictly increasing (resp. decreasing).

Now we compute the CDF of Y = g(X) in terms of the CDF of X.
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FY (y) = P({Y ⩽ y})
= P({g(X) ⩽ y})
= P({ω ∈ Ω: g(X(ω)) ⩽ y})

This is the branching point where g being strictly increasing or strictly decreasing alters the final
expression.

• If g is strictly increasing, g(X(ω)) ⩽ y ⇐⇒ g−1(g(X(ω))) ⩽ g−1(y) where g−1(g(X(ω))) =
X(ω). Therefore, the following sets are equal:

{ω ∈ Ω: g(X(ω)) ⩽ y} = {ω ∈ Ω: X(ω) ⩽ g−1(y)}

Therefore, the density of Y is given by

fY (y) =
d

dy
FY (y)

=
d

dy
P
(
{ω ∈ Ω: X(ω) ⩽ g−1(y)}

)
=

d

dy
FX(g−1(y))

= fX(g−1(y)) · d
dy

(g−1(y))

• If g is strictly decreasing, g(X(ω)) ⩽ y ⇐⇒ g−1(g(X(ω))) ⩾ g−1(y) where g−1(g(X(ω))) =
X(ω). Therefore, the following sets are equal:

{ω ∈ Ω: g(X(ω)) ⩽ y} = {ω ∈ Ω: X(ω) ⩾ g−1(y)}

Therefore, the density of Y is given by

fY (y) =
d

dy
FY (y)

=
d

dy
P
(
{ω ∈ Ω: X(ω) ⩾ g−1(y)}

)
=

d

dy

(
1− P

(
{ω ∈ Ω: X(ω) ⩽ g−1(y)}

))
=

d

dy

(
1− FX(g−1(y))

)
= −fX(g−1(y)) · d

dy
(g−1(y))

For g increasing, d
dyg
−1(y) is positive and of course the density fX is non-negative, so the

density fY is non-negative.
For g decreasing, fX is non-negative and d

dyg
−1(y) is negative so − d

dyg
−1(y) is positive.

Therefore, both expressions are valid and we summarise them into a single formula

fY (y) = fX(g−1(y))

∣∣∣∣ ddy g−1(y)
∣∣∣∣ .

Example 14.4.2 (The Probability Transform) Let X be a continuous random variable whose
cumulative distribution function FX is strictly increasing on the support of X. Then FX has an
inverse function.
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Proof. Let U = FX(X). Then for u ∈ [0, 1]:

FU (y) = P({U ⩽ u})
= P({FX(X) ⩽ u})
= P

(
{F−1X (FX(X)) ⩽ F−1X (u)}

)
= P

(
{X ⩽ F−1X (u)}

)
= FX(F−1X (u))

= u

i.e. U is a uniformly distributed random variable on [0, 1] ■

14.5 Method of Moment-Generating Functions

This method is based on a uniqueness theorem. Two equivalent versions are as follows:

Theorem 14.5.1 (Theorem 6.1 [6]) Let MX(t) and MY (t) denote the moment-generating func-
tions of random variables X and Y respectively. If both MGFs exist, and for all t in some neigh-
bourhood of 0: MX(t) =MY (t), then X and Y have the same probability distribution.

Theorem 14.5.2 (2.3.11 [1]) Let FX , FY be two CDFs all of whose moments exist. IfX and Y have
bounded support, then FX(u) = FY (u) for all u if and only E(Xr) = E(Y r) for all non-negative
integers r.

If U = h(Y1, . . . , Yn), the goal of this method is to determine the distribution of U by finding
its moment-generating function MU (t) = E

(
etU
)
. Once found, we compare it with the MGFs of

well-known distributions. If MU (t) is identical to one of these, the above uniqueness theorem can
be used to conclude U ’s probability distribution.

The method of moment-generating functions is very useful for finding the distribution of a sum
of independent random variables.

Theorem 14.5.3 Let Y1, . . . , Yn be mutually independent random variables with respective mo-
ment generating functions MY1(t), . . . ,MYn(t). Define U =

∑n
i=1 Yi Then

MU (t) =
n∏

i=1

MYi(t).

Proof.

MU (t) ..= E(exp(tU)) = E

(
exp

(
t

n∑
i=1

Yi

))
= E

(
n∏

i=1

exp(tYi)

)

=

n∏
i=1

E(exp(tYi)) by mutual independence

=..
n∏

i=1

MYi(t)

■

The method of moment-generating functions can be used to establish some useful results for
the distribution of a function of normally distributed random variables. These will be used later
in 15.1.1.

Example 14.5.4 (Example 6.10 [6]) Suppose that Y is normally distributed with mean µ and
variance σ2. Show that Z = (Y − µ)/σ has a standard normal distribution (mean 0 and variance
1).
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Solution.
MZ(t) = E

(
etZ
)
= E

(
e(t/σ)(Y−µ)

)
=MY−µ

(
t
σ

)
Now note that

MY−µ(t) = E
(
et(Y−µ)

)
=

∫ ∞
−∞

et(y−µ)fY (y) dy

=
1√
2πσ2

∫ ∞
−∞

et(y−µ) exp

(
−(y − µ)2

2σ2

)
dy

u=y−µ
=

1√
2πσ2

∫ ∞
−∞

etu exp

(
−u2

2σ2

)
du

=
1√
2πσ2

∫ ∞
−∞

exp

(
−1
2σ2

(
(u− (tσ2))2 − (tσ2)2

))
du

= exp
(
σ2t2

2

) 1√
2πσ2

∫ ∞
−∞

exp
( −1
2σ2

(
(u− (tσ2))2

))
du

= exp
(
σ2

2 t
2
)
.

This term is the integral of the probability density function of a normally distributed random
variable with mean tσ2 and variance σ2 over its support. Therefore, it is equal to 1. Finally, the
moment generating function of Z is given by

MZ(t) =MY−µ(
t
σ ) = exp

(
σ2

2

(
t
σ

)2)
= exp

(
1
2 t

2
)
.

Comparing this to the MGF of a standard normal random variable and appealing to the uniqueness
theorem concludes the proof. ■

Example 14.5.5 (Example 6.11 [6]) Let Z ∼ N (0, 1). Use the method of moment-generating
functions to find the probability distribution of Z2.

Solution.

MZ2(t) = E
(
etZ

2
)
=

∫ ∞
−∞

etz
2
fZ(z) dz

=
1√
2π

∫ ∞
−∞

exp
(
tz2 − z2

2

)
dz

=
1√
2π

∫ ∞
−∞

exp
(
−z2

(
1
2 − t

))
dz

=
1√
2π

1√
1
2 − t

∫ ∞
−∞

e−u
2
du︸ ︷︷ ︸

=
√
π

by the substitution u=z
√

(1/2)−t,
assuming (1/2)−t⩾0

=
1√
2π

√
2√

1− 2t

√
π

=
1√

1− 2t

Once again comparing with known MGFs, MZ2(t) is identical to the MGF of a random variable
with a χ2

ν=1 distribution
(1− 2t)−ν/2

∣∣∣
ν=1.

Equivalently, this is the MGF of a random variable with Gamma(α = 1
2 , β = 2) distribution

(1− βt)−α
∣∣∣
α=

1
2 , β=2.
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Therefore, the density of Z2 is equal to

fZ(z) =
z−1/2e−z/2

Γ(12)2
1/2

1[0,∞)(z).

■

14.6 Multivariable/variate Transformations Using Jacobians

Deferring this until later when I encounter a use-case. I did indeed find a use-case later on in 15.1.1.

14.7 Order Statistics

Many functions of random variables of interest depend on the relative magnitudes of the observed
values e.g. we may be interested in the fastest time in a race, the highest test score etc. Thus,
we often order observed random variables according to their magnitudes. The resulting ordered
variables are called order statistics.

Formally, let Y1, . . . , Yn denote independent random variables. Suppose further that they are
all absolutely continuous with cumulative distribution function F (y) and density f(y). We denote
the ordered random variables by Y(1), . . . , Y(n) where Y(1) ⩽ Y(2) ⩽ . . . ⩽ Y(n). Using this notation,

Y(1) = min(Y1, . . . , Yn) Y(n) = max(Y1, . . . , Yn)

are the minimum and maximum of the random variables respectively. The density functions of
Y(1) and Y(n) can be found using the method of distributions — this was done earlier in 14.3.8.
Another method to find the densities is as follows:

Since Y(n) is the maximum of the Yi, the event {Y(n) ⩽ y} occurs iff the events {Yi ⩽ y} occur
for every i = 1, . . . , n. That is:

FY(n)
= P

(
{Y(n) ⩽ y}

)
= P({Y1 ⩽ y, . . . , Yn ⩽ y})
= P({Y1 ⩽ y}) · . . . · P({Yn ⩽ y}) by independence

= (F (y))n all Yi are identically distributed

Let g(n)(y) denote the density of Y(n).

∴ g(n)(y) =
d

dy
P
(
{Y(n) ⩽ y}

)
= n(F (y))n−1f(y).

The density of Y(1) can be found similarly:
The event that {Y(1) ⩾ y} occurs iff {Yi ⩾ y} occurs for i = 1, . . . , n. Therefore,

FY(1)
= P

(
{Y(1) ⩽ y}

)
= 1− P

(
{Y(1) ⩾ y}

)
= 1− P({Y1 ⩾ y, . . . , Yn ⩾ y})
= 1− P({Y1 ⩾ y}) · . . . · P({Yn ⩾ y}) by independence

= 1−
n∏

i=1

P({Yi ⩾ y})

= 1−
n∏

i=1

(1− P({Yi ⩾ y}))

= 1−
n∏

i=1

(1− F (y)) all Yi are identically distributed

= 1− (1− F (y))n

∴ g(1)(y) =
d

dy
P
(
{Y(1) ⩽ y}

)
= −n(1− F (y))n−1 d

dy
(1− F (y)) = n(1− F (y))n−1f(y).
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Example 14.7.1 Consider the case n = 2. Find the joint density of Y(1) and Y(2).

Consider the distribution function of Y = (Y(1), Y(2))

FY(y1, y2) = P
(
{Y(1) ⩽ y1, Y(2) ⩽ y2}

)
The event

{Y ⩽ (y1, y2)} = {(Y(1), Y(2)) ⩽ (y1, y2)}
= {Y(1) ⩽ y1} ∩ {Y(2) ⩽ y2}
= {min(Y1, Y2) ⩽ y1} ∩ {max(Y1, Y2) ⩽ y2}

It’s always true that Y(1) ⩽ Y(2) since the minimum of two numbers can never exceed their max-
imum. This means that if y1 > y2, we can write the event {Y(1) ⩽ y1} as the disjoint union
{Y(1) ⩽ y2} ⊔ {y2 < Y(1) ⩽ y1}. Therefore,

{Y ⩽ (y1, y2)} = {Y(1) ⩽ y1} ∩ {Y(2) ⩽ y2}
=
(
{Y(1) ⩽ y2} ⊔ {y2 < Y(1) ⩽ y1}

)
∩ {Y(2) ⩽ y2}

=
(
{Y(1) ⩽ y2} ∩ {Y(2) ⩽ y2}

)
⊔
(
{y2 < Y(1) ⩽ y1} ∩ {Y(2) ⩽ y2}

)
=
(
{Y(1) ⩽ y2} ∩ {Y(2) ⩽ y2}

)
⊔ {Y(2) ⩽ y2 < Y(1) ⩽ y1}︸ ︷︷ ︸

= ∅ because Y(1)⩽Y(2)

= {Y(1) ⩽ y2} ∩ {Y(2) ⩽ y2}

Thus, we can conclude that

{Y ⩽ (y1, y2)} =

{
{Y(1) ⩽ y1} ∩ {Y(2) ⩽ y2}, y1 ⩽ y2

{Y(1) ⩽ y2} ∩ {Y(2) ⩽ y2}, y1 > y2.

By definition Y = (Y(1), Y(2)) =

{
{(Y1, Y2), if Y1 ⩽ Y2

{(Y2, Y1), if Y1 ⩽ Y2.

• Case 1: y1 ⩽ y2

FY(y1, y2) = P({Y ⩽ (y1, y2)}) = P
(
{Y(1) ⩽ y1, Y(2) ⩽ y2)}

)
= P({min(Y1, Y2) ⩽ y1,max(Y1, Y2) ⩽ y2})

= P
(
{Y1 ⩽ y1, Y2 ⩽ y2}︸ ︷︷ ︸

the case Y1⩽Y2

∪{Y2 ⩽ y1, Y1 ⩽ y2}︸ ︷︷ ︸
the case Y1>Y2

)
=.. P(A ∩B)
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y1

y2

y1 y2 Y1

Y2

Figure 14.8: The region of interest A ∩ B is doubly counted in P(A ∪B) so we must calculate
P(A) + P(B)− P(A ∩B).

P(A ∩B)

= P({Y1 ⩽ y1, Y2 ⩽ y2}) + P({Y2 ⩽ y1, Y1 ⩽ y2})− P({Y1 ⩽ y1, Y1 ⩽ y2, Y2 ⩽ y1, Y2 ⩽ y2})
= P({Y1 ⩽ y1, Y2 ⩽ y2}) + P({Y2 ⩽ y1, Y1 ⩽ y2})− P({Y1 ⩽ y1, Y2 ⩽ y1})
= P({Y1 ⩽ y1})P({Y2 ⩽ y2}) + P({Y2 ⩽ y1})P({Y1 ⩽ y2})− P({Y1 ⩽ y1})P({Y2 ⩽ y1})

by independence

= F (y1)F (y2) + F (y1)F (y2)− (F (y1))
2 by identical distribution

= 2F (y1)F (y2)− (F (y1))
2

• Case 2: y1 > y2

This case is simpler. The joint CDF of Y is given by

FY(y) = P
(
{Y(1) ⩽ y1, Y(2) ⩽ y2)}

)
= P({min(Y1, Y2) ⩽ y1,max(Y1, Y2) ⩽ y2})
= P({Y1 ⩽ y2, Y2 ⩽ y2} ∪ {Y2 ⩽ y2, Y1 ⩽ y2})
= P({Y1 ⩽ y2, Y2 ⩽ y2})
= P({Y1 ⩽ y2})P({Y2 ⩽ y2}) by independence

= F (y2)F (y2) by identical distribution

= (F (y2))
2

In summary:

FY(y1, y2) = F(Y(1),Y(2))(y1, y2) =

{
2F (y1)F (y2)− (F (y2))

2, if y1 ⩽ y2

(F (y2))
2, if y1 > y2

and their joint density is denoted by g(1)(2) and is obtained by partial differentiation

g(1)(2)(y1, y2) =
∂2

∂y1∂y2
F(Y(1),Y(2))(y1, y2) =

{
2f(y1)f(y2), if y1 ⩽ y2

0, if y1 > y2.
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In general, the joint density of Y(1), . . . , Y(n) is found to be

g(1)...(n)(y1, . . . , yn) =

{
n!
∏n

i=1 f(yi), if y1 ⩽ y2 ⩽ . . . ⩽ yn

0, otherwise.
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CHAPTER 15

Sampling Distributions

Now that we have a few methods for determining the distribution of a function T of a collection
of random variables Y1, . . . , Yn, we can turn our attention back to the sampling distribution of an
estimator. Recall that an estimator is a composition T ◦ X where T is a statistic and, for the
purposes of idealising the sampling process, X = (X1, . . . , Xn) is a random sample.1

Properties of the Sample Mean

Lemma 15.0.1 Let x1, . . . , xn be real numbers and let x = (x1 + . . .+ xn)/n.

(a) min
a

n∑
i=1

(xi − a)2 =
n∑

i=1

(xi − x)2

(b) (n− 1)s2 =

n∑
i=1

(xi − x)2 =

(
n∑

i=1

x2i

)
− n(x)2

Proof.

(a) Let f(a) ..=
∑n

i=1(xi− a)2. Differentiating with respect to a shows that the minimum of f is
attained at a = x.

(b)

(n− 1)s2 =

n∑
i=1

(xi − x)2 =

(
n∑

i=1

x2i

)
− 2x

(
n∑

i=1

xi︸ ︷︷ ︸
nx

)
+ n(x)2 =

(
n∑

i=1

x2i

)
− n(x)2

■

Useful Results For Sampling Distributions

Lemma 15.0.2 Let X1, . . . , Xn be a random sample from a population and let g(x) be a function
such that E(g(X1)) and Var(g(X1)) exist. Then

(a) E

(
n∑

i=1

g(Xi)

)
= nE(g(X1))

(b) Var

(
n∑

i=1

g(Xi)

)
= nVar(g(X1))

Proof.

(i) The first expression follows from the linearity of expectation.

1Recall that a random sample is a collection of i.i.d. random variables defined on the same probability space.
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(ii)

Var

(
n∑

i=1

g(Xi)

)

= E

( n∑
i=1

g(Xi)− E

(
n∑

i=1

g(Xi)

))2


= E

( n∑
i=1

g(Xi)−
n∑

i=1

E(g(Xi))

)2


= E

( n∑
i=1

(g(Xi)− E(g(Xi)))

)2


7.1
= E

( n∑
i=1

(g(Xi)− E(g(Xi)))
2

)
+ 2

n∑
i=1
i>j

(g(Xi)− E(g(Xi))) (g(Xj)− E(g(Xj)))


=

n∑
i=1

E
(
(g(Xi)− E(g(Xi)))

2
)
+ 2

n∑
i=1
i>j

Cov(g(Xi), g(Xj))

=

n∑
i=1

Var(g(Xi)) by Corollary 7.2.2

= nVar(g(X1))

■

Theorem 15.0.3 (Theorem 5.2.6 [1]) Let X1, . . . , Xn be a random sample from a population with
mean µ and variance σ2 <∞. Then

(a) E
(
X
)
= µ

(b) Var
(
X
)
= σ2/n

(c) E
(
S2
)
= σ2

Proof.

(a) Trivial by linearity: E
(
X
)
=

1

n

∑n
i=1 E(Xi) = µ

(b) Note that

Var
(
X
)
= Var

(
1

n

n∑
i=1

Xi

)
= Var

(
n∑

i=1

Xi

n

)
which is of the form Var(

∑n
i=1 g(Xi)) where g(x) = x/n. By Lemma 15.0.2 (b), we conclude

that

Var
(
X
)
= nVar(g(X1)) = nVar

(
X1

n

)
=

n

n2
Var(X1) =

σ2

n
.

(c) By Lemma 15.0.1 (b)

E
(
S2
)

..= E

(
1

n− 1

n∑
i=1

(Xi −X)2

)

=
1

n− 1
E

((
n∑

i=1

(Xi)
2

)
− n(X)2

)

=
1

n− 1
E

(
n∑

i=1

(Xi)
2

)
− n

n− 1
E
(
(X)2

)
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• For each i, E(Xi) <∞ and Var(Xi) <∞ by assumption.

• Parts (a) and (b) tell us that E
(
X
)

and Var
(
X
)

are finite.

In both cases, the general expression Var(Y ) = E
(
Y 2
)
− (E(Y ))2 holds and tells us that if we

replace Y with any of the Xi or X, then E
(
Y 2
)
<∞.

• For the first term, the hypotheses of Lemma 15.0.2 (a) are satisfied with g(x) = x2.

• For the second term, we can simply substitute in E(X2
) = Var

(
X
)
+ (E

(
X
)
)2:

Finally, we conclude that

E
(
S2
)
=

1

n− 1
E

(
n∑

i=1

g(Xi)

)
− n

n− 1
E
(
(X)2

)
=

1

n− 1
nE(g(X1))−

n

n− 1

(
Var
(
X
)
+ (E

(
X
)
)2
)

by Lemma 15.0.2 (a)

=
n

n− 1

(
Var(X1) + (E(X1))

2
)
− n

n− 1

(
σ2

n + µ2
)

=
n

n− 1

(
σ2 + µ2 − σ2

n − µ
2
)
= σ2

■

Definition 15.0.4 An unbiased estimator is an estimator whose expectation equals the esti-
mand.

Example 15.0.5 Relationships (a) E
(
X
)
= µ, and (c) E

(
S2
)
= σ2 demonstrate that X and S2

are unbiased estimators of µ and σ2 respectively.

SAMPLING DISTRIBUTION OF X

Lemma 15.0.6 (Exercise 5.5 [1]) Let X1, . . . , Xn be i.i.d. with density function fX(x), and let X
denote the sample mean. Show that

fX̄(x) = nfX1+ ...+Xn(nx)

is the density function of X.

Proof.
FX̄(x) = P

(
X ⩽ x

)
= P

(
1
n(X1 + . . .+Xn) ⩽ x

)
= P(X1 + . . .+Xn ⩽ nx)

= FX1+...+Xn(nx)

Upon differentiating with respect to x,

fX̄(x) =
d

dx
FX̄(x) = nfX1+...+Xn(nx).

■

Lemma 15.0.7 (Theorem 5.2.7 [1]) Let X1, . . . , Xn be a random sample from a population with
MGF MX(t). Then the MGF of the sample mean is

MX(t) =
(
MX( t

n)
)n
.
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Proof.
MX̄(t) ..= E

(
exp(tX)

)
= E

(
exp

(
t
n(X1 + . . .+Xn)

))
..=MX1+...+Xn

(
t
n

)
= E

(
n∏

i=1

exp
(
t
nXi

))

=
n∏

i=1

E
(
exp

(
t
nXi

))
by independence

=
n∏

i=1

E
(
exp

(
t
nX1

))
by identical distribution

=..
n∏

i=1

MX1

(
t
n

)
=
(
MX1

(
t
n

))n
■

The above two results transform any statement about the density ofX1+. . .+Xn to a statement
about the density of X.

If the MGF lemma isn’t applicable (either because the MGF of X is unrecognisable or because
the population MGF doesn’t exist) then the method of transformations may prove useful for finding
the density of X1 + . . .+Xn.

15.1 Sampling From A Normally Distributed Population

Many real-world phenomena have relative frequency distributions that can be modelled adequately
by a normal distribution. The sample mean of a normal random sample is normal:

Theorem 15.1.1 (Theorem 7.1 [7]) Let X1, . . . , Xn be a random sample from a normal population
i.e. a population whose associated distribution is N (µ, σ2). Then X ∼ N

(
µ, σ

2

n

)
.

Proof. Recall that the MGF of Xi ∼ N (µ, σ2) is given by

MXi(t) = exp
(
tµ+ t2

2 σ
2
)
.

It follows that

MX(t)
15.0.7
=

(
MX1

(
t
n

))n
= exp

(
n∑

i=1

(
t
nµ+ (t/n)2

2 σ2
))

= exp
(
tµ+ t2

2

(
σ2

n

))
i.e. X ∼ N

(
µ, σ

2

n

)
. ■

Example 15.1.2 A bottling machine can be regulated so that it discharges an average of µ ounces
per bottle. It’s been observed that the amount of fill dispensed by the machine is normally dis-
tributed with σ = 1 ounce. A sample of n = 9 bottles is randomly selected from the output of
the machine on a given day (all bottled with the same machine setting), and the ounces of fill are
measured for each. Find the probability that the sample mean will be within 0.3 ounces of the true
mean µ for the chosen machine setting.

Solution: ‘All bottled with the same machine setting’ is an assumption of identical distribution.
Each trial of filling a bottle is independent. Therefore, Xi ∼ N (µ, σ2) for i = 1, . . . , 9 constitute a
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random sample of size n = 9. From Theorem 15.1.1, X ∼ N (µ, σ2/9). Our task is to find

P
(
|X − µ| ⩽ 0.3

)
= P

(
−0.3 ⩽ X − µ ⩽ 0.3

)
= P

(
−0.3
. . .

⩽
X − µ
. . .

⩽
0.3

. . .

)
This is written in terms of the standard normal random variable so we can read off
the probabilities from a statistical table.

. . . = P
(
−0.3
σ/
√
n
⩽
X − µ
σ/
√
n

⩽
0.3

σ/
√
n

)
= P(−0.9 ⩽ Z ⩽ 0.9)

= 1− 2P(Z ⩽ −0.9) or equally 1− 2P(Z ⩾ 0.9)

≈ read off table

Example 15.1.3 Continued: How many observations should be included in the sample if we wish
for X to be within 0.3 ounces of µ with probability 0.95?

Solution: By similar logic,

0.95 = P
(
|X − µ| ⩽ 0.3

)
= P

(
|X − µ|
σ/
√
n

⩽
0.3
√
n

σ

)
= P

(
|Z| ⩽ 0.3

√
n
)

= 1− 2P
(
Z > 0.3

√
n
)

Rearranging gives us that P(Z > 0.3
√
n) = 1−0.95

2 = 0.025. Now we look at the standard normal
table for a probability of 0.025 and read off that 0.3

√
n = 1.96 =⇒

√
n = 1.96/0.3 =⇒ n ≈

42.684. Take n = 43.

Apparently, sums of squares of the observations in a random sample from a
normal population are important because they follow a chi-squared distribution
and that’s important for hypothesis testing. Also, the chi-squared distribution is
supposedly related to the sample variance S2 of a normal random sample. For
now, it’s poorly motivated in the texts I’m reading.

Theorem 15.1.4 (Theorem 6.4 [7]) Let X1, . . . , Xn
i.i.d.∼ N (µ, σ2) be a random sample. Define

Zi
..=

Xi − µ
σ

.

Then the Zi are mutually independent and

n∑
i=1

Z2
i ∼ χ2

n.

Proof. The argument is as follows:

• Xi independent 6.5.6
=⇒ Zi independent (as each Zi is a function of only Xi).

• We’ve already demonstrated2 that Xi ∼ N (µ, σ2) =⇒ Zi ∼ N (0, 1) in Example 14.5.4.

2Alternatively, we can notice that the Xi are i.i.d. and belong to the same location-scale family with distributions
in N (µ, σ2) so Z is in standard measure as per Definition 10.10.4.
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• Define V ..=
∑n

i=1 Z
2
i and argue via moment-generating functions:

MV (t) ..= E(exp(tV )) = E

(
n∏

i=1

exp(tZ2
i )

)

=
n∏

i=1

E
(
exp(tZ2

i )
)

by independence of the Zi

=..
n∏

i=1

MZ2
i
(t)

=
(
MZ2

i
(t)
)n

by identical distribution of the Zi

=

(
1√

1− 2t

)n

by example 14.5.5

■

Theorem 15.1.4 (just above) links to (c) in Theorem 15.1.5
below. Namely, the former uses the population mean in the
definition of Zi, but the latter’s part (c) uses the sample mean
(the consequence of which is a reduction by 1 of the d.f. in the
resulting distribution).

Theorem 15.1.4 Theorem 15.1.5
n∑

i=1

Z2
i =

n∑
i=1

(
Xi−µ

σ

)2 (n− 1)

σ2
S2 = (n− 1)

n∑
i=1

(
Xi−X

σ

)2
∼ χ2

n ∼ χ2
n−1

Theorem 15.1.5 (Theorem 5.3.1 [1]) Let X1, . . . , Xn be a random sample from a normal popu-
lation (whose associated distribution follows a normal density N (µ, σ2).) Then:

(a) Theorem 15.1.1

(b) X and S2 are independent random variables

(c) (n−1)S2

σ2 ∼ χ2
n−1

Proof. Let’s prove (b):
We can assume, without loss of generality, that µ = 0 and σ = 1 and discuss sums of squares

of independent, standard normal variables. This is because the section on location-scale families
says there’s a correspondence between any location-scale distributed random variable X and the
“standard” location-scale distributed random variable Z. This correspondence is defined by

X = σZ + µ ⇐⇒ X − µ
σ

= Z.

We’ll use this to demonstrate that X and S2 are independent random vectors. First, note that:

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

=
1

n− 1

(
(X1 −X)2 +

n∑
i=2

(Xi −X)2

)

=
1

n− 1

( n∑
i=2

(Xi −X)

)2

+

n∑
i=2

(Xi −X)2


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That last line comes from noticing that
n∑

i=1

(Xi −X) = 0 =⇒ (X1 −X) = −
n∑

i=2

(Xi −X)

and then squaring this relation.
This means that we’ve written S2 as a function of only (X2 −X, . . . ,Xn −X). The next step

is to demonstrate independence from X. Now we can refer back to Theorem 13.2.3 and write
the joint density of the random sample X1, . . . , Xn:

f(x1, . . . , xn) =
1√

2π(1)2
exp

(
−(x1 − 0)2

2(1)2

)
· . . . · 1√

2π(1)2
exp

(
−(xn − 0)2

2(1)2

)
=

1

(2π)n/2
exp

(
−1

2

n∑
i=1

x2i

)
Now if we perform the linear transformation

x1 7−→ x =.. y1

x2 7−→ x2 − x =.. y2
...
xn 7−→ xn − x =.. yn,

then the density f transforms according to the following section:

15.1.1 MULTIVARIABLE-MULTIVARIATE TRANSFORMATIONS

Consider an absolutely continuous random vector X : Ω → Rn defined on a probability space
(Ω,F ,P). We can define a new random vector Y = g ◦ X on the same probability space by
transforming X with a suitable measurable3 function g. Let g : C → D also be injective, where C
is an open set s.t. supp(X) ⊆ C.

For the purpose of what follows, for each x∗ ∈ supp(X), suppose that the Jacobian matrix
Jg(x

∗) of g at x∗ is invertible (i.e. det Jg(x∗) ̸= 0) and continuous at and near x∗. As a consequence
of these conditions, g is locally invertible4 near x∗ and its local inverse has Jacobian Jg−1(g(x∗)) =

(Jf (x
∗))−1. This will come in handy shortly.

We can speak of the probability distribution of Y:

(Ω,F) (Rn,BRn) (D
open
⊆ Rn,BD)

[0, 1]

P

X g

PX
PY =.. (g◦X)#P= g#PX

It is defined for all B ∈ BD by

PY(B) = Pg◦X(B) = (g#PX)(B) ..= PX

(
g−1(B)

)
=

∫
g−1(B)

fX(x) dλRn(x) since PX ≪ λRn

At this point, I want a way to transform this integral into an integral over the corresponding
transformed region which is a subset of g(supp(X)) ⊆ supp(Y). The reason for the inclusion
instead of defining g(supp(X)) to be the support of Y is that we can’t necessarily guarantee that
the former is a closed set — given some standard regularity assumptions, the support is always
closed.

3Since g is measurable, so too is the composition Y = g ◦X of measurable functions.
4This is the higher-dimensional analogue of strict monotonicity in the single-variable case.
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Theorem 15.1.6 (Jacobian Change of Variables) Let B be an open subset of Rn, h : B → Rn be
an injective, C1 function whose Jacobian is non-zero for every y ∈ B. Then for any real-valued,
compactly supported, continuous function f with support contained in h(B):∫

h(B)
f(x) dx =

∫
B
f(h(y))|det(Dh)(y)|dy

where the transformation is (x1, . . . , xn) = h(y1, . . . , yn).

In the context of our integral, h = g−1 : B → g−1(B), f = fX and we have that:∫
g−1(B)

fX(x) dλRn(x) =

∫
h(B)

fX(x) dλRn(x)

=

∫
B
fX(h(y))| det Jh(y)|dy

=

∫
B
fX(g−1(y))| det Jg−1(y)| dy

=

∫
B
fX(g−1(y))

1

|det Jg(y)|︸ ︷︷ ︸
fY(y)

dy

Resuming Proof of (b): The transformation g(x1, . . . , xn) = (x, x2−x, . . . , xn−x) has Jacobian

Jg(x1, . . . , xn) =


∂g1
∂x1

· · · ∂g1
∂xn

...
. . .

...
∂gn
∂x1

· · · ∂gn
∂xn


where gi(x1, . . . , xn) is the ith component of g(x). If i > 1:

∂gi
∂xj

=
∂

∂xj
(xi − x) =

∂

∂xj

(
xi −

n∑
k=1

xk

)
= δij −

1

n

n∑
k=1

δkj = δij −
1

n
=

{
1− 1

n , if j = i

0− 1
n , if j ̸= i

Else, i = 1 and:
∂g1
∂xj

=
∂

∂xj
(x) =

1

n
.

Therefore:

Jg(x1, . . . , xn) =


1/n 1/n · · · 1/n
−1/n 1− (1/n) · · · −1/n

...
...

. . .
...

−1/n −1/n · · · 1− (1/n)


(I’ve highlighted in red where i = 1, in green where i > 1 and i = j, and in blue where i > 1 and
i ̸= j.)

If we denote by ai, the ith row of the Jacobian matrix, we can perform the following elementary
row operations ai 7−→ ai + a1 for i > 1 (on Jg(x) while the determinant remains unchanged. The
resulting determinant is given by

det Jg(x) = det


1/n 1/n · · · 1/n
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 =
1

n

where we’ve expanded out the determinant about the (1, 1) entry.
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Now the inverse of g, defined by g−1(y1, . . . , yn) = (x1, . . . , xn) can be found by expressing each
xi in terms of the yi i.e. xi = g−1(y).

We know that

y1 = g1(x) = x =
x1 + . . .+ xn

n
⇐⇒ ny1 = x1 + x2 + . . .+ xn

Now we can substitute in the remaining n− 1 expressions for g, namely that for i > 1: yi = xi− x
i.e. xi = yi + y1,︸ ︷︷ ︸

= g−1(y)

into our expression for y1:

ny1 = x1 +
n∑

i=2

(yi + y1) ⇐⇒ x1 = y1 −

(
n∑

i=2

yi

)
Thus, the inverse transformation is defined by

g−1(y1, . . . , yn) =

(
y1 −

n∑
i=2

yi, y2 + y1, . . . , yn + y1

)
.

Finally, we can conclude that the density transforms according to the following equation:

fY(y) = fX(g−1(y))
1

| det Jg(y)|

= fX

(
y1 −

n∑
i=2

yi, y2 + y1, . . . , yn + y1

)
1

|1/n|

=
1

1/n
· 1

(2π)n/2
exp

−1

2

(y1 − n∑
i=2

yi

)2

+

n∑
i=2

(yi + y1)
2


= . . .

=
n

(2π)n/2
exp

(
−1

2
n(y1)

2

)
exp

−1

2

 n∑
i=2

(y2i ) +

(
n∑

i=2

yi

)2


The above calculation shows that the joint density of Y1 = X and (Y2, . . . , Yn) = (X2 −
X, . . . ,Xn −X) factors according to Theorem 6.5.5 so they are mutually independent.

Then we can let U1 = id(Y1) and U2 = S2(Y2, . . . , Yn) in the statement of Theorem 6.5.6, so
that X and S2 are mutually independent.

Now for part (c). We must show that n−1
σ2 S

2 ∼ χ2
n−1.

Rest of proof goes here.
uneasy

■
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Example 15.1.7 (Example 7.5 [7]) Sometimes it’s useful to specify an interval of values that will
include S2 with a high probability.

From the prior example about the bottling machine, ounces of fill are assumed to be distributed
according to N (µ, σ2 = 1). Suppose that we select a random sample of 10 bottles and measure
the amount of fill in each. If these 10 observations are used to calculate S2, it might be useful to
specify b1 and b2 s.t.

P
(
b1 ⩽ S2 ⩽ b2

)
= 0.9

Solution: There’s a bit of a theme here. Inequality manipulation to read off a table!

P
(
b1 ⩽ S2 ⩽ b2

)
= P

(
(n−1)b1

σ2 ⩽ (n−1)
σ2 S2 ⩽ (n−1)b2

σ2

)
= P

(
(n− 1)b1 ⩽ (n− 1)S2 ⩽ (n− 1)b2

)
since σ2 = 1

Since n = 10, note that 9S2 ∼ χ2
9 and its density looks like the following plot:

7

0.10412

y

fY (y)

Figure 15.1: A plot for the density of 9S2 ∼ Γ(α = 9/2, β = 2).

Now we can read off values from a statistical table for the interval endpoints that satisfy a χ2

distribution with 9 degrees of freedom containing 90% of the area under the curve. Such an interval
is not unique. Wackely et. al choose values a1 and a2 that cut off areas of 0.05 in the lower and
upper tails, respectively. Reading off values from a table gives

3.325 = a1 =
(n− 1)b1

σ2
= 9b1 ⇐⇒ b1 =

3.325

9
= 0.369

and
16.919 = a2 =

(n− 1)b2
σ2

= 9b2 ⇐⇒ b2 =
16.919

9
= 1.880.

Thus, one such interval that contains S2 with probability 0.90 is (0.369, 1.880).

15.2 The t-distribution

If σ2 is known, then we can refer back to Theorem 15.1.1 which tells us that X ∼ N (µ, σ2/n).
Then the quantity

X − µX
σX

=
X − µ

σ√
n

has a standard normal distribution and we can use this to estimate µ.
However, in most practical cases the variance σ2 is unknown and we resort to the obvious —

estimate σ with the sample standard deviation S =
√
S2, leaving us with the quantity

X − µ
(S/
√
n)
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as the object of our investigation to estimate µ. What’s the distribution of this quantity? We can
write it in terms of things we’ve already seen:

X − µ
S√
n

=
X−µ
σ

S/
√
n

σ

=
X−µ
σ√

S2

σ ·
1√
n

=

X−µ
(σ/
√
n)√

S2

σ2

• The numerator has a N (0, 1) distribution.

• The denominator is a scalar multiple of a χ2
n−1 distributed random variable that is indepen-

dent of the numerator by parts (c) and (b) of Theorem 15.1.5, respectively.

This reduces the problem to finding the distribution of Z√
W/ν

where Z ∼ N (0, 1) and W ∼ χ2
ν

are independent random variables.

15.2.1 THE DENSITY OF STUDENT’S t-DISTRIBUTION

Definition 15.2.1 Let Z ∼ N (0, 1) and W ∼ χ2
ν be independent. Then

T =
Z√
W/ν

is said to have a t-distribution with ν degrees of freedom, denoted T ∼ tν .

The density of the tν distribution is not explicitly given in Wackerly et al. — rather being
guided through some exercises. The fundamental property of the Gamma function will be used
often. For ℜ(z) > 0:

Γ(z + 1) = zΓ(z) (Γ)

Exercise 5 (4.89 [6], 4.111 [7]) Suppose that Y ∼ Gamma(α, β), α, β > 0.

(a) If a is any positive or negative value s.t. a+ α > 0, show that

E(Y a) =
βaΓ(a+ α)

Γ(α)
.

(b) Why did the answer to (a) require that a+ α > 0?

(c) Show that, with a = 1, the result in (a) gives E(Y ) = αβ.

(d) Use the result in (a) to give an expression for E
(√

Y
)
. What do you need

to assume about α?

(e) Use the result in (a) to give an expression for E(1/Y ), E
(
1/

√
Y
)
, and

E
(
1/Y 2

)
. What do you need to assume about α in each case?

Proof. Note that α > 0 presupposes all the following manipulations involving
Y ∼ Gamma(α, β).

(a)

E(Y a) =

∫
R
yafY (y) dy

=

∫
R
ya yα−1e−y/β

βαΓ(α)
1[0,+∞)(y) dy

=
βaΓ(a+ α)

Γ(α)

∫
R

y(a+α)−1e−y/β

βa+αΓ(a+ α)
1[0,+∞)(y) dy

=
βaΓ(a+ α)

Γ(α)
.

The last integral evaluates to 1 as it’s the integral of the density of a
Gamma(a+ α, β) distributed random variable over its support.

(b) We require (α > 0)∧(a+α > 0) so that Γ(t) is well-defined for t ∈ {α, α+a}.
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(c)

E
(
Y 1) = β1Γ(α+ 1)

Γ(α)

(Γ)
=

βαΓ(α)

Γ(α)
= αβ

is valid for α > 0.

(d)

E
(√

Y
)
=

β1/2Γ(α+ 1
2
)

Γ(α)

is valid for (α > 0) ∧ (α+ 1
2
> 0) ⇐⇒ (α > 0) ∧ (α > −1/2) ⇐⇒ α > 0.

(e) ◦ E
(
Y −1

)
=

Γ(α− 1)

βΓ(α)

(Γ)
=

1

β(α− 1)
, where (α > 0) ∧ (α > 1).

◦ E
(
Y −1/2

)
=

Γ(α− (1/2))

β1/2Γ(α)
, where (α > 0) ∧ (α > 1/2) i.e. α > 1/2.

◦ E
(
Y −2

)
=

Γ(α− 2)

β2Γ(α)

(Γ)
=

1

β2(α− 1)(α− 2)
, where (α > 0) ∧ (α > 2)

i.e. α > 2.

■

Exercise 6 (4.90 [6], 4.112 [7]) Suppose that Y ∼ χ2
ν . Use the results from 4.89

in your answers to the following. These results will be useful when we study the
t and F distributions.

(a) Give an expression for E(Y a) if ν > −2a.

(b) Why did your answer in (a) require that ν > −2a?

(c) Use the result in (a) to give an expression for E
(√

Y
)
. What do you need

to assume about ν?

(d) Use the result in (a) to give an expression for E(1/Y ), E
(
1/

√
Y
)
, and

E
(
1/Y 2

)
. What do you need to assume about ν in each case?

Proof. Y ∼ χ2
ν is equivalent to Y ∼ Gamma

(
α = ν

2
, β = 2

)
.

(a) Using the last exercise’s part (a), we have that

E(Y a) =
2aΓ(a+ ν

2
)

Γ( ν
2
)

(b) where (α > 0) ∧ (a+ α > 0) ⇐⇒ (ν/2 > 0) ∧ (a+ ν
2
> 0) ⇐⇒ (ν > 0) ∧

(ν > −2a).

(c)

E
(√

Y
)
= E

(
Y 1/2

)
=

21/2 Γ( ν
2
+ 1

2
)

Γ( ν
2
)

is valid for (ν > 0) ∧ (ν > −2(1/2) ⇐⇒ ν > 0.

(d) (i) E
(
Y −1

)
=

Γ( ν
2
− 1)

2Γ( ν
2
)

, where (ν > 0) ∧ (ν > −2(−1)) i.e. ν > 2.

(ii) E
(
Y −1/2

)
=

Γ( ν
2
− 1

2
)

21/2Γ( ν
2
)
, where (ν > 0) ∧ (ν > −2(−1/2)) i.e. ν > 1.

(iii)

E
(
Y −2) = Γ( ν

2
− 2)

22Γ( ν
2
)

(Γ)
=

1

4
(
ν
2
− 1
)(

ν
2
− 2
) =

1

(ν − 2)(ν − 4)

where (ν > 0) ∧ (ν > −2(−2)) i.e. ν > 4.

■

Exercise 7 (7.72 [6], 7.98 [7]) Suppose that T is defined as the ratio Z√
W/ν

where Z ∼ N (0, 1)

and W ∼ χ2
ν , with Z and W independent.

(a) If W is fixed at w, then T is given by Z/c where c =
√
w/ν. Use this idea to find the

conditional density of T for a fixed W = w.



Sampling Distributions 164

(b) Find the joint density of T and W using f(t, w) = f(t | w)f(w).

What follows is the proof one would see in an undergraduate-level textbook —
many suggestive symbols that behave sensibly without rigorous definition. A
rigorous proof can be found later in Example 18.3.17.

Proof. Suppose that Y = (Y1, Y2). Later, it will be demonstrated that the conditional density of
Y1 given Y2 = y2, denoted by fY1|Y2

(y1|y2), is defined as the integrand of

F (y1 | y2) =
∫ y1

−∞

fY (t1, y2)

fY2(y2)
dt1

for any y2 s.t. fY2(y2) > 0. Recall that fY2(y2) is a density, not the probability of the event
{Y2 = y2}.

(a) The independence of Z and W ensures that conditioning T (which is a function of Z and W )
on the event {W = w} doesn’t affect the distribution of Z (in T ) i.e. independence allows us
to write5 the incredibly suggestive abomination that is

(T | {W = w}) =
√
ν

w
Z.

What do those symbols mean? Absolutely nothing... but something? Thus, (T | {W =

w}) = Z/c where c =
√
w/ν and Z ∼ N (0, 1). Now note that by Example 11.0.4,

(T | {W = w}) ∼ N (0, 1/c2) where 1/c2 = ν/w.

(b) Note that W ∼ χ2
ν and (T | {W = w}) ∼ N (0, ν/w). The joint density of T and W is given

by
fT,W (t, w) = fT |W=w(t | w) · fW (w)

=
1√

2π(
√
ν/w)2

exp

(
−(t− 0)2

2(
√
ν/w)2

)
· w

(ν/2)−1e−w/2

2ν/2Γ(ν/2)
1[0,+∞)(w)

=

√
w√
2πν

exp

(
−t2w
2ν

)
· w

(ν/2)−1e−w/2

2ν/2Γ(ν/2)
1[0,+∞)(w)

The marginal distribution of T is found by marginalising the joint density:

fT (t) =

∫
R
fT,W (t, w) dw

=

∫
R
fT |W=w(t | w)fW (w) dw

=

∫
R

√
w√
2πν

exp

(
−t2w
2ν

)
· w

(ν/2)−1e−w/2

2ν/2Γ(ν/2)
1[0,+∞)(w) dw

=
1

√
πν 2(ν+1)/2Γ(ν/2)

∫ ∞
0

w(
ν
2
+ 1

2)−1 exp

(
−w · 1

2

(
t2

ν
+ 1

))
dw

Now compare this to the density of a Gamma(α, β) distribution

yα−1 exp(−y · (1/β))
βαΓ(α)

5My reasoning is shaky right now but I superficially understand conditioning T on {W = w} as the concept of
restricting the probability space to events where W (ω) = w (i.e considering the subset generated by {W = w}, of the
σ-algebra σ(W ). The independence of W and Z tells us by definition that their respectively generated σ-algebras
σ(W ) and σ(Z) are mutually P-independent i.e.

P(A ∩B) = P(A)P(B)

for all A ∈ σ(Z), B ∈ σ(W ). This independence allows us to treat Z as though it were still standard-normally
distributed under the act of conditioning T on {W = w}.
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so that the location and scale parameters are

α =
ν

2
+

1

2
and

1

β
=

1

2

(
t2

ν
+ 1

)
⇐⇒ β = 2

(
t2

ν
+ 1

)−1
.

We now multiply and divide the integrand by βαΓ(α) in order to rewrite it as the integral of
a Gamma(α, β) distributed random variable over its support:

fT (t) =
βαΓ(α)

√
πν 2(ν+1)/2 Γ(ν/2)

=1︷ ︸︸ ︷∫ ∞
0

wα−1 exp (−w/β)
βα Γ(α)

dw

=
Γ(ν2 + 1

2)

√
πν 2(ν+1)/2

(
1
2

(
t2

2 + 1
)) ν

2
+ 1

2
Γ(ν2 )

=
Γ(ν2 + 1

2)

√
πν
(
t2

2 + 1
) ν

2
+ 1

2
Γ(ν2 )

■

15.2.2 PROPERTIES OF THE tν -DISTRIBUTION

Corollary 15.2.2 The t-distribution is symmetric about the origin.

Exercise 8 (*7.14 [6], *7.30 [7]) Let T =
Z√
W/ν

where Z ∼ N (0, 1) and W ∼ χ2
ν are independent.

(a) Give E(Z) and E
(
Z2
)
.

(b) According to the result derived in 6, if Y has a χ2
ν distribution, then

E(Y a) =
2aΓ(a+ ν

2 )

Γ(ν2 )
, if ν > −2a.

Use this result, the result from (a), and the structure of T to show the following:

(i) E(T ) = 0 if ν > 1.
(ii) Var(T ) = ν/(ν − 2) if ν > 2.

Proof.

(a) E(Z) = 0 is clear. Var(Z) = E
(
Z2
)
− (E(Z))2 =⇒ E

(
Z2
)
= 1 + 02 = 1.

(b) (i) The expectation E(T ) can be calculated.

E(T ) = E

(
Z√
W/ν

)
= E(Z · g(W )) where g(W ) =

(√
W/ν

)−1
is a function of only W

= E(Z) · E(g(W )) by independence of Z and W
(a)
= 0 · E(g(W ))

= 0
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(ii) The variance of T is given by

Var(T ) ..= E
(
T 2
)
− (E(T ))2

(a)
= E

(
T 2
)

= E
(

Z2

W/ν

)
= ν E

(
Z2
)
E
(
W−1

)
by independence of Z and W

(a)
= ν E

(
W−1

)
= ν 2a

Γ(a+ ν
2 )

Γ(ν2 )
where a = −1 and ν > 2

=
ν

2

Γ(ν2 − 1)

Γ(ν2 )

(Γ)
=

ν

2

Γ(ν2 − 1)

(ν2 − 1) Γ(ν2 − 1)

=
ν

2

1

(ν2 − 1)

=
ν

ν − 2

■

In summary, if T ∼ tν , then T satisfies the following:

• The density of tν is symmetric.

• For ν > 1, the expected value of T is 0.

• for ν > 2, the variance of T is (ν/2)Γ((ν/2)−1)Γ(ν/2) .

◦ If ν is an even number greater than 2 (i.e. ν ∈ 2N>1), the variance is ν/(ν − 2) > 1.

So we see that the expected value is the same as that of a standard normal distribution but for
ν > 2, it has variance greater than 1 = Var(Z) where Z ∼ N (0, 1). This means that the t-density
has fatter tails than the standard normal density.

y

fY (y)

Figure 15.2: The densities of Z ∼ N (0, 1) (in black) and T ∼ t1 (in red).

15.3 The F -Distribution

Another important derived distribution is Snedcor’s F . This distribution arises when comparing the
variances of two normal populations based on information contained in two independent samples
from each respective population. More precisely, letX and Y be random variables that represent the
act of drawing a single value from the populations Ω1 and Ω2 with respective normal distributions
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X ∼ N (µX , σ
2
X) and Y ∼ N (µY , σ

2
Y ) respectively. Let X and Y be independent and consider a

random sample from each population:

X1, . . . , Xn
i.i.d.∼ N (µX , σ

2
X)

Y1, . . . , Ym
i.i.d.∼ N (µY , σ

2
Y ).

We can estimate σ2X by calculating the sample variance S2
X of the random sample X1, . . . , Xn.

Similarly we can estimate σ2Y with S2
Y using Y1, . . . , Ym. The quantity of interest is σ2X/σ

2
Y . It

would seem reasonable that the ratio of sample variances

S2
X

S2
Y

could be used to make some inference about the relative magnitudes of the population variances.
From Theorem 15.1.5 (c), we know that the scaled sample variance (n−1)S2

σ2 follows a χ2
n−1

distribution. We can capitalise on this, dividing through by the ratio of population variances
σ2X/σ

2
Y to obtain the quantity: (

S2
X

σ2X

)
(
S2
Y

σ2Y

)
Then we can multiply and divide both the numerator and denominator by (n − 1) and (m − 1)
respectively to get

(n−1)S2
X

σ2
X

/
(n− 1)

(m−1)S2
Y

σ2
Y

/
(m− 1)

Thus:

• The numerator is the quotient of a χ2
n−1 distributed random variable by (n− 1).

• The denominator is the quotient of a χ2
m−1 distributed random variable by (m− 1).

• The numerator and denominator are independent.

This reduces the problem to finding the distribution of the following random variable:

Definition 15.3.1 Let W1 and W2 be independent χ2-distributed random variables with ν1 and
ν2 degrees of freedom respectively. Then the random variable

F =

(
W1

ν1

)
(
W2

ν2

)
has an Fn−1,m−1 distribution with (n − 1) numerator degrees of freedom, and (m − 1)
denominator degrees of freedom.

15.3.1 THE DENSITY OF THE F -DISTRIBUTION

Not explicitly given in Wackerly but it is guided through some exercises:

Exercise 9 (*7.73 [6], *7.99 [7]) Let F be defined as before.

(a) If W2 is fixed at w2, then F = W1/c where c = w2ν1/ν2. Find the conditional density of F
given fixed W2 = w2.
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(b) Find the joint density of F and W2.

(c) Integrate over w2 to show that the probability density function of F , say g(x), is given by

g(x) =
Γ(ν1+ν2

2 )
(
ν1
ν2

)ν1/2
Γ(ν1/2)Γ(ν2/2)

x(ν1/2)−1
(
1 +

ν1x

ν2

)−(ν1+ν2)/2

1(0,∞)(x).

Proof.

(a) We know that given {W2 = w2}, F = 1
cW1 where W1 ∼ χ2

ν1 . I’ll use the method of moment-
generating functions to determine the distribution of F given {W2 = w2}. The MGF of
F = 1

cW1 is

MF (t) = E(exp(tF )) = E(exp(tW1/c)) =MW1(t/c) =MW1(tν2/w2ν1)

Since a χ2
ν1 distributed random variable is also a Gamma(ν1/2, 2) distributed random variable,

the rightmost MGF is

MW1(tν2/w2ν1)
11.0.5
=

1

(1− β(tν2/w2ν1))α

∣∣∣∣
α=ν1/2, β=2

=
1

(1− (2ν2/w2ν1) t)
ν1/2

which is the MGF of a Gamma-distributed random variable with shape parameter α = ν1/2
and scale parameter β = 2ν2/w2ν1.

∴ F | {W2 = w2} ∼ Gamma

(
ν1
2
,
2ν2
w2ν1

)
.

(b) The joint density of F and W2 splits according to the familiar formula:

fF,W2(x,w2)

= fF |W2=w2
(x | w2) · fW2(w2)

=
x(ν1/2)−1 exp

(
−x
/

2ν2
w2ν1

)
(

2ν2
w2ν1

)ν1/2Γ(ν12 ) 1(0,∞)(x) ·
w

(ν2/2)−1
2 exp(−w2

2 )

2ν2/2Γ
(
ν2
2

) 1(0,∞)(w2)

=
x(ν1/2)−1

Γ
(
ν1
2

)
Γ
(
ν2
2

) (ν1
ν2

)ν1/2

1(0,∞)(x)︸ ︷︷ ︸
= ξ(x,ν1,ν2)

·
w

ν1+ν2
2 −1

2 exp
(
−w2

2

(
1 + xν1

ν2

))
2(ν1+ν2)/2

1(0,∞)(w2)

(c) Integrate over the joint density to marginalise out W2 and obtain the probability distribution
of F :

g(x) =

∫
R
fF,W2(x,w2) dw2

= ξ(x, ν1, ν2)

∫
R

w
ν1+ν2

2 −1
2 exp

(
−w2

2

(
1 + xν1

ν2

))
2(ν1+ν2)/2

1(0,∞)(w2) dw2

Now consider the substitution u = w2

(
1 + ν1x

ν2

)
=⇒ dw2 =

(
1 + ν1x

ν2

)−1
du. When w2 = 0,
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u = 0. As w2 → +∞, u→ +∞ since x ⩾ 0, ν1, ν2 > 0. Then:

g(x) = ξ(x, ν1, ν2)

∫ ∞
0

(
u
(
1 + ν1x

ν2

)−1)ν1+ν2
2 −1

exp(−u/2)

2(ν1+ν2)/2

(
1 + ν1x

ν2

)−1
du

= ξ(x, ν1, ν2)
(
1 + ν1x

ν2

)−ν1+ν2
2
∫ ∞
0

u
ν1+ν2

2 −1 exp(−u/2)
2(ν1+ν2)/2

du

= ξ(x, ν1, ν2)
(
1 + ν1x

ν2

)−ν1+ν2
2

Γ(ν1+ν2
2 )

∫ ∞
0

u
ν1+ν2

2 −1 exp(−u/2)
2(ν1+ν2)/2 Γ(ν1+ν2

2 )
du︸ ︷︷ ︸

=1

=
Γ
(
ν1+ν2

2

)
Γ
(
ν1
2

)
Γ
(
ν2
2

) (ν1
ν2

)ν1/2

x(ν1/2)−1
(
1 + ν1x

ν2

)−ν1+ν2
2

1(0,∞)(x)

■

15.3.2 PROPERTIES OF THE Fν1,ν2 -DISTRIBUTION

Exercise 10 (*7.16 [6], *7.34 [7]) Suppose thatW1 andW2 are independent χ2-distributed random
variables with ν1 and ν2 degrees of freedom, respectively. Let F = W1/ν1

W2/ν2
. Then F has an Fν1,ν2-

distribution. Show that:

(a) E(F ) = ν2/(ν2 − 2) if ν2 > 2.

(b) Var(F ) =
2(ν2)

2(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
if ν2 > 4.

Proof. From 5 and 6, given Y ∼ χ2
ν we have that

E(Y a) =
2aΓ

(
ν
2 + a

)
Γ
(
ν
2

) , (♡)

where ν > −2a.
(a)

E(F ) 7.1.3
=

ν2
ν1

E(W1)E
(
W−12

) (♡)
=

ν2
ν1

21Γ
(
ν1
2 + 1

)
Γ
(
ν1
2

) ·
2−1Γ

(
ν2
2 − 1

)
Γ
(
ν2
2

) ,

where ((ν1 > −2)∧ (ν1 > 0)) and ((ν2 > 2)∧ (ν2 > 0)) i.e. ν1 > 0 and ν2 > 2. Using (Γ), we
can simplify this expression to

E(F ) =
ν2
ν1

ν1
2 Γ
(
ν1
2

)
Γ
(
ν1
2

) · Γ
(
ν2
2 − 1

)(
ν2
2 − 1

)
Γ
(
ν2
2 − 1

) =
ν2
ν1

ν1
2(

ν2
2 − 1

) =
ν2

ν2 − 2
.

(b) Since Var(F ) = E
(
F 2
)
− (E(F ))2 and E(F ) is known from (a), we focus on the first term:

E
(
F 2
) 7.1.3

=

(
ν2
ν1

)2

E
(
W 2

1

)
E
(
W−22

)
(♡)
=

(
ν2
ν1

)2 22Γ
(
ν1
2 + 2

)
Γ
(
ν1
2

) 2−2Γ
(
ν2
2 − 2

)
Γ
(
ν2
2

) for ν1 > 0 and ν2 > 4

= . . .

=
ν22(ν1 + 2)

ν1(ν2 − 2)(ν2 − 4)

The claim follows from subtraction.

■



Sampling Distributions 170

At this point, I began reading Chapter 6 (Principle of Data Reduction) from [1], but I was
quickly halted by mention of the conditional distribution of a random variable given another random
variable. I was already uncomfortable with how I handled the calculation for the density of the
t-distribution in Exercise 7, so I added a link to a later chapter offering a rigorous treatment.

The following 4 chapters are dedicated to measurability (thereby defining a statistic), con-
ditional expectation, and conditional probability, culminating in some results that allow one to
rigorously speak about conditioning. After this, I’ll return to estimation, and data reduction.
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CHAPTER 16

More Measurability

We’ve previously defined a statistic (with a view towards estimation) as a “suitably” measurable
function T s.t. its composition T ◦X, where X is a random sample, is measurable. This isn’t precise
since we haven’t mentioned the associated σ-algebras and the subsequent nature of the respective
functions’ measurability.

This chapter is dedicated to answering the more nuanced question on what “suitably” means
i.e. how much can we relax the requirements on T and still maintain that its composition T ◦X
with a random element1 X is still measurable.

Let X be a random element (variable/vector) i.e. X ∈ MeasF , E(Ω ;E) where (E, E) is taken to
be a Borel space. For the purposes of what follows, it’s ok to assume that (E, E) is either (R,BR)
or (Rn,BRn) — both are Borel spaces.

16.1 Theorem A.42

A powerful (and often un-named) theorem characterises when a measurable function is a function
of another measurable function (by way of inclusion of their generated σ-algebras):

Theorem 16.1.1 (A.42 [5, p. 587]) Let (S1,A1), (S2,A2), and (S3,A3) be measurable spaces.
Suppose further that A3 contains all singletons from S3. Let f ∈ MeasA1,A2(S1 ;S2) and denote
by A∗ the image σ-field of f i.e.

A∗ = {Im(f) ∩A : A ∈ A2}.

Let g ∈ MeasA1,A3(S1 ;S3). Then,

g ∈ Measσ(f),A3
(S1 ;S3) ⇐⇒ ∃h ∈ MeasA∗,A3(Im(f) ;S3) s.t. g = h ◦ f.

Remarks 16.1.2

• Pictorially:

S1 S2 ⊇ Im(f)

S3

g∈MeasA1,A3
(S1 ;S3)

f∈MeasA1,A2

∃h?

• The condition that g ∈ Measσ(f),A3
(S1 ;S3) means that for every B ∈ A3, g−1(B) ∈ σ(f)

and we know that σ(g) = {g−1(B) : B ∈ A3} so the σ(f)-measurability of g means that
σ(g) ⊆ σ(f).

• The moral of this representation theorem is that σ(f) contains precisely the full/perfect
information needed to determine f so any function that’s measurable with respect to σ(f)
can be written purely in terms of f . In the sense of probability, f reveals at least as much
information about a random outcome ω ∈ Ω as g does (in the case where f, g are random
variables) i.e. knowing f determines g.

1Note that we’re working in the more general scenario where X is simply a random element, and not a random
sample in particular.
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• The assumption that A3 contains all singletons (which in our case will always be satisfied by
(R,BR)) is to rule out some trivialities like the following example:2

Example Let S1 = S2 = S3 = R, and A1 = A2 = BR. Let A3 = {∅,R} the trivial σ-field.
Every function g : S1 → S3 is σ(f)-measurable since

σ(g) = {g−1(A) : A ∈ A3}
= {g−1(A) : A ∈ {∅,R}}
= {∅,R}

and the trivial σ-algebra on S1 is a subset of every σ-algebra on S1, and in particular a subset
of σ(f). However, if we let g = idR, then a choice of f(s) = s2 means that g is not a function
of f .

Proof.

⇐= Suppose that h ∈ MeasA∗,A3(Im(f) ;S3) is such that g = h ◦ f . We wish to show that
g ∈ Measσ(f),A3

(S1 ;S3). Let A ∈ A3 and consider its pre-image under g:

g−1(A) = (h ◦ f)−1(A)
= f−1(h−1(A)︸ ︷︷ ︸

∈A∗

)

= f−1(B ∩ Im(f)) for some B ∈ A2

= f−1(B) ∈ σ(f)

=⇒ Assume that g ∈ Measσ(f),A3
(S1 ;S3). Since A3 contains all singletons, the measurability of

g tells us that
Ct

..= g−1({t}) ∈ σ(f).

By the definition of σ(f), ∃At ∈ A2 s.t. Ct = f−1(At).

∴ Ct
..= g−1({t}) = f−1(At)

Constructing h:

Ultimately, we wish to construct a h ∈ MeasA∗,A3(Im(f) ;S3) s.t. g = h ◦ f . The current
situation is

Ct
..= g−1({t}) At ⊇ Im(f)

{t}

g

f

?

Define h(s) as the unique t ∈ S3 s.t. s ∈ At. (This definition leverages the measurability of
f and g through pre-images so it’s a natural way to define h.) Note that h is well-defined
because the At form a partition of Im(f). More precisely, the At ∩ Im(f) form the partition.
This is because

◦ The At ∩ Im(f) are certainly pairwise disjoint because if we suppose, for t ̸= t′ that:

∃s ∈ (At ∩ Im(f)) ∩ (At′ ∩ Im(f)) = At ∩At′ ∩ Im(f),

2and perhaps for some reasons I don’t understand yet.
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then ∃a ∈ S1 s.t. f(a) = s. Since s ∈ At and s ∈ At′ , we have that

a = f−1(At) = g−1({t}) and a = f−1(At′) = g−1({t′})
=⇒ g(a) = t and g(a) = t′

=⇒ t = t′

which contradicts the assumption that t ̸= t′.
◦ Their union covers Im(f):

Let s ∈ Im(f). Then ∃a ∈ S1 s.t. f(a) = s. Let t ..= g(a) ∈ S3 i.e. a ∈ g−1({t}) =
f−1(At) so f(a) ∈ At i.e. s ∈ At. Thus, we’ve show that for any s ∈ Im(f), s ∈ At i.e.
Im(f) ⊆

⋃
t∈S3

At from which it follows that

Im(f) =
(⋃

At

)
∩ Im(f) =

⋃
At ∩ Im(f).

If t ̸= t′, then At ∩At′ ∩ Im(f) = ∅ so h is well-defined.

Then for any a ∈ S1, let t ..= g(a). Since a ∈ g−1({t}), then s ..= f(a) ∈ At. We’ve defined
h(s) as the unique t′ ∈ S3 s.t. s ∈ At′ . Therefore, t = t′ i.e.

g(a) = t = h(s) = h(f(a))

Therefore, g = h ◦ f .

Measurability of h:

Let A ∈ A3. Then we wish to show that h−1(A) ∈ A∗ i.e. that there exists some B ∈ A2 s.t.
B ∩ Im(f) = h−1(A).

Since g ∈ Measσ(f), then g−1(A) ∈ σ(f) i.e. ∃B ∈ A2 s.t. g−1(A) = f−1(B). We’ll show
that h−1(A) = B ∩ Im(f) for that particular B:

⊆ Let s ∈ h−1(A) i.e. h(s) ∈ A. Let t = h(s). Then s = f(x) for some x ∈ Ct ⊆ g−1(A) =
f−1(B). This implies that s = f(x) ∈ B i.e. s ∈ B ∩ Im(f).

⊇ Let s ∈ B ∩ Im(f). Then s = f(x) for some x ∈ f−1(B) = g−1(A). This implies that
h(s) = h(f(x)) = g(x) ∈ A i.e. s ∈ h−1(A).

Therefore, h−1(A) = B ∩ Im(f) which concludes the proof.

■

To re-iterate:

• Given a random variable X, a function Y is σ(X)-measurable iff it can be written as an
appropriately measurable function of X.

• Theorem A.42 really gets at testing to see how small one can make the codomain of f and its
corresponding image σ-algebra A∗ when discussing the existence of h and its measurability
so that g factors.

• A stronger3 version of Theorem A.42 is typically stated where h ∈ MeasA2,A3(S2 ;S3) in-
stead of the weaker h ∈ MeasA∗,A3(Im(f) ;S3). With this stronger assumption, the theorem
statement is called the Doob-Dynkin Representation Theorem.

◦ The Doob-Dynkin Lemma is a logically equivalent formulation that flips the perspective:
Instead of asking when g factors, we instead begin with f and then ask when composing
with h yields a measurable function.

3This is stronger because if h ∈ MeasA2,A3(S2 ;S3), then h|A∗ ∈ MeasA∗,A3(Im(f) ;S3).
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16.2 Application: Defining a Statistic

In accordance with Theorem A.42:

• (S1,A1) = (Ω,F)

• (S2,A2) = (E, E) is a Borel space

• (S3,A3) = (S,S) is a space for which S contains all singletons

• f = X ∈ MeasF , E(Ω ;E)

Let g ∈ MeasF ,S(Ω ;S). Then the theorem states that

g ∈ Measσ(X),S(Ω ;S) ⇐⇒ ∃T ∈ MeasA∗,S(Im(X) ;S) s.t. g = T ◦X.

The right-hand side of the equivalence presents a (suitably) measurable function of a random
element X which inspires the following:

Definition 16.2.1 A statistic is a function T ∈ MeasA∗,S(Im(X) ;S) where A∗ is the trace
σ-algebra of E on X(Ω), and S contains all singletons.

• Typically, we take the stronger condition that T ∈ MeasE,S(E ;S) i.e. that T is a map from
the entirety of E that is measurable with respect to the entirety of E on E.

Historically, statisticians considered a statistic to merely be a function of observed data x. What
a fantastic time to be alive! Kolmogorov came along and ruined everything formalised statistics
and probability. Now we think of σ-algebras as information and inclusion of σ-algebras generated
by random variables as function composition.
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CHAPTER 17

Conditional Expectation

Conditional expectation is an object (random variable) that captures the idea of the best ap-
proximation of a random variable X given partial information with respect to the full/complete
information that characterises X.

17.1 Prequel to Abstract Conditional Expectation

Let (Ω,F ,P) be a probability space.
• Given B ∈ F with P(B) > 0, recall the naïve conditional probability measure on F given B

defined in Definition 2.9.1. We may also denote P(· |B) by PB.

◦ The idea of conditioning with respect to an event B with P(B) > 0 is tantamount to
defining the new probability space (Ω,F ,PB).

• In similar spirit to E(X), we may use this conditional probability measure given B to define,
if it exists, the “average” value that a random variable X takes given the information that
the event B occurs with P(B) > 0. This is denoted by EPB

(X) and defined by the Lebesgue
integral of X : Ω→ R with respect to the measure P(· |B)

EPB
(X) ..=

∫
Ω
X dPB.

If the integral exists, one calls EPB
(X) the conditional expectation of X given B.

Lemma 17.1.1 L1(Ω,F ,P) = L1(Ω,F ,PB) and1 EPB
(X) =

E(X1B)

P(B)
.

Proof.

1. If X = 1A for some A ∈ F :∫
Ω
X dPB =

∫
Ω
1A dPB = PB(A) =

P(A ∩B)

P(B)
=

E(1A∩B)

P(B)
=

E(1A1B)

P(B)
=

E(X1B)

P(B)
.

2. Let X be a simple, measurable function with standard representation

X =
n∑

j=1

aj1Aj

where {Aj}nj=1 are pairwise disjoint and aj = X−1(Aj). Then∫
Ω
X dPB =

∫
Ω

n∑
j=1

aj1Aj dPB

=

n∑
j=1

aj

∫
Ω
1Aj dPB by linearity

=
n∑

j=1

aj
E
(
1Aj1B

)
P(B)

by Step 1

=
1

P(B)
E
(( n∑

j=1

aj1Aj

)
︸ ︷︷ ︸

=X

1B

)
by linearity

1The numerator of this expression can be interpreted as the mean value of X knowing that the event B occurs.
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4. Then for any X : Ω→ R that is F-measurable, we may decompose X = X+ −X− and
can find sequences of simple functions {X±n }n∈N ↑ X±. Note that |X| = X+ + X−.
Then

|X| = X+ +X− ⩾ X+
n +X−n = |X+

n −X−n | =.. |Xn|

i.e. |X| ∈ L1 is our dominating function and since we have pointwise convergence, the
DCT applies.

∴
∫
Ω
(X+

n −X−n ) dPB︸ ︷︷ ︸
n→∞−→

∫
Ω
X dPB.

Since X+
n and X−n are simple functions, we can use Step 2 to re-write the limand as:∫

Ω
(X+

n −X−n ) dPB

=

∫
Ω
X+

n dPB −
∫
Ω
X−n dPB

=
1

P(B)

(∫
Ω
X+

n 1B dP−
∫
Ω
X−n 1B dP

)
by Step 2

n→∞−→ 1

P(B)

(∫
Ω
X+1B dP−

∫
Ω
X−1B dP

)
by the MCT

=
1

P(B)

∫
Ω
(X+ −X−)1B dP

=
1

P(B)

∫
Ω
X1B dP

=
E(X1B)

P(B)

and by the uniqueness of limits in R, these two terms are equal.

■

• An astute observation is that EPBc (X) may be defined similarly, and so we may form a
two-valued step function on Ω:

E[X | {B,Bc}](ω) ..=

{
EPB

(X) if ω ∈ B
EPBc (X) if ω ∈ Bc.

= EPB
(X)1B + EPBc (X)1Bc

If either B or Bc is P-null, then the corresponding value e.g. EPBc (X) is undetermined.

• A natural follow-up of that observation is to ask the question

“Let’s say we know the outcome of an experiment ω ∈ Ω
lies in any one of a collection of sets P = {Bn}n∈N

partitioning the outcome space Ω. What is the expected
value of an integrable random variable X : Ω→ R at

such an ω?”

The immediate solution is to generalise our two-valued function and construct a map that
gives the “local average” of X given coarse2 information P where an outcome of the corre-
sponding experiment lies in Ω. This comes in the form of a step function that takes on the
numerical value EPBn

(X) on each Bn. Denote this function by E[X | G] where G = σ(P), call

2I’m guessing this’ll be refined later.
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it the conditional expectation of X relative to the partition P, and define it as the
function

ω 7−→ E[X |σ(P)](ω) ..=
∑
n∈N

EPBn
(X)1Bn(ω)

=
∑
n∈N

1

P(Bn)

(∫
Bn

X dP
)
1Bn(ω).

◦ This simple function is clearly σ(P)-measurable so E[X | P] is a random variable.
◦ The same consideration as before holds. Namely, if some of the Bn are P-null then their

respective corresponding values EPBn
(X) are undetermined.

For the eagle-eyed reader, you may notice that I’m using slightly different parentheses. For any
function pertaining to probability/expectation:

• I will use regular parentheses to denote functions that output a number e.g. P(A) and E(X).

• I will use square parentheses to denote random variables e.g. E[X | P] and, as we shall see in
the next section, P[A | G].

The distinction is important for me in that it helps me to keep track of which objects are being
considered.

�

• In the spirit of local averages, one can investigate how E[X | P] averages over some A ∈
σ(P) =.. G, and how this compares to X.

Any A ∈ G is of the form A =
⊔

n∈J Bn where J ⊆ N. Then:∫
A
E[X | P] dP =

∑
n∈J

1

P(Bn)

(∫
Bn

X dP
)
P(Bn ∩A)︸ ︷︷ ︸

=P(Bn)

=
∑
n∈J

∫
Bn

X dP

=

∫
A
X dP by linearity.

This equality can be re-written as

E(1AE[X | P]) = E(1AX) for all A ∈ σ(P) =.. G

so over every event “within the purview” of the partition (i.e. within σ(P)), the conditional
expectation relative to the partition averages out to the same value as X.

Le Gall follows a slightly different path (with a different emphasis) when building up to an abstract
definition of conditional expectation.

• We can define the conditional expectation of X ∈ L1 given a discrete random variable Y :

Consider Y : Ω→ E where E is countable and equipped with the discrete σ-algebra 2E . Let
E′ = {y ∈ E : P({Y = y}) > 0}. For X ∈ L1(Ω,F ,P), we may consider for every y ∈ E′:

E(X | {Y = y}) =
E
(
X1{Y=y}

)
P({Y = y})
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as a special case of EPB
(X) with B = {Y = y} s.t. P(B) > 0. Now we can use this to define

the conditional expectation of X given Y -discrete as the real random variable

E[X |Y ] = φ(Y )

where φ : E → R is defined by3

φ(y) =

{
E(X | {Y = y}) if y ∈ E′

0 if y ∈ E \ E′.

Note that by the Doob-Dynkin Theorem, E(X |Y ) is a σ(Y )-measurable function.

Proposition 17.1.2 (11.2 [3]) Let X ∈ L1(Ω,F ,P). We have that E(|E[X |Y ]|) ⩽ E(X)
and thus E(X |Y ) ∈ L1(Ω,F ,P). Moreover, for every bounded σ(Y )-measurable real random
variable W :

E(WX) = E(WE[X |Y ]).

Proof. From the definition of E[X |Y ], we have that

E(|E[X |Y ]|) =
∑
y∈E′

P({Y = y})
|E
(
X1{Y=y}

)
|

P({Y = y})

⩽
∑
y∈E

E
(
|X|1{Y=y}

)

= E

|X|∑
y∈E

1{Y=y}


= E(|X|1Ω) since

⊔
y∈E
{Y = y} = Y −1(E) = Ω

= E(|X|)

If W is σ(Y )-measurable (and bounded), then we can find a (bounded) function ψ : E → R

3The choice of value on E \E′ is irrelevant because it only influences E(X |Y ) on a set of probability zero since

P
(
{Y ∈ E \ E′}

)
=

∑
y∈E\E′

P({Y = y}) = 0.



Conditional Expectation 179

s.t. W = ψ(Y ) by Doob-Dynkin. It follows that

E(ψ(Y )E[X |Y ])

=
∑
y∈E

ψ(y)φ(y)P({Y = y})

=
∑
y∈E′

ψ(y)φ(y)P({Y = y}) since ∀y ∈ E \ E′ : P({Y = y}) = 0

=
∑
y∈E′

ψ(y)
E
(
X1{Y=y}

)
P({Y = y})

P({Y = y})

=
∑
y∈E′

ψ(y)E
(
X1{Y=y}

)
=
∑
y∈E′

E
(
ψ(Y )X1{Y=y}

) y becomes Y inside of the
expectation because
1{Y =y} is present

=
∑
y∈E′

E
(
ψ(Y )X1{Y=y}

)
+

∑
y∈E\E′

E
(
ψ(Y )X1{Y=y}

) this term is zero
because if P(A)=0 then

for any X∈L1 : E(X1A)=0

↔
= E

(
ψ(Y )X1Y −1(E′)

)
+ E

(
ψ(Y )X1Y −1(E\E′)

)
= E

(
ψ(Y )X(1Y −1(E′) + 1Y −1(E\E′))

)
= E(ψ(Y )X1Ω)

= E(ψ(Y )X)

where the expression indicated by ↔ has an an exchange of integral and sum by Fubini’s
theorem. ■

We already know that, for Y -discrete, E[X |Y ] is σ(Y )-measurable. The above proposition
establishes that it is also integrable, and averages to the same value when integrated against
bounded σ(Y ) measurable functions i.e. when it comes to the information that σ(Y ) provides
about X, the random variable E[X |Y ] agrees with X on average.

Corollary 17.1.3 If Y ′ is another discrete random variable such that σ(Y ) = σ(Y ′), then
the following equality holds P-a.s.

E[X |Y ] = E
[
X
∣∣Y ′].

Proof. Apply the previous proposition with W = 1{E[X |Y ]>E[X |Y ′]} which is measurable4

with respect to σ(Y ) = σ(Y ′). This gives us two equalities{
E(WX) = E(WE[X |Y ])

E(WX) = E(WE[X |Y ′])

from which it follows that

0 = E
(
W (E[X |Y ]− E

[
X
∣∣Y ′])) = E

(
1{E[X |Y ]>E[X |Y ′]}(E[X |Y ]− E

[
X
∣∣Y ′])).

This is possible if 1{E[X |Y ]>E[X |Y ′]} = 0 almost surely so we may conclude that E[X |Y ] ⩽
E[X |Y ′] almost surely. By interchanging the roles of Y and Y ′, we obtain the reverse
inequality. Hence, E[X |Y ] = E[X |Y ′] almost surely. ■

This corollary tells us that the information encoded in5 the σ-algebra σ(Y ) is what matters,
not the functional form of the random variable Y (or Y ′) that generates it.

4Note that {E[X |Y ] > E[X |Y ′]} = (E[X |Y ′]− E[X |Y ])−1((−∞, 0)) and the difference of two σ(Y ) = σ(Y ′)-
measurable functions is σ(Y )-measurable, so the pre-image of (−∞, 0) ∈ BR is in σ(Y ), and 1{E[X |Y ]>E[X |Y ′]} is
σ(Y )-measurable.

5i.e. everything knowable from Y .
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17.2 Abstract Conditional Expectation (X ∈ L1)

Why is it important that we established the idea of conditional expectation depends not on the
functional form of the random variable, but the σ-algebra that it generates? Two reasons, the first
of which is staring us in the face:

• The definition of E[X |Y ] above is for discrete Y ; it breaks down when the events {Y = y}
no longer have positive probability. We cannot divide by zero.

• The formalisation of probability via measure theory shifts the perspective from conditioning
on events like {Y = y} to conditioning on (sub-)σ-algebras — the mathematical structure
that “information” naturally presents itself as i.e. σ-algebras can be considered to be an
information variable.

◦ In particular, conditioning on a sub-σ-algebra allows one to accommodate for “condi-
tioning on absolutely continuous random variables — the scenario where simple events
{Y = y} have zero probability.

Note that one may condition on any sub-σ-algebra G ⊆ F , and in this framework a sub-σ-
algebra represents partial information.

The averaging property in Proposition 11.2 [3] uses bounded, σ(Y )-measurable functions

E(WX) = E(WE[X |Y ])

but an equivalent formulation can be written in terms of indicator functions 1B where B ∈ σ(Y ).
This is because any bounded, σ(Y )-measurable function W may be approximated by a sequence
of simple functions which themselves are finite linear combinations of such indicators 1B.

Definition 17.2.1 Let X ∈ L1(Ω,F ,P) and G ⊆ F be a sub-σ-algebra. Then the conditional
expectation of X given G is any random variable s.t.

1. Z is G-measurable.

2. For all A ∈ G:
E(1AZ) = E(1AX).

Remarks 17.2.2

• Think of F as the total information needed to know/characterise X.

• Condition 1 says that ∀B ∈ BR, Z−1(B) ∈ G i.e. knowing G is enough to fully determine Z.

• Condition 2 is the averaging property which tells us that for events knowable from G, on
average X and Z have the same value.

◦ Combining these two intuitive properties, we have that given partial information G about
X, then Z is “the” best possible G-measurable approximation of X.

• All mentions of “the” conditional expectation are statements that are true P-almost surely
i.e. if Z1 and Z2 satisfy 1 and 2, then

P({ω ∈ Ω : Z1(ω) ̸= Z2(ω)}) = 0.

Thus, we call any such Z a version of E[X | G]. This uniqueness comes from the Radon-
Nikodým Theorem:

Does such a Z exist? Is it unique?
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Theorem 17.2.3 ∃!Z P-a.s. satisfying 1 and 2.

Proof.

1. Assume that X ⩾ 0.

Define ν : G → [0,+∞] for all A ∈ G by

ν(A) ..=

∫
A
X dP

=

∫
Ω
X1A dP =.. E(X1A).

We’ve already shown that ν is indeed a non-negative measure (via the MCT). By construction,
for every A ∈ G: P(A) = 0 =⇒ ν(A) = 0 i.e. ν ≪ P. If both measures are σ-finite, we’re in
a situation where we can apply the Radon-Nikodym Theorem. Note that both measures are
in fact finite (which implies σ-finiteness):

• P
∣∣
G(Ω) = P(Ω) = 1

• ν(Ω) ..=

∫
Ω
X dP =.. E(X) <∞ since X ∈ L1(Ω,F ,P).

Thus, by the Radon-Nikodym Theorem there exists a P-a.s.-unique non-negative measurable
function ϕ : Ω→ [0,+∞] s.t. for every A ∈ G:

ν(A) =

∫
A
ϕ dP,

the left-hand side of which is E(1AX) and the right-hand side is E(1Aϕ). Thus, the Radon-
Nikodym dervative ϕ (also denoted dν

dP) of ν with respect to P is a function Z s.t. 1 and 2
are satisfied in the case of X ⩾ 0.

2. In the general case X ∈ L1(Ω,F ,P), we may write X = X+ − X−. The first part of this
proof for X ⩾ 0 applies to the positive and negative parts respectively i.e. there exist P-a.s.
unique, non-negative, G-measurable functions Z+ and Z− satisfying 1 and 2. It’s clear that
for all A ∈ G:

E(1AX) ..= E
(
1A(X

+ −X−)
)

= E
(
1AX

+
)
− E

(
1AX

−) by linearity

= E
(
1AZ

+
)
− E

(
1AZ

−) by 2

= E
(
1A(Z

+ − Z−)
)

by linearity

=.. E(1AZ)

and Z = Z+ − Z− is G-measurable (as the difference of two G-measurable functions).

Thus concludes the proof that the conditional expectation of a random variable X ∈ L1(Ω,F ,P)
given a sub-σ-algebra G exists and is P-a.s. unique. ■

Definition 17.2.4 Let X ∈ L1(Ω,F ,P) and Y be a random variable. The conditional expec-
tation E[X |Y ] of X given Y is defined to be E[X |σ(Y )], where σ(Y ) is the smallest σ-algebra
that makes Y measurable.

17.3 Properties of Conditional Expectation (X ∈ L1)

Since the conditional expectation is a random variable itself, we may compute its expectation.
Recall the averaging property that E[X | G] must satisfy:

E(1AX) = E(1AE[X | G]).
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Since G is a σ-algebra in its own right, Ω ∈ G so take A = Ω ∈ G to obtain

E(1ΩX)︸ ︷︷ ︸
E(X)

= E(1ΩE[X | G]).︸ ︷︷ ︸
E(E[X | G])

What we’ve shown is an important result that has its own name if we consider G to be a
σ-algebra generated by some random variable Y i.e. G = σ(Y ).

Theorem 17.3.1 (The Tower Law or Law of Total Expectation) Let X ∈ L1(Ω,F ,P) and
Y any random variable defined on the same space. Then

E(X) = E(E[X |Y ]),

where E[X |Y ] ..= E[X |σ(Y )].

The conditional expectation inherits some properties from the unconditional expectation:

• The function X 7−→ E[X | G] is linear and non-decreasing.

• Monotone convergence i.e. if Xn ↑ X, then

lim
n→∞

E[Xn | G] = E[X | G].

• Dominated convergence i.e. if Xn → X and ∀n : |Xn| ⩽ Y ∈ L1, then

lim
n→∞

E[Xn | G] = E[X | G].

• Perfect information i.e. if X ∈ G, then E[X | G] = X.

Proof. Since X ∈ G, all that remains to show is that X satisfies the averaging property. For
every A ∈ G, E(1AX) = E(1AZ) is trivially satisfied when Z = X. ■

Intuition: X being G-measurable means that knowing G is enough information to determine
which values X takes because ∀B ∈ BR, X−1(A) ∈ G. On the other hand, if G doesn’t give
you perfect information about X, then ∃B ∈ BR s.t. X−1(B) ̸∈ G i.e. there is some event
related to X for which G cannot encode/tell us about i.e. X ̸∈ G.

• No information relevant to understanding/guessing X i.e. If X and G are independent, then
E[X | G] = E(X).

Intuition: The best possible approximation is the “worst” thing we can imagine — a
constant function equal to the unconditional expectation. With no relevant information
about X, all we can do is average X and return that number as our best guess.

Proof.

1. Let A ∈ BR. Then denote the constant function with value E(X) by f .

f−1(A) =

{
∅ if E(X) ̸∈ A
Ω if E(X) ∈ A

Both ∅ ∈ G ∋ Ω since G is a σ-algebra. Thus, all constant functions are G-measurable.
In particular, f ≡ E(X) is.
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2. Suppose that X and G are independent. Let A ∈ G. Then 1A is a random variable
independent of X. It can be shown by Fubini’s theorem that if X,Y are independent
random variables, then E(XY ) = E(X)E(Y ). Thus,

E(X1A) = E(1A)E(X) by Fubini

= E(1AE(X)) by linearity

i.e. condition 2 of the definition of the conditional expectation is satisfied by Z = E(X).

■

• No information (at all) is the case where G = {∅,Ω}. The conclusion is the same. Namely,
E[X | G] = E(X).

• Assume that X ∈ G (i.e. that we have perfect information for X. Then:

◦ E[X + Y | G] = X + E[Y | G]
◦ E[XY | G] = XE[Y | G]

Proof.

◦ Observe that

E[X + Y | G] = E[X | G] + E[Y | G] by linearity

= X + E[Y | G] by perfect information.

◦ Restate the definition of the conditional expectation of XY given a sub-σ-algebra G ⊆ F
i.e. any random variable Z s.t.
1. Z ∈ G
2. ∀A ∈ G : E(1AXY ) = E(1AZ)

Let Z = XE[Y | G]. We wish to verify this Z satisfies 1 and 2:
1. By definition, E[Y | G] is G-measurable, and by assumption X ∈ G. Their product

is therefore also G-measurable.
2. We wish to prove that ∀A ∈ G:

E(1AXY ) = E(1A XE[Y | G]︸ ︷︷ ︸
Z

).

Proof Sketch. Follow the steps of the construction of the Lebesgue integral:
2.1) Prove first for X = 1B

2.2) Linearity implies the case for simple functions
2.3) Conditional expectation satisfies the MCT so it follows that the averaging prop-

erty holds for non-negative X
2.4) Linearity =⇒ true for any random variable X = X+ −X−.

■

Proof of 2.1. The statement of the theorem assumes X ∈ G. In particular,
X = 1B ∈ G ⇐⇒ B ∈ G. Then

E(1AXE[Y | G]) ..= E(1A1BE[Y | G])
= E(1A∩BE[Y | G])
= E(1A∩BY ) by property 2 of E[Y | G]
= E(1A1BY )

=.. E(1AXY )

■
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■

In practice, we often don’t have enough information (perfect information) to calculate E(X)
directly (or the direct computation is difficult). To make the computation easier, it helps to
introduce another random variable Y that’s simpler than X and gives partial information “G”
about X and note the Theorem 17.3.1 tells us that

E(X) = E(E[X |Y ]).

The following propositions and lemmata will recover some important formulae discussed in
undergraduate probability.

As a preliminary factoid, we consider what measurable functions look like when the σ-algebra
in question is generated by a partition {Bn} of the outcome space Ω:

Lemma 17.3.2 Let Z : Ω → R be G-measurable, where G = σ({Bn}). This is equivalent to Z
being constant on each Bn. In this case, Z may be written as a sum

Z =
∑

ai1Bi .

Proof. Assume that Z is constant on each of the Bn and can therefore be written as a sum
Z =

∑
n an1Bn . We wish to show that Z ∈ G. Let A ∈ BR and consider Z−1(A). Fix some n0.

By definition, ∀ω ∈ Bn0 : Z(ω) = an0 i.e. Z−1({an0}) = Bn0 . Bn0 is disjoint from the other cells.
Therefore, we may write

Z−1(A) =
( ⊔

n : an∈A
Bn

)
which is an element of G by closure under countable unions.

For the reverse implication, assume that Z is G-measurable i.e. ∀A ∈ BR, Z−1(A) ∈ G. Since
G = σ({Bn}), Z−1(A) may be written as a disjoint union of cells. In particular, Z−1(A)∩Bn must
be either Bn or ∅. Fix a particular n0 and suppose that Z is non-constant on Bn0 i.e. ∃ω1, ω2 ∈ Bn0

s.t. ω1 ̸= ω2 and WLOG6 Z(ω1) < Z(ω2). There exists some a s.t. Z(ω1) < a < Z(ω2). Consider
(−a,∞] ∈ BR. By measurability of Z

Z−1(A) =
⊔
n∈J

Bn.

Since Bn0 is a cell in the partition of Ω (that generates G):

Z−1(A) ∩Bn0 =

{
Bn0 if Bn0 ⊆ Z−1(A)
∅ if Bn0 ∩ Z−1(A) = ∅

Let’s examine what happens to ω1 and ω2:

• Since Z(ω1) < a, ω1 ∈ Z−1((−∞, a]) = Z−1(A). It was given that ω1 ∈ Bn0 .

∴ ω1 ∈ Z−1(A) ∩Bn0 =⇒ Z−1(A) ∩Bn0 ̸= ∅.

• On the other hand, Z(ω2) > a so ω2 ̸∈ Z−1(A). Also, ω2 ∈ Bn0 is given.

∴ ω2 ̸∈ Z−1(A) ∩Bn0 =⇒ Z−1(A) ∩Bn0 ⊄=
Bn0 .

Thus, we’ve found a non-trivial proper subset of Bn0 that is an element of G. The existence of
such a set Z−1(A) ∩ Bn0 contradicts the fact that G = σ({Bn}) from which we deduced that the
intersection of any set in G with any atom is either empty or the atom itself.

Therefore, we’re forced to conclude our assumption that Z is non-constant on Bn0 is false. Since
n0 was arbitrary, we conclude that Z is constant on each atom. ■

6Without loss of generality.
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The above lemma will be used in the following proposition for its representation of a G-
measurable function (where G = σ({Bn})) as a sum of indicators:

Proposition 17.3.3 Let X ∈ L1(Ω,F ,P). Suppose that G = σ({Bn}) is a sub-σ-algebra of F .
Then

E[X | G] =
∑
n

E(X |Bn)1Bn .

Proof. Z = E[X | G] is well-defined and exists P-a.s. uniquely by the Radon-Nikodym Theorem.
Property 1 of conditional expectation tells us that Z ∈ G and by our prior lemma, it has the
representation

E[X | G] = Z =
∞∑
n=1

an1Bn .

The averaging property of conditional expectation tells us that Z satisfies, for every A ∈ G:

E(1AX) = E(1AZ).

In particular, for any Bn ∈ G = σ({Bn}):

E(1BnX) = E(1BnZ)

= E

( ∞∑
i=1

ai1Bi1Bn

)
= E(an1Bn)

= anE(1Bn) by linearity

= anP(Bn)

i.e. an =
E(X1Bn)

P(Bn)
. We conclude by writing

E[X | G] = Z =
∞∑
n=1

an1Bn =
∞∑
n=1

E(X1Bn)

P(Bn)
1Bn ,

where we recover the coefficient of 1Bn as the conditional expectation of the random variable
X given an event Bn. ■

Example In the case that G = σ(B) = {∅, B,Bc,Ω}, the proposition we just proved tells us that

E[X |σ(B)] = a11B + a21Bc ,

where a1 =
E(X1B)

P(B)︸ ︷︷ ︸
=..E(X |B)

and a2 =
E(X1Bc)

P(Bc)︸ ︷︷ ︸
=..E(X |Bc)

, and that E[X |σ(B)] is a σ(B)-measurable function.

Corollary 17.3.4 For all events A ∈ F , the probability of the event A can be computed by
conditioning on a partition of Ω i.e.

P(A) =
∑
n

P(A |Bn)P(Bn).
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Proof. Take X = 1A for any A ∈ F . Then,

P(A) ..= E(1A)

= E(E[1A | G])

= E

( ∞∑
n=1

E(X1Bn)

P(Bn)
1Bn

)
where X = 1A in the proposition

= E

( ∞∑
n=1

E(1A∩Bn)

P(Bn)
1Bn

)

= E

( ∞∑
n=1

P(A ∩Bn)

P(Bn)
1Bn

)

=.. E

( ∞∑
n=1

P(A |Bn)1Bn

)

=

∞∑
n=1

E
(
P(A ∩Bn)

P(Bn)
1Bn

)
by the MCT since P(A |Bn) ⩾ 0

=
∞∑
n=1

P(A |Bn)E(1Bn) by linearity

=

∞∑
n=1

P(A |Bn)P(1Bn)

■

Alternative. By the σ-additivity of P:

P(A) = P(A ∩ Ω) = P

(
A ∩

( ∞⊔
n=1

Bn

))
= P

( ∞⊔
n=1

(A ∩Bn)

)
=

∞∑
n=1

P(A ∩Bn)

=
∞∑
n=1

P(A |Bn)P(Bn),

where a similar argument lets us re-write the summand where the line breaks as the desired product.
■

What’s interesting about this corollary is that the abstract definition of conditional probability
arrives at the same formula using another approach. The result of the corollary can then be used
to deduce the well-known Bayes Formula which is used a lot by statisticians:

P(Bi |A) =
P(A ∩Bi)

P(A)

=
P(A |Bi)P(Bi)

P(A)

=
P(A |Bi)P(Bi)
∞∑
n=1

P(A |Bn)P(Bn)

uneasy

Corollary 17.3.5 (Conditioning on a Discrete Random Variable) Let G = σ(Y ) where Y is a discrete random
variable. Then

E(X) =
∑
y

E(X |Y = y)P(Y = y).
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Proof. Since Y is discrete, its range is at most countably infinite and σ(Y ) is generated by all the events Y −1({y})
where y is in the range of Y . The disjoint union of the {Y −1({y})}y∈range(Y ) is certainly equal to Ω. Thus, the
collection certainly constitutes a partition of Ω. Thus,

E(X) = E(E[X |σ(Y )])

= E

(∑
y

E
(
X
∣∣Y −1({y})

)
1Y −1({y})

)

“=” E

(∑
y

E(X |Y = y)1{Y =y}

)
=
∑
y

E(E(X | {Y = y}))E
(
1{Y =y}

)
=
∑
y

E(E(X | {Y = y}))P({Y = y})

■

17.3.1 AN ILLUSTRATIVE EXAMPLE OF CONDITIONAL EXPECTATION

This example is from Todd Kemp’s Lecture 32.1.
Consider the probability space (Ω1 ×Ω2,F1 ⊗F2,P1 ⊗P2) where F1 ⊗F2 is the product σ-algebra, and P1 ⊗P2

is the unique product measure defined on the product σ-algebra.
Let G be the collection {A × Ω2 : A ∈ F1}. This collection injects F1 into the product σ-algebra in a natural

way, and is a sub-σ-algebra.7

If we take X ∈ L1(Ω1 × Ω2,F1 ⊗F2,P1 ⊗ P2), can we identify the conditional expectation Z of X given G?

1. Such a Z would be G-measurable. Since all singletons are Borel-measurable, it suffices to consider Z−1({t})
and show it’s in an element of G. If Z is G-measurable, then it’s certainly constant in the second variable for if
(ω1, ω2) 7−→ t for some t ∈ R, then certainly any other (ω1, ω

′
2) also maps into t because Z−1({t}) = {ω1}×Ω2.

Thus, Z is a projection and so Z(ω1, ω2) = Z′(ω1) for some measurable function Z′.

2. Such a Z would also satisfy the averaging property i.e. ∀A ∈ F1:

E(X1A×Ω2) = E(Z1A×Ω2)

Since Z would be in L1, we may apply Fubini’s theorem in what follows.

E(Z1A×Ω2) =

∫∫
Ω1×Ω2

Z1A×Ω2 d(P1 ⊗ P2)

=

∫
Ω2

(∫
A

Z(ω1, ω2) dP1

)
dP2 by Fubini’s Theorem

=

∫
Ω2

(∫
A

Z′(ω1) dP1

)
dP2

=

∫
A

Z′(ω1) dP1 since Z′ doesn’t depend on ω2 and P2(Ω2) = 1

Since Z′ ∈ L1 Now we choose to write the LHS as a double integral in the reverse order:

E(X1A×Ω2) =

∫∫
Ω1×Ω2

X1A×Ω2 d(P1 ⊗ P2)

=

∫
A

(∫
Ω2

X(ω1, ω2) dP2

)
dP1 by Fubini’s Theorem

This identifies Z as the L1 function satisfying

Z(ω1, ω2) = Z′(ω1) =

∫
Ω2

X(ω1, ω2) dP2.

uneasy

7∅ × Ω1 = ∅ is how one shows ∅ ∈ G.
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17.4 The Conditional Expectation (X ⩾ 0)

This section simply quotes
results that are proven

in [3] 11.2.2.

Convention: Allow X to attain +∞.

The conditional expectation of a non-negative random variable may also be defined.

Theorem 17.4.1 Let X : Ω → [0,+∞] be a random variable. Then there exists a G-measurable
random variable with values in [0,+∞], denoted by E[X | G], and is such that for any non-negative
G-measurable random variable Z:

E(ZX) = E(ZE[X | G]).

Furthermore, E[X | G] is unique up to a G-measurable set of probability zero.

17.4.1 PROPERTIES OF E[X | G] FOR X ⩾ 0

Lemma 17.4.2

a) If X and X ′ are non-negative random variables, and a, b ⩾ 0:

E
[
aX + bX ′

∣∣G] = aE[X | G] + bE
[
X ′
∣∣G].

b) If X ⩾ 0 and G-measurable, then E[X | G] = E(X).

c) For any X ⩾ 0, E(E[X | G]) = E(X).

d) If {Xn}n∈N is a non-decreasing sequence of non-negative random variables with pointwise
limit Xn ↑ X, then ∀Pω:

E[X | G] = lim
n→∞

↑ E[Xn | G].

As a useful consequence, if {Yn}n∈N is a sequence of non-negative random variables, we have:

E

[∑
n∈N

Yn

∣∣∣∣∣G
]
=
∑
n∈N

E[Yn | G]

e) If {Xn}n∈N is any sequence of non-negative random variables, then ∀Pω:

E
[
lim inf
n→∞

Xn

∣∣∣G] ⩽ lim inf
n→∞

E[Xn | G].

f) Let {Xn}n∈N be any sequence of integrable random variables that converges P-a.s. to X.
Assume that there’s a non-negative random variable Z s.t. |Xn| ⩽ Z a.s. for every n ∈ N,
and E(Z) <∞, then

L1 ∋ E[X | G] = lim
n→∞

E[Xn | G] a.s.

g) Jensen’s Inequality for Conditional Expectations i.e. if f : R → [0,+∞) is convex, and
X ∈ L1 then

E[f(X) | G] ⩾ f(E[X | G]).
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17.5 Conditional Expectation As Projection (X ∈ L2)

Let (H, ⟨ · , · ⟩) be an inner product space, K ⊆ H be a linear subspace. Then there exists an
orthogonal projection map onto K

PK : H → K

satisfying the following:

• PK is surjective

• PK(v) = v for every v ∈ K (fixes all vectors in K)

• PK(v) = 0 if v ∈ K⊥ ..= {w ∈ V : ⟨w, v⟩ = 0 for all v ∈ K}

Geometrically, the picture is clear. We have some vector v ∈ H and we wish to orthogonally project
it onto K. We achieve this by looking at the orthogonal complement to K, and project down along
that subspace onto K. The key is to find the vector a = v − PK(v) which is orthogonal to K. This
vector uniquely specifies the orthogonal projection.

Given a Hilbert space H and a closed linear subspace K ⊆ H, for any X ∈ H, ∃!Z ∈ K, called
the orthogonal projection of X onto K, and denoted by PK(X), satisfying the following equivalent
conditions:

• PK(X) is the unique Z ∈ K minimising ∥X − Z∥

• PK(X) is the unique Z ∈ K s.t. (X − Z) ⊥ K

i.e. ∃! linear transformation PK : H → K s.t.

1. PK is Lipschitz-continuous (i.e. a bounded operator with operator norm ⩽ 1)

2. PK fixes all the vectors in K
∀Y ∈ K : PK(Y ) = Y

3. Kills all the vectors orthogonal to K

∀Z ∈ K⊥ : PK(Z) = 0

4. Is self-adjoint with respect to ⟨ · , · ⟩ i.e.

∀X,Y ∈ H : ⟨PK(X), Y ⟩ = ⟨X,PK(Y )⟩

17.5.1 APPLICATION TO CONDITIONAL EXPECTATION

L2(Ω,F ,P) = H is a Hilbert space when equipped with the L2 inner product

⟨f, g⟩L2
..= E(XY ) ..=

∫
Ω
XY dP.

In our case, we can isometrically identify K = L2(Ω,G,P) with a closed subspace of H =
L2(Ω,F ,P) — namely, the subspace consisting of all elements of L2(Ω,F ,P) that have at least one
representative that is G-measurable. Thus, we can make sense of the orthogonal projection of an
element of H onto the closed subspace K:

Theorem 17.5.1 (11.5 [3]) If X ∈ L2(Ω,F ,P), then E[X | G] is the orthogonal projection of X
onto L2(Ω,G,P).
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Proof. Jensen’s inequality shows that P-a.s.

(E[X | G])2 ⩽ E
[
X2
∣∣G]

from which it follows that

E
(
(E[X | G])2

)
⩽ E

(
E
[
X2
∣∣G]) = E

(
X2
)
<∞

so E[X | G] ∈ L2(Ω,G,P). On the other hand, by the averaging/characteristic property of E[X | G],
we have that for every bounded G-measurable Z

E(ZX) = E(ZE[X | G])

which implies that

0 = E(ZX)− E(ZE[X | G]) = E(Z(X − E[X | G])) =.. ⟨Z,X − E[X | G]⟩L2

so X−E[X | G] is orthogonal to the space of all bounded G-measurable random variables — a space
which is dense in L2(Ω,G,P). It follows8 that X − E[X | G] is orthogonal to L2(Ω,G,P). ■

Thus, we may interpret the conditional expectation E[X | G] as the best approximation of X by
a G-measurable function in the L2 sense that for any other G-measurable random variable Y :

E
(
(Y −X)2

)
⩾ E

(
(E[X | G]−X)2

)
.

17.6 More Properties of Conditional Expectation (X ⩾ 0 or X ∈ L1)

Proposition 17.6.1 (Nested σ-Algebras, 11.7 [3]) Let G1 and G2 be two sub-σ-algebras of F s.t.
G1 ⊆ G2. Then, for every non-negative (or integrable) random variable X, we have that

E(E[X | G2] | G1) = E[X | G1].

Proof. Consider the case where X ⩾ 0. Let Z be a non-negative G1-measurable random variable.
We wish to show that E[E[X | G2] | G1] is G1-measurable and satisfies the characteristic property of
E[X | G1] in order to conclude the proof. Thus, consider

= E(Z E[E[X | G2] | G1])
= E(Z E[X | G2]) by the law of total expectation

= E(ZX),

where the final equality follows from the averaging property of E[X | G2], noting that Z ∈ G1 =⇒
Z ∈ G2. ■

Remarks 17.6.2 Note that we also have, under the same assumptions as in the proposition, that

E[E[X | G1] | G2] = E[X | G1]

but this is trivial since E[X | G1] is G2-measurable (since it’s already G1-measurable and G1 ⊆ G2).

8By some limiting argument?
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CHAPTER 18

Conditional Probability

Elementary Conditional Probability

Let A,B ∈ F with P(B) > 0. Recall that the naïve/elementary definition of the conditional
probability of A given B is given by

P(A |B) ..=
P(A ∩B)

P(B)
.

This definition applies equally well to events corresponding to a pair of discrete random variables
X,Y :

Definition 18.0.1 For a pair of discrete random variables X,Y , the conditional probability of
the event {X = x} given {Y = y} is defined by

P({X = x} | {Y = y}) = P({X = x} ∩ {Y = y})
P({Y = y})

, (†)

where P({Y = y}) > 0.

Since † only holds for events {Y = y} with positive probability, the definition doesn’t easily
generalise to the case where Y is not discrete. For example, if Y is absolutely continuous then
every {Y = y} has probability zero. However, one can try to make sense of the expression by
considering an interval about y e.g. {y − h ⩽ Y ⩽ y + h} for some h > 0 and investigating the
limiting expression of a modified version of †:

P({X = x} | {y − h ⩽ Y ⩽ y + h}) ..= lim
h→0

P({X = x} ∩ {y − h ⩽ Y ⩽ y + h})
P({y − h ⩽ Y ⩽ y + h})

if such a limit exists.1

The above development is seen at the undergraduate level. At graduate level, the opposite route is
taken to develop the theory — define conditional expectation and use it to define other conditional
quantities e.g. a generalisation of conditional probability from the discrete case.

18.1 Conditional Probability of A given G

Definition 18.1.1 The conditional probability of A ∈ F given a sub-σ-algebra G ⊆ F is
denoted2 by P[A | G] and is defined to be the conditional expectation of 1A given G:

P[A | G] ..= E[1A | G].

Note that P[A | G] is an equivalence class of G-measurable random variables that satisfy the defining
property i.e. ∀B ∈ G :

E(1BP[A | G]) = E(1B1A).

which simplifies to ∫
B
P[A | G] dP = P(A ∩B).

1I wonder why one considers a symmetric interval [y − h, y + h] about y and whether it makes a difference. I
imagine L’Hôpital’s rule could be useful in recovering the limit if the density of Y is differentiable at y, and maybe
the type of interval corresponds to the type (e.g. left-differentiable) of differentiability at said point y.

2Recall my convention that round parentheses in a probability-related map denote that the object is a number
e.g. E(X), and square parentheses indicate that the object is a random variable e.g. E[X | G].
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Remarks 18.1.2

• The above definition is in the same spirit as P(A) = E(1A), but this time we’re defining a
random variable P[A | G] by the conditional expectation.

• P[A | G] can be thought of as encoding the updated belief aboutA given the partial information
G, from which (via integration) we can reproduce the joint probabilities P(A ∩B) for B ∈ G.

• Whether or not A occurs, encoded by the random variable 1A, may or may not be something
we can determine from G alone i.e. 1A ∈ G is unknown. If not, we turn to P[A | G] as the
best G-measurable approximation to the indicator 1A.

I will abuse notation and often write P[A | G](ω) for a version of the conditional probability. The
context should be clear when I do this, but if not, I will use something like fA to denote such a
version:

�

Definition 18.1.3 By varying over A ∈ F , we can define the conditional probability on F
given G by the map κ : F × Ω→ [0, 1] which is defined for each A ∈ F by:

ω 7−→ κ(A,ω) ..= P[A | G](ω).

Example 18.1.4 Suppose that G is generated by B i.e. G = σ(B) = {∅, B,Bc,Ω}. Any version
fA of the conditional probability P[A | G] ..= E[1A | G] = E[1A |σ(B)] is therefore constant on each
cell of the partition {B,Bc} of Ω. By Lemma 17.3.2, we can write fA as the sum

fA = aB1B + aBc1Bc .

We can determine the constants aB and aBc by the defining property of conditional expectation.

• For the event B ∈ G, the property tells us that

P(A ∩B) =

∫
B
(aB1B + aBc1Bc) dP = aBP(B) + aBc

∫
Ω
1∅ dP = aBP(B)

• Similarly, for Bc ∈ G, we obtain aBcP(Bc) = P(A ∩Bc).

Now one notes that if P(B) = 0, then we have that P(A ∩B) = 0. This tells us nothing about
how to determine aB. Recall that any version fA of P[A | G] is uniquely defined up to a P-null set
so its behaviour on B is arbitrary i.e. we can choose any value on a cell of measure zero and this
won’t change that fA = aB1B + aBc1Bc is a valid version of P[A | G].

If we suppose that P(B),P(Bc) > 0, we may recover the classical expressions

aB =
P(A ∩B)

P(B)
and aBc =

P(A ∩Bc)

P(Bc)

and so our version fA is given by

fA =
P(A ∩B)

P(B)︸ ︷︷ ︸
=..P(A |B)

1B +
P(A ∩Bc)

P(Bc)︸ ︷︷ ︸
=..P(A |Bc)

1Bc .

For the sake of completeness, checking the defining property for the other two
events ∅,Ω of G are trivialities:

• For ∅, we have 0 =
∫
∅ fA dP = P(A ∩ ∅) = 0.
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• For Ω, we have
∫
Ω
fA dP = P(A ∩ Ω) = P(A) which is just the law of total

expectation E(P[A | G]) = E(E[1A | G]) = E(1A) = P(A).

Corollary 18.1.5 For a countable partition {Bi}i∈J⊆N ⊆ F of Ω, the conditional probability of
A ∈ F given G = σ({Bi}) is given by

P[A | G] =
∑
i∈J

P(A |Bi)1Bi .

Furthermore, the map κ : F × Ω→ [0, 1] defined for each A ∈ F by:

ω 7−→ κ(A,ω) ..= P[A | G](ω) =
∑
i∈J

P(A |Bi)1Bi(ω)

is a conditional probability on F given G = σ({Bi}).

18.2 Regular Conditional Probability

From the above definition, we understand that for each A ∈ F , the map κ(A, ·) is a G-measurable
random variable — in particular it’s a version of P[A | G]. That’s only half of the map and this
begs the question: What kind of object should κ(·, ω) be defined by κ for each ω?

As some motivation for this question, Le Gall alludes (in [3, p. 248]) to the idea that we can
use κ to model a stochastic process (which can loosely be thought of as a collection of states
and probabilities of moving between states). Namely, for every “starting state” ω ∈ Ω, if we can
guarantee that κ(·, ω) is a probability measure then we can use it to model how we choose an
“arrival point” ω′ in a random manner on the entire outcome space.

α

β

1− α 1− βω ω′

Figure 18.1: Ω = {ω, ω′} and a state diagram representing the corresponding transition probabili-
ties. At each state, the probabilities must sum to 1.

If we can do this for every ω ∈ Ω, then we will call κ regular. We’ll now attempt to verify the
probability axioms for κ(·, ω).

• It’s clear that P[∅ | G] = E[1∅ | G] = 0 almost surely since 1∅ is the constant random variable
with value zero. Thus, we may choose the constant function κ(∅, ω) = 0 (pointwise) as our
version of P[∅ | G].

• Similarly, P[Ω | G] = E[1Ω | G] = 1 almost everywhere. By the same logic, we may choose the
constant function κ(Ω, ·) = 1 as our version of P[Ω | G].
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• For a collection {An}n∈N ⊆ F of pairwise disjoint events, we have that

P

[⊔
n∈N

An

∣∣∣∣∣G
]

..= E
[
1⊔

n∈N An

∣∣∣G]
= E

[ ∞∑
n=1

1An

∣∣∣∣∣G
]

= E

[
lim

N→∞

N∑
n=1

1An

∣∣∣∣∣G
]

= lim
N→∞

E

[
N∑

n=1

1An

∣∣∣∣∣G
]

by the conditional MCT

= lim
N→∞

N∑
n=1

E[1An | G] by linearity of E[· | G] : L1(Ω,F ,P)→ L1(Ω,G,P)

=
∑
n∈N

E[1An | G]

=..
∑
n∈N

P[An | G]

where the MCT was applied with 1⊔N
n=1 An

=
∑N

n=1 1An ↑ 1⊔
n∈N An

as N →∞.

Remarks 18.2.1

• The order of quantifiers is important here. For each! particular collection {An}n∈N, these
corresponding equality demonstrated above, crucially, hold only P-a.e. so the convergence
of the series

∑
n∈N P[An | G] is only almost sure.

• Let ω ∈ Ω. For each A ∈ F , fix a version fA of P[A | G]. Does the map A 7−→ fA(ω) define a
measure?

Let {An}n∈N ⊆ F be any pairwise disjoint family. Denote by A their union ⊔n∈NAn. The
conditional version of the Monotone Convergence Theorem tells us that

fA(ω) =
∑
n∈N

fAn(ω). (σa.s.)

holds P-almost surely i.e.
∃N{An}n∈N ∈ G that is P-null

s.t. (σa.s.) holds pointwise for ω ∈ Ω \N{An}n∈N .

Since in general there are potentially uncountably many such families {An}n∈N ⊆ F , then
there must also be potentially countably many corresponding null sets in G whose union
N ∈ G may not necessarily be P-negligible, and so we cannot guarantee the existence of a
P-null set N ∈ G s.t. (σa.s.) holds true for every collection {An}n∈N simultaneously on Ω \N .

Despite there being no guarantee in general that the assignment A 7−→ fA(ω)
is a measure for P-almost every ω ∈ Ω, we can demonstrate that the series∑

n∈N P[An | G] converges in the L1 sense, from which we deduce that A 7−→
P[A | G] is an (L1(Ω,G,P), ∥ · ∥L1)-valued vector measure — a generalisation of a
finite measure taking values in [0,+∞]:

Definition 18.2.2 Let (Ω,F) be a measurable space, and (B, ∥ · ∥B) be a Banach
space. A map µ : Ω → B is called a vector measure if:

• µ(∅) = 0
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• For any pairwise disjoint collection {An}n∈N ⊆ F :

µ
( ⊔

n∈N

An

)
=
∑
n∈N

µ(An),

where the series converges in (B, ∥ · ∥B).

Proof. The series
∑

n∈N P[An | G] converges absolutely in L1(Ω,G,P) because∑
n∈N

∥P[An | G]∥L1 =
∑
n∈N

E(|P[An | G]|)

=
∑
n∈N

E(|E[1An | G]|)

=
∑
n∈N

E(E[1An | G]) since E[1An | G] is non-negative P-a.e.

=
∑
n∈N

E(1An) by the law of total expectation

=
∑
n∈N

P(An)

= P
( ⊔

n∈N

An

)
⩽ 1 < ∞.

Since (L1(Ω,G,P), ∥ · ∥L1) is a Banach space, the original series converges to some
element in the same space — exactly what we think it is:∥∥∥∥∥P

[⊔
n∈N

An

∣∣∣∣∣G
]
−

N∑
n=1

P[An | G]

∥∥∥∥∥
L1

..=

∥∥∥∥∥E
[∑
n∈N

1An

∣∣∣∣∣G
]
−

N∑
n=1

E[1An | G]

∥∥∥∥∥
L1

=

∥∥∥∥∥E
[

∞∑
n=N+1

1An

∣∣∣∣∣G
]∥∥∥∥∥

L1

= P

(
∞⊔

n=N+1

An

)
N→∞−→ 0

■

• The vector measure structure will permit one to use the tools of functional
analysis to investigate A 7→ P[A | G] further.

Small tangent on vector measures aside, the problem for arbitrary F is that there are too
many sets in F . The appropriate corrective step is to construct a map (if it exists) for which the
assignment A 7−→ P[A | G](ω) is a probability measure for at least P-a.e. ω ∈ Ω.

Definition 18.2.3 A function κ : F × Ω→ [0, 1] is called a regular conditional probability
on F given G if:

1. For P-a.e. ω ∈ Ω, κ(·, ω) is a probability measure on (Ω,F).

2. For each A ∈ F , the mapping ω 7−→ κ(A,ω) is a version of P[A | G] i.e.

• κ(A, ·) is G-measurable, agrees P-a.s. with P[A | G], and
• satisfies the averaging property ∀B ∈ G:

P(A ∩B) = E(1B1A) = E(1B κ(A, ·)) =
∫
B
κ(A,ω) dP(ω).

If a regular conditional probability exists (with our P-a.e definition), then we can easily upgrade
it to a pointwise statement on Ω. Suppose that N is the null set outside of which (i.e. for every
ω ∈ Ω \ N) κ(·, ω) every is a probability measure. Let ξ ∈ Ω. For every ω ∈ N , and for every
A ∈ F , re-define

P[A | G](ω) ..= 1A(ξ).
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Then condition 1. certainly holds, and so too 2. for every ω ∈ Ω.
On the other hand, if we state the definition with κ(·, ω) being a probability measure for every

ω ∈ Ω, then it certainly follows ∀P ω ∈ Ω. Thus, both definitions are equivalent when the weaker
(a.e.) statement is true.

Henceforth, the definition of a regular
conditional probability will state that
κ(·, ω) is a probability measure on

(Ω,F) for every ω ∈ Ω. �

This convention sidesteps some technical difficulties.

18.2.1 REGULAR CONDITIONAL DISTRIBUTION OF X GIVEN G

In the particular case that F is generated by a random variable X, we give a new name to a
particular instance of regular conditional probability as per Remark 12.3.1 from [13, p. 393]:

Definition 18.2.4 When F = σ(X), the regular conditional probability of F given G is also
called the regular conditional probability distribution of X given G.

Theorem 18.2.5 (B.32 [5]) If X maps into a Borel space, then there exists a regular conditional
distribution of X (equivalently F = σ(X)) given any sub-σ-algebra G ⊆ σ(X).

uneasy

18.2.2 G GEN. BY PARTITION

We can use the conditional probability κ from Corollary 18.1.5 as an example. It is indeed
regular.
Proof. Without loss of generality, the partition can take the form {Bi}i∈{0}∪J⊆N where P(Bi) > 0
for every i ∈ J , and B0 is P-null but not necessarily empty.

By construction, for each A ∈ F we already have that ω 7→ κ(A,ω) = P
[
A
∣∣σ({Bi}i∈{0}∪J)

]
(ω)

is already a conditional probability that decomposes into a countable collection of probability
measures:

P[A | G](ω) = P(A |B0)1B0(ω) +
∑
i∈J

P(A |Bi)1Bi(ω).

What remains to be seen is that for each ω ∈ Ω, the map A 7→ P[A | G](ω) is a probability
measure. This is certainly the case because any fixed ω is a member of at most one of the cells,
e.g. Bi0 , and if so, all other terms in the decomposition with 1Bj (ω) where j ̸= i0 vanish, leaving
the probability measure P(· |Bi0) behind. ■

18.2.3 DEFINING CONDITIONAL EXPECTATION VIA R.C.P ON F GIVEN G-ARBITRARY

Back to the general case of an arbitrary sub-σ-algebra G ⊆ F . Take for granted, for now, that a
regular conditional probability κ exists.

By property 2 of κ, for each ω ∈ Ω, κ(·, ω) is a probability measure on (Ω,F) and so we may



Conditional Probability 197

write3 for any A ∈ F :

κ(A,ω) =

∫
A
dκ(·, ω)(ω′) =

∫
Ω
1A

(
ω′
)
dκ(·, ω)(ω′).

Thus, we may write the integral property of κ(A, ·) in the suggestive form:

E(1B1A) = E(1B κ(A, ·))

=

∫
B
κ(A,ω) dP(ω)

=

∫
B

∫
Ω
1A

(
ω′
)
dκ(·, ω)(ω′) dP(ω).

This equality expresses that the conditional expectation κ(A,ω) of 1A given G is equal (P-a.s.) to
the Lebesgue integral of 1A with respect to the probability measure κ(·, ω) at said ω.

Since this holds for indicators, by linearity we can extend to simple functions, then non-negative
random variables, and finally any integrable random variable X. This is demonstrated in the
following proof:

Claim Suppose that an r.c.p. κ on F given G exists, and that X ∈ L1(Ω,F ,P). Then for P-a.e.
ω ∈ Ω:

E[X | G](ω) =
∫
Ω
X(ω′) dκ(·, ω)(ω′).

Proof. Denote the RHS by

h(ω) ..=

∫
Ω
X(ω′) dκ(·, ω)(ω′).

We want to show that h is a version of the conditional expectation E[X | G].

1. For X = 1A, this has already been shown. Note, in particular, that ∀P ω: h(ω) = κ(A,ω)
which is certainly G-measurable.

2. Now consider a simple function X =
∑n

i=1 ai1Ai where every Ai ∈ F . Then, by linearity

h(ω) =

∫
Ω

n∑
i=1

ai1Ai

(
ω′
)
dκ(·, ω)(ω′) =

n∑
i=1

aiκ(Ai, ω)

which is a sum of G-measurable functions so h ∈ G.
For any B ∈ G:

E(1Bh) = E

(
1B

n∑
i=1

aiκ(Ai, ·)

)

=
n∑

i=1

aiE(1Bκ(Ai, ·))

=

n∑
i=1

aiE(1B1Ai) by the averaging prop. of κ(Ai, ·) which is a version of P[Ai | G]

= E

(
1B

n∑
i=1

ai1Ai

)
= E(1BX)

3In the exact same sense as
µ(A) =

∫
A

dµ(x) =

∫
Ω

1A(x) dµ(x).
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3. Let X be a non-negative random variable. There exists a non-decreasing sequence of simple
measurable functions {Xn}n∈N with pointwise limit limn→∞Xn(ω

′) = X(ω′) for every ω′ ∈ Ω.
Since for each ω ∈ Ω, the map κ(·, ω) is a probability measure on (Ω,F), define

hn(ω) ..=

∫
Ω
Xn(ω

′) dκ(·, ω)(ω′)

so that {hn(ω)}n∈N is a non-decreasing sequence of non-negative G-measurable functions. By
the Monotone Convergence theorem,

lim
n→∞

hn(ω) =

∫
Ω

lim
n→∞

Xn(ω
′) dκ(·, ω)(ω′)

=

∫
Ω
X(ω′) dκ(·, ω)(ω′) =.. h(ω).

As the pointwise limit (for P-a.e. ω ∈ Ω), h is G-measurable. Now let B ∈ G. Noting that
for P-a.e. ω ∈ Ω, {1B hn}n∈N ↑ 1B h and so:

E(1B h) = E
(
lim
n→∞

1B hn

)
= lim

n→∞
E(1B hn) by the MCT on {1B hn}n∈N

= lim
n→∞

E(1BXn) by Step 2 since Xn-simple

= E
(
lim
n→∞

1BXn

)
by the MCT again but this time on {1BXn}n∈N.

= E(1BX)

4. We may write any X ∈ L1(Ω,F ,P) as X = X+ − X− where X+ = max(0, X) and X− =
min(0,−X) are non-negative integrable random variables. Now denote by

h±(ω) ..=

∫
Ω
X±(ω′) dκ(·, ω)(ω′).

Therefore h = h+ − h− which is the difference of two G-measurable functions, is also G-
measurable. For any B ∈ G, we have that:

E(1Bh) = E
(
1B(h

+ − h−)
)

= E
(
1Bh

+
)
− E

(
1Bh

−) by linearity of E( · )
= E

(
1BX

+
)
− E

(
1BX

−) by Step 3

= E(1BX) by linearity once more.

■

Corollary 18.2.6 For any measurable h : (E, E)→ (R,BR) s.t. E(|h(X)|) <∞, one has ∀P ω ∈ Ω
that

E[h(X) | G](ω) =
∫
Ω
h(X(ω′)) dκ(·, ω)(ω′).
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18.3 I’m Disintegrating

The setup of this section is as follows:

(Ω,F ,P) (E, E ,PY )
Y

where Y is (F , E)-measurable. The overall goal is to disintegrate our probability measure P i.e. to
find a disintegration of P with respect to σ(Y ) — a (conditional-)probability-measure-valued
map y 7−→ Py that is E-measurable and satisfies

P =

∫
Py dPY (y),

and Py is concentrated on Y −1({y}) for PY -a.e. y.
This integral condition will later present itself for any A ∈ F and D ∈ E as

P
(
A ∩ Y −1(D)

)
=

∫
D
Py(A) dPY (y).

The above integral is a type of Fubini integral in the sense that:

• we first compute the conditional probability measures of A on the level sets (fibres) Y −1({y})
of Y

• and then integrate the result over a measurable subset D ∈ E of the “base space”4 E with
respect to Py in the variable y.

The requirement that makes this possible is the existence of a regular conditional probability
on F given G = σ(Y ):

Theorem 18.3.1 (Theorem 10.4.5 [14]) Suppose that F is countably generated and that P has
a compact approximating class in F . Then for every sub-σ-algebra G ⊆ F , there exists a regular
conditional probability on F given G.

Proof. A proof can be found in [14, pp. 359–361]. I leave this empty space for when I work through
it myself, and any comments I may have. ■

Let’s investigate what a regular conditional probability on F given G = σ(Y ) looks like:

Definition 18.3.2 A function κ : F × Ω→ [0, 1] is called a regular conditional probability
on F given G = σ(Y ) if:

1. For every ω ∈ Ω, κ(·, ω) is a probability measure on (Ω,F).

2. For each A ∈ F , the mapping ω 7−→ κ(A,ω) is a version of P[A |σ(Y )] i.e.

• κ(A, ·) is σ(Y )-measurable, agrees P-a.s. with P[A |σ(Y )], and
• satisfies the averaging property ∀B ∈ σ(Y ) :

P(A ∩B) = E(1B1A) = E(1Bκ(A, ·)) =
∫
B
κ(A,ω) dP(ω).

Pretty much the same as the general definition but we slot in σ(Y ) for G. However, we can do
more:

Remarks 18.3.3

4I believe in the language of category theory, one can think of Ω as being layered over E.
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• Since B ∈ σ(Y ) = {Y −1(D) : D ∈ E}, there exists some D ∈ E s.t. B = Y −1(D) and we may
re-write the averaging property for each A ∈ F and D ∈ E as

P
(
A ∩ Y −1(D)

)
= E

(
1Y −1(D)1A

)︸ ︷︷ ︸
=E(1D(Y )1A)

= E
(
1Y −1(D) κ(A, ·)

)
=

∫
Y −1(D)

κ(A,ω) dP(ω).

• It’s clear to see that when (E, E) = (Ω,G), and Y = id: (Ω,F) → (Ω,G), then κ reduces to
Definition 18.2.3.

We can see the rightmost integral begin to take the form of the Fubini-type integral at the beginning
of this section. If we can somehow write the σ(Y )-measurable function ω 7→ κ(A,ω) as a function
of Y , it almost looks like a change of variable away...

Indeed, this is the key observation. The σ(Y )-measurable function ω 7→ κ(A,ω) factors through
Y (via Doob-Dynkin) to give a re-parameterisation of κ : F × Ω→ [0, 1] to κY : F × E → [0, 1].

Explicitly, since κ(A, ·) is a G-measurable function, the setup of Theorem A.42 is as follows:

(S1,A1) = (Ω,F)

(S2,A2) = (E, E)

(S3,A3) = ([0, 1],B[0,1]) is a measurable space whose σ-algebra contains all singletons

f = Y ∈ MeasF , E(Ω ;E)

g = (ω 7→ κ(A, ·))

A∗ = {Y (Ω) ∩D : D ∈ E}

Then the theorem states that

g ∈ Measσ(Y ),B[0,1](Ω ; [0, 1]) ⇐⇒ ∃hA ∈ MeasA∗,B[0,1](Y (Ω) ; [0, 1]) s.t. κ(A, ·) = hA ◦ Y.

Pictorially:
(Ω,F) (E, E) ⊇ Y (Ω)

([0, 1],B[0,1])

ω 7−→κ(A,ω)

Y

∃hA

∀ω ∈ Ω we have that κ(A,ω) = hA(Y (ω)).

Let y ∈ Y (Ω). A fundamental observation here is that for any ω1, ω2 ∈ Y −1({y}), we have that

κ(A,ω1) = hA(Y (ω1)) = hA(y) = hA(Y (ω2)) = κ(A,ω2)

and so we conclude that κ(A, ·) is constant on Y −1({y}). This allows us to define, for each y ∈ Y (Ω):

κY (A, y) ..= hA(y).

Notice that this re-parameterisation only applies to y ∈ Y (Ω). We wish to extend this to all
of y ∈ E so that we may have a satisfactory theory of (dis)integration over any element of E .
Furthermore, Y (Ω) may not be an element of E , putting the measurability into question. Once
this is rectified and we’ve extended to all of E, we will have defined the following object:
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Definition 18.3.4 A system of regular conditional probabilities generated by
Y ∈ MeasF , E(Ω ;E) is a function κY : F × E → [0, 1] such that:

1. For every y ∈ E, κY (·, y) is a measure on F ,

2. For each A ∈ F , the mapping y 7−→ κY (A, y) is:

• an E-measurable function satisfying for P-a.e. ω ∈ Ω:

κY (A, Y (ω)) = P[A |σ(Y )](ω),

• and is PY -integrable, satisfying the following disintegration formula: For all A ∈ F
and D ∈ E :

P
(
A ∩ Y −1(D)

)
=

∫
D
κY (A, y) dPY (y).

Indeed, the remainder of the construction relies on some topological assumptions about our
spaces. For completeness, we collect all the assumptions in one theorem:

Theorem 18.3.5 (Theorem 10.4.8 [14]) Let Y : (Ω,F) → (E, E) be measurable with respect to
(FP, E). Suppose further that Y (Ω) ∈ EPY

, where EPY
is the completion of E with respect to the

subscripted measure. If F is countably generated and P has a compact approximating class in F ,
then there exists a system of regular conditional probability measures generated by Y on F .

Proof. Fix A ∈ F and let G = σ(Y ) ⊆ F be a sub-σ-algebra. The assumptions of Theorem
10.4.5 are satisfied so there exists a regular conditional probability κ on F given G. As previously
explained, by Theorem A.42 for any A ∈ F the map κ(A, ·) factors through Y i.e.

∃hA ∈ MeasA∗,B[0,1](Y (Ω) ; [0, 1]) s.t. κ(A,ω) = hA(Y (ω)) for every ω ∈ Ω.

For the topological assumption, since Y (Ω) ∈ EPY
, there exist measurable sets E0, E1 ∈ E s.t.

E0 ⊆ Y (Ω) ⊆ E1 with PY (E1 \ E0) = 0. Therefore, PY (Y (Ω) \ E0) = 0 and we conclude that E0

is a measurable subset of Y (Ω) with full PY measure.

Construction of κY .

For y ∈ E0:

• Define κY (A, y) ..= hA(y) for any y ∈ E0. Now note that

κY (A, y) = hA(Y (ω)) = κ(A,ω).

This is well-defined by the earlier observation about κ(A, ·) being constant on the fibres
Y −1({y}). Namely:

◦ Thus, for any y ∈ E0, A 7−→ κY (A, y) = κ(A,ω) is a probability measure.
◦ The trace (A∗,B[0,1])-measurability comes from hA.

For the remaining points y ∈ E \E0, we can define κY (·, y) arbitrarily because E \E0 is a PY -null
set. Let κY (·, y) = P for these y. Note:

• For any A ∈ F , the mapping y 7→ κ(A, y) = P(A) is constant and hence measurable because
E \ E0 ∈ E .

• The mapping A 7−→ κY (A, y) = P(A) is clearly a probability measure on F .
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Disintegration Formula.

For the averaging property, let A ∈ F and D ∈ E . We wish to show that

P
(
A ∩ Y −1(D)

)
=

∫
D
κY (A, y) dPY (y).

Note that

∫
D
κY (A, y) dPY (y) =

∫
D∩E0

κY (A, y) dPY (y) +

��������������: 0∫
D∩(E\E0)

κY (A, y) dPY (y)

=

∫
D∩E0

hA(y) dPY (y)

CVF
=

∫
Y −1(D∩E0)

hA(Y (ω)) dP(ω)

=

∫
Y −1(D∩E0)

κ(A,ω) dP(ω)

= E
(
1Y −1(D∩E0) κ(A, ·)

)
= E

(
1Y −1(D∩E0) 1A

)
averaging property of P[A |σ(Y )]

= P
(
A ∩ Y −1(D ∩ E0)

)
= P

(
A ∩ Y −1(D)

)
since E0 is a subset of full measure.

■

Remarks 18.3.6

• To emphasise that each κY (·, y) is a probability measure, we often denote them by Py(·) and
so the collection {Py}y∈E is the system of conditional probability measures that disintegrates
P.

• If we let D = E, then the averaging property takes the form

P(A) =
∫
E
κY (A, y) dPY (y)

which is precisely the disintegration identity we set out to achieve at the start of this section.

18.3.1 EXTENDING THE DISINTEGRATION FORMULA

A chain of equalities written in a particular way helped me to realise how to proceed from this
point.

E
(
1Y −1(D) E[1A |σ(Y )]

)
= E

(
1Y −1(D) 1A

)
by the averaging property

..= P
(
A ∩ Y −1(D)

)
=

∫
Ω
1Y −1(D)(ω)1A(ω) dP(ω) by the disintegration formula

=

∫
D
κY (A, y) dPY (y)

=

∫
D

(∫
Ω
1A

(
ω′
)
dκY (·, y)(ω′)

)
dPY (y)

One can extend this equality from indicators 1A to any integrable random variable X : Ω→ R.
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Theorem 18.3.7 (Integral Form of Disintegration Theorem) For any integrable X : Ω→ R and
for any D ∈ E : ∫

Y −1(D)
X(ω) dP(ω) =

∫
D

(∫
Ω
X(ω′) dPy(ω′)

)
dPY (y).

Before proving this, I will make an immediate remark. Note that the LHS of this integral form is
E
(
1Y −1(D)X

)
which is equal to E

(
1Y −1(D) E[X |σ(Y )]

)
. Thus, we may write∫

Y −1(D)
E[X |σ(Y )] dP(ω) =

∫
D

(∫
Ω
X(ω′) dPy(ω′)

)
dPY (y).

Since E[X |σ(Y )] is σ(Y )-measurable, by Theorem 16.1.1 there exists some

hY ∈ MeasE|Y (Ω),R(Y (Ω) ;R) s.t. E[X |σ(Y )] = hY ◦ Y.

This means that the LHS can be written as∫
Y −1(D)

E[X |σ(Y )] dP(ω) =
∫
Y −1(D)

(hY ◦ Y )(ω) dP(ω)

=

∫
D
hY (y) dPY (y) by the CVF with y = Y (ω)

from which we conclude that for PY -a.e. y ∈ E

hY (y) =

∫
Ω
X(ω′) dPy(ω′).

Definition 18.3.8 We call the assignment hY the pointwise conditional expectation function
of X given Y = y, and we also denote it by

y 7−→ hY (y) ..=

∫
Ω
X(ω′) dPy(ω′) =.. E[X |Y = y].

Proof of Theorem 18.3.7.

1. For an indicator function X = 1A, where A ∈ F , the claim has already been shown.

2. Let X =
∑n

i=1 ai1Ai be a simple, measurable function. Then:∫
Y −1(D)

X(ω) dP(ω) =
n∑

i=1

ai

∫
Y −1(D)

1Ai(ω) dP(ω)

=
n∑

i=1

ai

∫
D

(∫
Ω
1Ai

(
ω′
)
dPy(ω′)

)
dPY (y) by Step 1

=

∫
D

(∫
Ω

n∑
i=1

ai1Ai

(
ω′
)
dPy(ω′)

)
dPY (y) by linearity

=

∫
D

(∫
Ω
X(ω′) dPy(ω′)

)
dPY (y)

3. Let X be non-negative and measurable. Then X is the pointwise limit of a non-decreasing
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sequence of simple functions Xn.∫
Y −1(D)

X(ω) dP(ω) =
∫
Y −1(D)

lim
n→∞

Xn(ω) dP(ω)

= lim
n→∞

∫
Y −1(D)

Xn(ω) dP(ω) by the MCT on {1Y −1(D)Xn}n∈N

= lim
n→∞

∫
D

(∫
Ω
Xn(ω

′) dPy(ω′)

)
︸ ︷︷ ︸

=.. gn(y)

dPY (y) by Step 2 with Xn-simple

=

∫
E

lim
n→∞

1D(y)gn(y) dPY (y) by the MCT on {1Dgn}n∈N

=

∫
D

∫
Ω

lim
n→∞

Xn(ω
′) dPy(ω′) dPY (y) by the MCT

=

∫
D

∫
Ω
X(ω′) dPy(ω′) dPY (y)

4. For the final step, let X be P-integrable. Then we can, as usual, write it as the difference of
two non-negative measurable functions X = X+ −X−. Then,∫

Y −1(D)
X(ω) dP(ω) =

∫
Y −1(D)

X+(ω) dP(ω)−
∫
Y −1(D)

X−(ω) dP(ω)

=

∫
D

∫
Ω
(X+(ω′)−X−(ω′)) dPy(ω′) dPY (y) by Step 3, and linearity

=

∫
D

∫
Ω
X(ω′) dPy(ω′) dPY (y)

■

Definition 18.3.9 If for PY -a.e. y ∈ E we have Y −1({y}) ∈ F and the measure Py is concentrated5

on Y −1({y}), then we call the Py proper conditional measures.

Remarks 18.3.10 It’s not always the case that for PY -a.e. y ∈ E we have that Y −1({y}) ∈ F .
This is because the measurability of Y −1({y}) depends on whether {y} ∈ E . If one is in the
situation where (E, E) is a standard Borel space, then singletons are Borel and hence measurable,
so Y −1({y}) ∈ F .

Remarks 18.3.11

• Theorem 10.4.8 is 10.4.5 for a generated sub-σ-algebra.

• Note again that these probability measures may not be concentrated on the sets Y −1({y})
and the latter may not even be measurable. A sufficient condition for the existence of proper
regular conditional probability measures is as follows:

Corollary 18.3.12 Suppose that in Theorem 10.4.8, E is countably generated and contains all
singletons. Then there exist regular conditional probabilities Py on the σ-algebra F ′ generated by
F and Y −1(E) s.t. for PY -a.e. y the measure Py is concentrated on the set Y −1({y}).

Furthermore, if Y has a version Ỹ ∈ MeasF , E(Ω ;E) s.t. Ỹ (F) ⊆ EPY
then Y −1({y}) ∈ FPy for

PY -a.e. y.

5Let µ be a measure on a measurable space (X,F), and A ∈ F . It’s said that µ is concentrated on A if
µ(X \A) = 0.
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18.3.2 CONDITIONAL LAW OF X GIVEN Y

Let κY : F × E → [0, 1] be a system of regular conditional probabilities on F generated by Y ∈
MeasF , E(Ω ;E). By restricting to F = σ(X) and re-labelling our events, we obtain the
conditional law of X given Y . More precisely, if we define

κY (X
−1(B)︸ ︷︷ ︸
∈F

, y) =.. κXY (B, y)

for B ∈ S, y ∈ E, then κXY is a system of regular conditional probabilities of X given Y :

A system of regular conditional probabilities of X : (Ω,F)→ (EX , EX) given
Y : (Ω,F)→ (EY , EY ) is a map κXY : EY × EX → [0, 1] s.t.

1. For every y ∈ EY , κXY (·, y) is a probability measure on (EX , EX).

2. For each B ∈ EX , the mapping y 7−→ κXY (B, y) is:

• an EY -measurable function satisfying for P-a.e. ω ∈ Ω:

P
[
X−1(B)

∣∣σ(Y )
]
(ω) = κXY (B, Y (ω)),

• and is PY -integrable, satisfying for all B ∈ EX and D ∈ EY :

P
(
X−1(B) ∩ Y −1(D)

)
=

∫
D
κXY (B, y) dPY (y).

18.3.3 PUSH-FORWARD OF MARKOV KERNELS

I encountered this fairly recently (January 2026) when studying the ordinary linear regression
model. Some assumptions of joint conditional normality of errors ε given predictors X(1), . . . ,X(n)

are made, and I needed this machinery to make rigorous statements about the related conditional
distribution of Y (i) = θ⊤X(i) + ε(i) by using an affine transformation to push the conditional law
of ε given the predictors forward.

The following definition offers a short and sweet way to refer to the mouthful that is a ‘regular
conditional probability of blah given blah.’

Definition 18.3.13 Let (EX , EX) and (EY , EY ) be measurable spaces. A Markov (or transi-
tion) kernel from EX to EY is a map κ : EY × EX → R s.t.

• for every x ∈ EX , κ(·, x) is a probability measure on (EY , EY ), and

• for every B ∈ EY , κ(B, ·) is EX -measurable.

Theorem 18.3.14 Given a jointly measurable map Z : EY × EX → EZ , the function κZ : EZ ×
EX → [0, 1] defined for B ∈ EZ and x ∈ EX by

κZ(B, x) ..= κ({y ∈ EY : Z(y, x) ∈ B}, x)

is a Markov kernel from EX to EZ .

Proof.

• Let x ∈ EX . We wish to show that κZ(·, x) is a probability measure on EZ , EZ . Let B ∈ EZ ,
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and denote by ιx : EY ↪→ EY × EX the inclusion map defined by ιx(y) = (y, x). Then

κZ(B, x) ..= κ({y ∈ EY : Z(y, x) ∈ B}, x)
= κ({y ∈ EY : Z(ιx(y)) ∈ B}, x)
= κ({y ∈ EY : (Z ◦ ιx)(y) ∈ B}, x)
= κ((Z ◦ ιx)−1(B)), x)

= ((Z ◦ ιx)♯κ(·, x))(B)

i.e. we conclude that κZ(·, x) is the push-forward of the probability measure κ(·, x) on
(EY , EY ) via the EY -EZ measurable map (Z ◦ ιx) : EY → EZ , and is therefore a probability
measure on (EZ , EZ).

• Let B ∈ EZ . We wish to show that κZ(B, ·) is EX -measurable. Let A ∈ BR. If we can show
that κZ(B, ·)−1(A) ∈ EY , then that demonstrates the claim.

= κZ(B, · )−1(A)
= {x ∈ EX : κZ(B, x) ∈ A}
= {x ∈ EX : κ({y ∈ EY : Z(y, x) ∈ B}, x) ∈ A}
= κ({y ∈ EY : Z(y, x) ∈ B}, ·)−1(A)

If we can show that this set is an element of EY , then the claim follows from κ(D, ·) being
EX -measurable for any D ∈ EY . Indeed, that set is equal to (Z ◦ ιx)−1(B)) = ι−1x (Z−1(B)),
and the joint-measurability of Z guarantees that Z−1(B) ∈ EY ⊗EX , and its pre-image under
ιx gives an element of EY . The claim is proven.

■



Conditional Probability 207

18.3.4 EXAMPLE: CONDITIONAL DENSITY FORMULA

Now to recover the traditional undergraduate conditional density formula.

Exercise 11 (Exercise 9.12.48 [14]) Let (X,A, µ) and (Y,B, ν) be probability spaces and f ∈
L1(µ⊗ν). Show that the image of the measure f ·(µ⊗ν) under the natural projection X×Y π1−→ X
is given by the density

ϱ(x) =

∫
Y
f(x, y) dν(y)

with respect to the measure µ.
Proof. The pushforward measure is defined for any A ∈ A by

(π1)♯(f · (µ⊗ ν))(A) ..= (f · (µ⊗ ν))(π−11 (A))

= (f · (µ⊗ ν))(A× Y )

..=

∫
A×Y

f d(µ⊗ ν)

=

∫
X×Y

1A×Y (x, y)f(x, y) d(µ⊗ ν)(x, y)

=

∫
X×Y

1A(x)f(x, y) d(µ⊗ ν)(x, y)

=

∫
X
1A(x)

∫
Y
f(x, y) dν(y) dµ(x)

=

∫
A
ϱ(x) dµ(x).

■

Lemma 18.3.15 (Conditional Density) Let P≪ λR2 be a probability measure on [0, 1]2, admitting
density f . Then regular conditional measures with respect to the projection to the first coordinate
axis have the form

Px(A) =

∫
{y : (x,y)∈A}

f(x, y)

f1(x)
dy

where x ∈ [0, 1] and

f1(x) =

∫ 1

0
f(x, y) dy.

Proof. We can put this in the framework of disintegration.

• (Ω,F) = ([0, 1]2,B[0,1]2)

• (E, E) = ([0, 1],B[0,1])

• Y = π1 : Ω→ E is the projection onto the first coordinate

Note that E = B[0,1] in our example is countably generated and contains all singletons of
E = [0, 1]. By the corollary above, there exists a system of regular conditional probabilities
{Px}x∈E=[0,1] on F generated by Y = π1, and this system is proper i.e. for Pπ1-a.e. x ∈ E = [0, 1],
the probability measure Px is concentrated on π−11 ({x}) = {x} × [0, 1]. We use x in this example
because we’ll appeal to Euclidean space and x is the first coordinate.

By the disintegration theorem, for any A ∈ F = B[0,1]2 and D ∈ E = B[0,1]:

P
(
A ∩ π−11 (D)

)
=

∫
D
Px(A) dPπ1(x)
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The LHS is
P
(
A ∩ π−11 (D)

)
= P(A ∩ (D × [0, 1]))

=

∫
A∩(D×[0,1])

f dλR2 since P has density f

=

∫
D

(∫
{y : (x,y)∈A}

f(x, y) dy

)
dx by Fubini’s theorem.

D

1

1x E = [0, 1]

[0, 1]

Figure 18.2: An example of a vertical slice (for fixed x ∈ D) in A ∩ (D × [0, 1]) over which we
integrate.

For the RHS, we use Exercise 9.12.48 [14]. Since P ≪ λR2 , we can write it as P(A) =
∫
A f dλ

2 =∫
A f d(λ⊗ λ) i.e. P = f · (λ⊗ λ) and so we’re in the situation where

• (X,A, µ) = (Y,B, ν) = ([0, 1],B[0,1], λ)

• f is the given density function of P, and

• f · (µ⊗ ν) = f · (λ⊗ λ) = P

Thus, the image measure Pπ1 has density ϱ defined by

ϱ(x) =

∫
[0,1]

f(x, y) dλ(y),

and so the RHS of our integral equality is given by∫
D
Px(A) dPπ1(x) =

∫
D
Px(A)ϱ(x) dx.

Finally, the LHS and RHS are equal as integrals, so their difference is equal to 0 and so their
respective integrands are equal for λ-a.e. x ∈ [0, 1]:∫

{y : (x,y)∈A}
f(x, y) dy = ϱ(x)Px(A).

If ρ(x) is equal to 0 for some x, we don’t have enough information to determine Px(A). However,
as in the construction in Theorem 10.4.8, one may choose any probability measure as Px. ■
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Remarks 18.3.16

• This lemma is Example 10.4.20 from [14, pp. 367–368].

• The attached comment from Bogachev is that the measure Px is concentrated on the vertical
interval {x} × [0, 1], and is given by the density y 7−→ f(x, y)/f1(x) with respect to the
natural Lebesgue measure on this interval.

• As for my personal commentary:

◦ The attached comment should say for all x ∈ [0, 1] s.t. f1(x) > 0.
◦ The example also states that ‘we set f(x,y)

f1(x)
= 0 when f1(x) = 0’ but I think this is wrong

or a throwaway comment instead of something rigorous. This is because the problem
setup guarantees the existence of Px for every x ∈ [0, 1], of which Pπ1-almost every
conditional probability measure is concentrated on its respective fibre π−11 ({x}) so up
to some Pπ1-null set of x, the disintegration formula is unaffected. Indeed, the proof
of Theorem 10.4.8 says that we may simply set Px to be some probability measure on
(Ω,F). Setting the quotient to be zero would give you Px as the zero measure but that’s
not a probability measure.

18.3.5 SO MANY RANDOM VARIABLES

I’ll make a previous exercise 7.72 [6], 7.98 [7] about the density of the t-distribution rigorous.

Example 18.3.17 Recall that we defined T to be the ratio Z√
W/ν

where Z ∼ N (0, 1) and W ∼ χ2
ν ,

with Z and W independent.

(a) If W is fixed at w, then T is given by Z/c where c =
√
w/ν. Use this idea to find the

conditional density of T for a fixed W = w.

(b) Find the joint density of T and W using f(t, w) = f(t | w)f(w).

Proof. The setup is that P represents the joint distribution of Z and W :

(Ω,F ,P)

(R× R⩾0,BR ⊗ BR⩾0
, (T,W )♯P) (R⩾0,BR⩾0

, (π2)♯((T,W )♯P) = PW )

W
(T,W )

π2

We can disintegrate in two equivalent ways because W = π2 ◦ (T,W ):

• Disintegrate P with respect to W

• Disintegrate the push-forward measure (T,W )♯P with respect to the projection map onto the
second coordinate.

Both approaches lead to the same integral equality i.e. ∀B ∈ BR, ∀D ∈ BR⩾0
:

P({T ∈ B} ∩ {W ∈ D}) = P
(
(T,W )−1(B ×D)

)
= ((T,W )♯P)(B ×D) =

∫
D
Pw(T ∈ B) dPW (w).

We are given that W admits a density fW (w) and so we may write

((T,W )♯P)(B ×D) =

∫
D
Pw(T ∈ B)fW (w) dλ(w).

If we can demonstrate that Pw(T ∈ ·) admits a density, then it follows that (T,W ) admits a density,
from which the undergraduate formula reveals itself:



Conditional Probability 210

• Begin by observing that Pw(T ∈ ·) = Pw(g(Z) ∈ ·) is the push-forward (g ◦ Z)♯Pw, where
g(z) = z/

√
w/ν.

• The mutual independence of Z and W tells us that the conditional density of Z given W
remains unchanged. For any fixed w, T = Z/

√
w/ν and so T = Z/c where c =

√
w/ν and

Z ∼ N (0, 1).

Thus, we conclude that for every w the conditional probability measure Pw(T ∈ ·) of T given W is
absolutely continuous with respect to the Lebesgue measure λ and its density is

fT |W (t | w) =
√

w

2πν
exp

(
−w
2ν t

2
)
.

Therefore,

((T,W )♯P)(B ×D) =

∫
D
Pw(T ∈ B)fW (w) dλ(w)

=

∫
D

∫
B
dPw(T ∈ ·)(ω′)fW (w) dλ(w)

=

∫
D

∫
B
fT |W (t | w) dλ(t)fW (w) dλ(w)

=

∫
B×D

fT |W (t | w)fW (w) d(λ⊗ λ)(t, w)

so the joint density of T and W is given by

f(T,W )(t, w) = fT |W (t | w)fW (w).

Finally, we follow the algebraic manipulations as before to demonstrate the relevant expressions. ■

A more general case follows.
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CHAPTER 19

Disintegration (Separable Case)

Example 18.1.4 from earlier began with the conditional probability κ on F given a σ-algebra G
generated by a partition {Bn}j∈{0}∪J⊆N of Ω, and it was later demonstrated in 18.2.2 that for each
A ∈ F , κ decomposes into a countable sum of conditional probability measures:

κ(A,ω) = P(A |B0)1B0(ω) +
∑
i∈J

P(A |Bi)1Bi(ω)

for P-a.e. ω ∈ Ω. This decomposition allowed us to conclude that κ is regular.
The condition that G is generated by a partition is very specific and can be relaxed.

Definition 19.0.1 A σ-algebra is called separable if it’s generated by a countable class of sets.

Example 19.0.2 Any σ-algebra generated by a partition is an example of a separable σ-algebra.
The countable generating class of a separable σ-algebra need not be pairwise disjoint, and so the
definition is more general.

We can make a slightly more general claim than the partition case that serves as a partial
converse. Namely, if we suppose that there exists a separable sub-σ-algebra G ⊆ F , and that κ
is a regular conditional probability, then there exists a partition of Ω and the decomposition of κ
follows.

Proving this will be the aim of this chapter!

Some preliminary facts about the atomic structure of σ-algebras can’t be avoided:

19.1 Atoms

Let G be a σ-algebra and G′ ⊆ G be a sub-σ-algebra.

Definition 19.1.1 A G-atom is a set A ∈ G s.t.

∀B ∈ G : either B ∩A = A or B ∩A = ∅. (⋆1)

Definition 19.1.2 A G-atom is a set A ∈ G s.t.

∀B ∈ G, B ⊆ A : either B = A or B = ∅. (⋆2)

Claim The two definitions above are equivalent.

Proof.

1 =⇒ 2:

Suppose that A satisfies (⋆1). Then take B ∈ G with B ⊆ A. This means that either

A ∩B = A or A ∩B = ∅.

Coupled with B ⊆ A, we conclude that either

B = A or B = ∅.
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2 =⇒ 1:

Suppose that A satisfies (⋆2). Then take any B ∈ G. We want to show that either

A ∩B = A or A ∩B = ∅.

Note that (A ∩B) ∈ G. Also, (B ∩A) ⊆ A. By (⋆2), we have that

B ∩A = A or (B ∩A) = ∅.

■

The crucial fact that will give us our decomposition is the following

Lemma 19.1.3 (Exercise 12, [15, p. 207]) If G is a separable σ-algebra, then there exist at most
continuum many atoms Bt ∈ G (i.e. B ⊆ Bt, B ∈ G =⇒ B ∈ {∅, Bt}) such that

⋃
tBt = Ω and

each element of G is a union of these atoms.

Proof. Let {Fj}j∈J⊆N be the generators of G. An outcome’s location in Ω relative to the Fj is
completely determined by its membership in every Fj i.e. we can define a mapping χ : Ω→ {0, 1}J
for any ω ∈ Ω by

χ(ω) = (1F1(ω),1F2(ω), . . .) ∈ {0, 1}J .

If two outcomes ω, ω′ share the same value χ(ω) = χ(ω′), then they are indistinguishable from the
perspective of the countable collection. This gives us a natural way to partition Ω. Define ∼ over
Ω by ω ∼ ω′ ⇐⇒ χ(ω) = χ(ω′). It follows immediately that ∼ is an equivalence relation. Thus,
for any t = (t1, t2, . . .) ∈ {0, 1}J we may define the equivalence class

Bt
..= χ−1({t}) = {ω ∈ Ω: 1Fj (ω) = tj for all j ∈ J}

=
⋂
j∈J

Ej

where each Ej is defined by

Ej =

{
Fj if tj = 1

F c
j if tj = 0.

These sets Bt are pairwise disjoint and their union is all of Ω. Since every Bt is the countable
intersection of Ej ∈ G, and G is a σ-algebra, we conclude that Bt ∈ G and so the {Bt}t form a
partition of Ω.

Now we wish to show that the Bt are G-atoms. For any A ∈ G, we wish to show that if A ⊆ Bt

then either A = ∅ or A = Bt. Since A ∈ G, we may write it as χ−1(S) for some Borel subset
S ⊆ {0, 1}J . (Why? Why.1) If A ̸= ∅, then A ⊆ Bt means that t ∈ S. Thus, A also contains all
points ω with χ(ω) = t i.e. Bt ⊆ A. Therefore, A = Bt. Otherwise, A is empty. ■

Given two σ-algebras G′ ⊆ G, there is a relationship between their atoms.

• If A ∈ G can’t be decomposed (i.e. written as a disjoint union of elements of G), then it
certainly can’t be decomposed by (less) sets in G′ ⊆ G.

1This mapping is measurable with respect to G. We must choose an appropriate σ-algebra to equip {0, 1}J
with. The natural choice, since we have a coordinate-wise map is the product σ-algebra C which generated by the
cylindrical sets. This is the coarsest σ-algebra for which the coordinate maps πj ◦ χ = 1Fj measurable. Indeed, by
Proposition 6.0.3 we conclude that

χ ∈ MeasΩ, {0,1}J (G ;σ(C))
and note that the pullback σ-algebra under χ is given by

σ(χ) = σ({χ−1(Cj) : j ∈ J}) = σ({Fj : j ∈ J}) = G.
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• If such an A ∈ G is also declared to be an element of G′, then A is also a G′-atom.

Since κ is a conditional probability on F given G, the functions ω 7−→ P[A | G](ω) are G-
measurable. In particular, this means that for every S ∈ B[0,1], events of the form (P[A | G])−1(S)
are elements of G. The σ-algebra generated by the collection of such events

G′ ..= σ({(P[A | G])−1(S) : S ∈ B[0,1]}A∈F )

is a sub-σ-algebra of G.
Another consequence of the G-measurability of the functions ω 7−→ P[A | G](ω) is that they

reduce to constants on the atoms of G. In fact, they reduce to constants on possibly larger
events. Namely, on atoms of the σ-algebra G′ ⊆ G. It suffices to take events of the form
(P[A | G])−1((−∞, r)) where r ∈ Q>0.

Definition 19.1.4

• The atoms of G′ will be called κG-atoms.

• Every event contained in a κG-atom will be called κG-indecomposable.

19.2 Decomposition Theorem

Theorem 19.2.1 (Decomposition Theorem A [16, p. 22]) If κ is a regular conditional probability,
and G contains a separable σ-algebra G′ whose atoms are κG-indecomposable, then there exists a
partition

Ω = N ⊔

(⊔
t∈T

Bt

)
with T ⊆ R and P(N) = 0 s.t. except on F ×N :

κG =
∑
t∈T

P(· |Bt)1Bt

where the P(· |Bt) are probabilities on F and P(Bt |Bt) = 1.

Proof. Denote by {Fj} the countable class that generates G′ ⊆ G. Since G′ is separable, by
Lemma 19.1.3 there exists a partition

Ω =
⊔
t∈T ′

Bt

into atoms Bt ∈ G′. Since P(Ω) = 1, at most countably many of these atoms have P(Bt) > 0.
For each generator Fj , by definition of the r.c.p. we have that

κG(Fj , ω) = E
[
1Fj

∣∣G](ω) = 1Fj (ω)

for P-a.e. ω ∈ Ω because 1Fj is G-measurable. Denote by Nj the P-null set on which that equality
fails i.e.

Nj
..= {ω ∈ Ω: κG(Fj , ω) ̸= 1Fj (ω)} ∈ G.

Then their (countable) union N =
⋃

j Nj is an element of G and is also P-null.
This means that for every generator Fj , and every ω ∈ Ω \N , the following equality holds

κG(Fj , ω) = 1Fj (ω).

This defines an equality of measures on the generators of G′. Thus, they agree on G′. In particular,
for every Bt and ω ∈ Bt \N :

κG(ω,Bt) = 1. (19.1)

Every G′-atom Bt is assumed to be κG-indecomposable. By the κG-indecomposability of every
Bt, we know that for each A ∈ F the functions ω 7−→ κ(A,ω) = P[A | G](ω) are almost surely
constant on every Bt.
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• Now let’s consider only those atoms Bt for which P(Bt) > 0. By the averaging property of
conditional expectation, for each such Bt:

E(1Bt1A) = P(A ∩Bt) =

∫
Ω
P[A | G](ω)1Bt(ω) dP(ω) = E(P[A | G]1Bt)

=

∫
Bt

P[A | G](ω) dP(ω)

= P[A | G](ω)
∫
Bt

dP(ω) since it’s constant a.s. on Bt

= P[A | G](ω)P(Bt)

i.e.
∀P ω ∈ Bt : P(A ∩Bt) = κ(A,ω)P(Bt). (19.2)

Since P(Bt) > 0, we can divide through to obtain the expression

κ(A,ω) =
P(A ∩Bt)

P(Bt)︸ ︷︷ ︸
=..PBt (A).

Since κ is regular, each κ(·, ω) is a probability measure on F for ω ∈ Bt \N , and so PBt is a
probability measure on F .

• For those atoms Bt that are P-null, equation 19.2 breaks down. We cannot divide by 0.
However, equation 19.1 tells us that κG assigns full conditional probability to Bt. We can
define κG(·, ω) to be any probability measure PBt supported on Bt.

Thus, we arrive at the decomposition

Ω = N ⊔
⊔
t∈T

Bt

and the regular conditional probability can be written in the form

κG(A,ω) =
∑
t∈T

PBt(A)1Bt(ω), for ω ∈ Ω \N.

■
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Now I’ll return to reading Chapter 6 from [1] — the book that kicked off this large tangent because
I didn’t know, rigorously, what conditional probability is.
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CHAPTER 20

Approximation

The keen eye will notice that we’ve been following a single workflow:

• Suppose that a population Π follows a particular distribution — this is represented by a
probability space. Then we formalise the act of drawing one element from Π by a random
variable X defined on Π. The distribution of this random variable is the distribution of the
population e.g. writing X ∼ N (µ, σ2) means the population is normal.

• Sample from this population randomly by realising n i.i.d. copies of X (namely X1, . . . , Xn)

• Decide on a quantity/population parameter to estimate e.g. µ or σ2 in this case. Let’s say
we focus on µ assuming σ2 is known.

• Consider a statistic T so that the estimator T (X1, . . . , Xn) can be used to estimate said
parameter

◦ e.g. X = T (X1, . . . , Xn) ..=
X1 + . . .+Xn

n
to estimate µ.

• Investigate the sampling distribution of T ◦X

• Use this sampling distribution to make some inference/decision

◦ e.g. In Example 15.1.2, we rewrote P
(
|X − µ| ⩽ 0.3

)
as P(−0.9 ⩽ Z ⩽ 0.9) by observ-

ing that Z ..= (X − µ)/(σ/
√
n) ∼ N (0, 1), and then read off a statistical table for the

probability that the sample mean is within 0.3 ounces of the population (true) mean.

If σ is unknown, we can estimate σ with S =
√
S2, consider T (X1, . . . , Xn) = (X−µ)/(S/

√
n),

investigate its sampling distribution (which is the tn−1 distribution from last chapter) and then
make some inference. Again, these steps follow the above framework.

20.1 Approximation

The behaviour of certain sample quantities as the sample size n → ∞ can offer some useful
approximations for the finite-sample case (because expressions often become simplified in the limit)
despite an infinite sample being a theoretical artefact.

In particular, we can look at the behaviour of

Xn
..=

1

n

n∑
i=1

Xi

as n grows. Investigating this statistic will lead us to the main idea of this chapter — the central
limit theorem which is concerned with giving an asymptotic (i.e. for large, fixed n) approxima-
tion for the sampling distribution of the (standardised) sample mean of a random sample of n
observations drawn from any population (irrespective of the the population distribution).

We build up to it by discussing modes of convergence (of random variables) and some prelimi-
nary results on the behaviour of the sample mean Xn (of X1, . . . , Xn).

What follows is several sections on the types of convergence of random variables defined on the
same probability space.
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20.2 Convergence in Probability

Definition 20.2.1 A sequence of random variables X1, X2, . . . (without stipulation on their dis-
tribution) converges in probability to a random variable X if ∀ε > 0:

lim
n→∞

P(|Xn −X| ⩾ ε) = 0.

Equivalently, we can write P(|Xn −X| < ε)
n→∞−→ 1.

The following theorem will serve to make some sense of the above definition.

Theorem 20.2.2 (Weak Law of Large Numbers) Let X1, X2, . . . be independent and identically
distributed random variables with E(Xi) = µ and Var(Xi) = σ2 < ∞. Then Xn converges in
probability to (the constant random variable) µ i.e. ∀ε > 0:

lim
n→∞

P
(
|Xn − µ| < ε

)
= 1.

The weak law of large numbers says the measure (probability) of the set (of ω ∈ Ω) on which
there are “large” ε deviations of Xn from µ goes to zero but this makes no guarantee that our
sequence (Xn)n∈N stays within ε of µ forever after a certain point along the sequence.

Proof. Let ε > 0. Then

P
(
|Xn − µ| ⩾ ε

)
= P

(
(Xn − µ)2 ⩾ ε2

)
⩽

1

ε2
E
(
(Xn − µ)2

)
by Chebyshev’s Theorem

=
Var
(
Xn

)
ε2

=
σ2

nε2

By considering complements,

P
(
|Xn − µ| < ε

)
= 1− P

(
|Xn − µ| ⩾ ε

)
⩾ 1− σ2

nε2
n→∞−→ 1.

■

20.2.1 CONSISTENCY

The property exhibited in the Weak Law of Large Numbers, that a sequence of the “same” sample
quantity (Xn in this case) converges in probability to a constant (µ in this case) as n → ∞, is
called consistency of the estimator. This is expanded upon in Section 21.11.2.
Let X1, X2, . . . be a sequence of i.i.d. random variables with mean µ and finite variance σ2 < ∞.
Denote by

• Xk the sample mean of the first k observations

Xk
..=

1

k

k∑
i=1

Xk,

• and by S2
k the sample variance of the first k observations.

S2
k

..=
1

k − 1

k∑
i=1

(Xi −Xk)
2.
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Example 20.2.3 (Consistency of S2) An analogous weak law holds for S2
n, also by Chebyshev’s

theorem.

Theorem 20.2.4 Let g be a measurable function. If Xn converges to X in probability as n→∞,
then g(Xn) converges in probability to g(X) as n→∞.

Corollary 20.2.5 Since S2
n is a consistent estimator of σ2, let g =

√
· and then we observe that

Sn is a consistent estimator of σ =
√
σ2 =.. g(σ2).

Exercise 12 (Example 5.5.5 [1, p. 190] and Exercise 5.11 [1, p. 209]) Sn is a biased estimator of
σ (but the bias disappears asymptotically).

The solution of this depends on Jensen’s inequality which I shall present in the short, and self-
contained subsection just below.

Proof.

E(Sk) = E
(√

S2
k

)
⩽
√
E
(
S2
k

)
by Jensen’s Inequality

=
√
σ2 since S2

k is an unbiased estimator of σ2

= σ

■

20.2.2 JENSEN’S INEQUALITY

Theorem 20.2.6 (Jensen’s Inequality) Let X be a random variable.

• If g(x) is a convex function, then E(g(X)) ⩾ g(E(X)).

• If g(x) is a concave function, then E(g(X)) ⩽ g(E(X)).

Equality E(g(X)) ⩽ g(E(X)) holds iff P({g(X) = aX + b}) = 1 for every tangent line ax + b to
g(x) at x = E(X).

Remarks 20.2.7 The condition ‘for every tangent’ line originally confused me but it’s there to
deal with situations where a tangent line isn’t unique e.g. a cusp of the function, or the endpoints
of a flat part of the function (at which the derivative isn’t smooth).

Proof. Let ℓ(x) = ax + b be a tangent line to g(x) at the point x = E(X). Since g is convex,
g(x) ⩾ ℓ(x) = ax+ b for all x. This means that for every outcome ω ∈ Ω, we have that g(X(ω)) ⩾
aX(ω) + b. By the monotonicity of the Lebesgue integral w.r.t. P:

E(g(X)) ⩾ E(aX + b)

= aE(X) + b

=.. ℓ(E(X))

= g(E(X)) since ℓ is tangent to g at E(X).

Now for the equality criterion.

⇐= Since ℓ(x) = ax+ b is tangent to g(x) at x = E(X), we have that both ℓ and g pass through
the same point at x = E(X). By the convexity of g, g(x) ⩾ ℓ(x) for all x. Suppose that
P({g(X) = aX + b}) = 1 i.e. ∀P ω ∈ Ω: g(X(ω)) = aX(ω) + b. They only differ on a set of
probability zero so their expectations are equal i.e.

E(g(X)) = E(ℓ(X))

= aE(X) + b

=.. ℓ(E(X))

= g(E(X)) because they both pass through the same point.
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=⇒ The “only if” direction is proven by contrapositive i.e. suppose that there exists some tangent
line ℓ(x) = ax + b for which P({g(X) = aX + b}) < 1. Then we wish to demonstrate that
g(E(X)) ̸= E(g(X)).

To this end, note that since g is convex (and so g(x) ⩾ ℓ(x)), and g(X) isn’t equal to ℓ(X)
with probability 1, then P({g(X) > a+ bX}) > 0. Now observe that we may partition our
outcome space by

◦ B ..= {ω ∈ Ω: g(X(ω)) > aX(ω) + b},
◦ and its complement Bc = {ω ∈ Ω: g(X(ω)) = aX(ω) + b}

It follows that

E(g(X)) =

∫
B⊔Bc

g(X) dP

=

∫
B
g(X) dP+

∫
Bc

g(X) dP

=

∫
B
g(X) dP+

∫
Bc

(aX + b) dP

>

∫
B
(aX + b) dP+

∫
Bc

(aX + b) dP

=

∫
Ω
(aX + b) dP

=.. E(aX + b)

= aE(X) + b

=.. ℓ(E(X))

= g(E(X)) since they both pass through the same point at x = E(X).

■

20.3 Almost Sure Convergence

This mode of convergence is stronger than convergence in probability.

Definition 20.3.1 A sequence of random variables X1, X2, . . . converges P-almost surely to X
if ∀ε > 0:

P
(
lim
n→∞

|Xn −X| < ε
)
= 1.

This is similar to point-wise convergence of functions but convergence need not happen on at
most a set of probability zero. We also denote this convergence by Xn

n→∞−→ X P-a.s. or Xn
P-a.s.−→ X

as n→∞.

Example Consider the probability space (Ω = [0, 1],B[0,1], λ[0,1]). Recall that the probability
measure λ[0,1] is the uniform probability distribution. Define Xn(ω) = ω + ωn and X(ω) = ω.
For each ω ∈ [0, 1), ωn → 0 as n → ∞ so Xn(ω) → ω = X(ω) on [0, 1). However, for every
n ∈ N : Xn(1) = 2 ̸= 1 = X(1) so Xn(1) ̸−→ X(1). In summary, Xn converges to X on [0, 1) and
λ[0,1]([0, 1)) = 1 so Xn converges λ[0,1]-almost surely to X as n→∞.

Remarks 20.3.2

• The converse, that convergence in probability implies P-almost sure convergence, is not true.

• However, a partial converse exists: If X1, X2, . . . converges to X in probability, then we can
extract a subsequence that does converge P-almost surely.

A stronger version of the weak law of large numbers holds.
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Theorem 20.3.3 (Strong Law of Large Numbers) Let X1, X2, . . . be independent and identically
distributed random variables with E(Xi) = µ and Var(Xi) = σ2 <∞. ThenXn converges P-almost
surely to (the constant random variable) µ i.e. ∀ε > 0:

P
(
lim
n→∞

|Xn − µ| < ε
)
= 1.

In the SLLN, we’re saying that the set on which “the sequence of sample means eventually
stabilises within an epsilon of the population mean” has (measure) probability 1

P
(
{ω ∈ Ω: lim

n→∞
Xn = µ}

)
= 1.

20.4 Convergence in Distribution

The third mode of convergence is one we’d already seen when discussing moment-generating func-
tions. This mode of convergence will let us formulate the main theorem of this chapter — the
CLT.

Definition 20.4.1 A sequence of random variables X1, X2, . . . converges in distribution to a ran-
dom variable X if

lim
n→∞

FXn(x) = FX(x)

for all points x where FX(x) is continuous.

Convergence in distribution is implied by other types of convergence.

Theorem 20.4.2 If Xn → X in probability, then Xn → X in distribution.

The following proof follows the guideline of Exercise 5.40 [1, p. 213]:

(a) Given t and ε, show that P({X ⩽ t− ε}) ⩽ P({Xn ⩽ t}) + P({|Xn −X| ⩾ ε}). This gives a
lower bound on P({Xn ⩽ t}).

(b) Use a similar strategy to get an upper bound on P({Xn ⩽ t}).

(c) By pinching, deduce that P({Xn ⩽ t})→ P({X ⩽ t}).

Proof.

(a) We want a lower bound on P({Xn ⩽ t}) so we should be looking for some event A that
implies B = {Xn ⩽ t}, for this would tell us that A ⊆ B from which we can deduce (by
the monotonicity of P) that P(A) ⩽ P(B). Hopefully this will give me what I need. That
Xn(ω) ⩽ t certainly happens if both X(ω) is at least some ε to the left of t, and that Xn is
within ε of X.

0 X t− ε t

X − ε X + ε

Figure 20.1: A visualisation of the shaded region where Xn can reside given the two conditions
prescribed.

Let ω ∈ Ω be s.t. X(ω) ⩽ t− ε and |Xn(ω)−X(ω)| ⩽ ε. It follows that

|Xn(ω)−X(ω)| ⩽ ε ⇐⇒ −ε ⩽ Xn(ω)−X(ω) ⩽ ε

=⇒ Xn(ω) ⩽ X(ω) + ε ⩽ (t− ε) + ε = t
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so it follows that A ..= {X ⩽ t− ε}∩{|Xn−X| ⩽ ε} ⊆ B. Taking probabilities, we have that

P({X ⩽ t− ε} ∩ {|Xn −X| ⩽ ε}) = P(C ∩D) = P(A) ⩽ P(B) = P({Xn ⩽ t}).

The desired formula suggests1 that we should write P(C ∩D) = P(C) − P(C ∩Dc) because
Dc = {|Xn −X| ⩾ ε}. Thus,

P(C ∩D) = P(C)− P(C ∩Dc)

⩾ P(C)− P(Dc) since P(C ∩Dc) ⩽ P(Dc).

We conclude (a) by combining the two inequalities:

P({X ⩽ t− ε})− P({|Xn −X| ⩾ ε}) ⩽ P({Xn ⩽ t}).

(b) I would argue that ‘similarly’ is not a good word to describe what’s going on in this case.
The spirit of the argument is somewhat opposite to (a). Where for the lower bound, we fixed
X and asked where Xn could be, for the upper bound we fix Xn and ask where X could be
(in the sense that we’re looking for a containment {Xn ⩽ t} ⊆ B).

In that spirit, we fix {Xn ⩽ t} and partition the outcome space based on where X can be:

{Xn ⩽ t} ⊆ {Xn ⩽ t} ∩ Ω

= {Xn ⩽ t} ∩ ({|Xn −X| < ε} ⊔ {|Xn −X| ⩾ ε})
= ({Xn ⩽ t} ∩ {|Xn −X| < ε}) ⊔ ({Xn ⩽ t} ∩ {|Xn −X| ⩾ ε})
=.. A1 ⊔A2

⊆ A1 ⊔ {|Xn −X| ⩾ ε}

Let ω ∈ A1. Then, X(ω) ⩽ ε+ t. Thus, we conclude a similar inequality:

P({Xn ⩽ t}) = P(B) = P(B ∩ Ω) ⩽ P(A1 ⊔ {|Xn −X| ⩾ ε})
⩽ P({X ⩽ t− ε} ⊔ {|Xn −X| ⩾ ε})
⩽ P({X ⩽ t− ε}) + P({|Xn −X| ⩾ ε})

Thus, we’ve proven (b):

P({Xn ⩽ t}) ⩽ P({X ⩽ t− ε}) + P({|Xn −X| ⩾ ε}).

(c) Combining (a) and (b) gives

P({X ⩽ t− ε})−P({|Xn −X| ⩾ ε}) ⩽ P({Xn ⩽ t}) ⩽ P({X ⩽ t− ε})+P({|Xn −X| ⩾ ε}).

Since Xn → X in probability, the terms P({|Xn −X})
n→∞−→ 0. Thus, P({Xn ⩽ t}) −→

P({X ⩽ t}) as n→∞ which is what it means for Xn to converge to X in distribution.

■

Theorem 20.4.3 For a consistent estimator, convergence in probability and distribution are the
same i.e. The sequence of random variables X1, X2, . . . converges in probability to a constant
(random variable) µ iff the sequence converges in distribution to µ.

1I’m not very satisfied with my hand being held so much but it’s 1am and it is what it is.
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20.5 An Approximation for X — Classical Central Limit Theorem

The general vibe of the CLT is that it gives us an asymptotic, i.e. for large, fixed n, approximation
for the sampling distribution of X regardless of the distribution of the population from which the
sample is drawn.

This was a bit of a minefield to navigate, primarily because many texts present different versions
(in terms of assumptions and form of conclusion) of the Central Limit Theorem. It looks like there
are 3 main ones. In descending order of strength of assumptions (so increasing order of generality
i.e. weaker assumptions):

• The classical CLT is Lindenberg-Lévy

◦ Xi i.i.d. with E(Xi) = µ, finite variance Var(Xi) = σ2.

• Lyapunov CLT

◦ Xi independent, |Xi| have moments of some order (2+δ) and the growth of the moments
is limited by the “Lyapunov condition.”

• Lindenberg-Feller CLT

◦ Replace the Lyapunov condition with the weaker “Lindenberg condition.”

This means that C&B and Wackerly approach a special case of the classical Lindenberg-Lévy
CLT by assuming the Xi all have MGFs in some neighbourhood of the origin.

• [7] Theorem 7.5 = [1] Theorem 5.5.14

◦ Lindenberg-Lévy with added MGF assumption to offer a nice proof

• [7] Theorem 7.4 = [1] Theorem 5.5.15 (“Strong CLT”)

◦ Just Lindenberg-Lévy which neither text proves.

If people would just unify under common names, humanity would advance so profusely.

Theorem 20.5.1 (Special case of Lindenberg-Lévy CLT) Let X1, X2, . . .
i.i.d.∼ X whose MGFs

exist in a neighbourhood of the origin (that is, ∃b > 0 s.t. MX(t) exists for |t| < b). Let E(Xi) = µ
and Var(Xi) = σ2 > 0. (Both µ and σ2 are finite as a consequence of the MGFs existing)
Let Gn(x) denote the CDF of the random variable

Xn − µ
σ/
√
n
.

Then for any x ∈ R
lim
n→∞

Gn(x) =

∫ x

−∞

1√
2π
ey

2/2 dy.

Limitations of the CLT include:

• We have no way of knowing how good the approximation is in general.

◦ In fact, the goodness of the approximation is a function of the original distribution itself
so we must check this on a case-by-case basis.

• Meta-limitation: Increased and cheaper computation power lessens the importance of finding
approximations like this.
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A fundamental nuance of the CLT is that for a fixed (but very large) n, the shape of the
frequency distribution (histogram) will begin to look similar to a normal frequency distribution
(the iconic bell shape). This means we can renormalise it to get the approximate distribution of
the sample mean. However, the problem is that the variance of the sample means will continue to
decrease in size (since Var

(
Xn

)
= σ2/n) and so the distribution of the normalised sample mean

converges to a degenerate distribution — the distribution of the constant random variable µ, as
stated in the laws of large numbers.

This is what Wackerly et al. mean when they write:

As a matter of convenience, the conclusion
of the central limit theorem is often
replaced with the simpler statement that
X is asymptotically normally distributed
with mean µ and variance σ2/n.

[7, p. 372]

Proof. We’ll show that for |t| < h, the MGF of (Xn − µ)/(σ/
√
n) converges to exp(t2/2), the

MGF of a standard normally distributed random variable. The quantity of interest is the moment-
generating function M(Xn−µ)/(σ/

√
n)(t) so one needs to figure out for which values of t it exists.

Xn − µ
σ/
√
n

=

√
n

σ

((
1

n

n∑
i=1

Xi

)
− µ

)
=

1√
n

n∑
i=1

Xi − µ
σ

=..
1√
n

n∑
i=1

Yi

Since X1, X2, . . .
i.i.d.∼ X, Y1, Y2, . . .

i.i.d.∼ Y where Y = (X − µ)/σ. Then we can see that the MGF
of (Xn − µ)/(σ/

√
n) is:

MXn−µ
σ/
√
n

(t) = E

(
exp

(
1√
n

n∑
i=1

Yi

))

= E

(
n∏

i=1

exp
(

t√
n
Yi
))

7.1.3
=

n∏
i=1

E
(
exp

(
t√
n
Yi
))

=
(
MY

(
t√
n

))n
by identical distribution

We can go one step further and write the MGF of Yi in terms of the MGF of X in order to determine
where the MGF of (Xn − µ)/(σ/

√
n) is defined. Appealing to Lemma 11.0.3,

MXn−µ
σ/
√
n

(t) =
(
MY

(
t√
n

))n
=
(
M(X−µ)/σ

(
t√
n

))n 11.0.3
=

(
exp

(−µ
σ

t√
n

)
MX

(
1
σ

t√
n

))n
Since the MGFs of the Xi exist for |t| < h, the MGF of (Xn − µ)/(σ/

√
n) exists for

∣∣∣ 1σ t√
n

∣∣∣ <
h ⇐⇒ |t| < hσ

√
n.

Since the MGF exists in a neighbourhood of the origin, it coincides with its Taylor series for
|t| < hσ

√
n:

MY

(
t√
n

)
=
∞∑
k=0

E
(
Y k
)(

t√
n

)k
k!

=
∞∑
k=0

M
(k)
Y (0)

(
t√
n

)k
k!

= 0 + 1 +

(
t√
n

)2
2!

+RY

(
t√
n

)
since by construction Y ∼ N (0, 1) and:
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• M
(0)
Y = E

(
Y 0
)
= 1, trivially,

• M
(1)
Y (0) = E

(
Y 1
)
= 0, and

• M
(2)
Y (0) = E

(
Y 2
)
= Var(Y ) + (E(Y ))2 = 1 + 0 = 1.

Thus, we’re interested in the following limit:

lim
n→∞

MXn−µ
σ/
√
n

(t) = lim
n→∞

(
MY

(
t√
n

))n
= lim

n→∞

(
1 +

t2

2n
+RY

(
t√
n

))n

= lim
n→∞

(
1 +

1

n

(
t2

n
+ nRY

(
t√
n

)))n

It’s cheating a bit but the last line comes from the fact that we know the end goal should have an
exponential term manifest in the form

(
1 + an

n

)n.

Let g ∈ Cr(x). Taylor’s theorem states that the remainder from the approxi-
mation g(x) − Tr(x) = g(x) −

∑r
i=0

g(i)(a)
i!

(x − a)i (where Tr(x) is the Taylor
polynomial of order r about a) always tends to 0 faster than the highest-order
explicit term i.e.

lim
x→a

g(x)− Tr(x)

(x− a)r
= 0.

For fixed t ̸= 0:

lim
n→∞

RY

(
t√
n

)
(

t√
n

)2 = 0.

Since t is fixed, we also have that

lim
n→∞

RY

(
t√
n

)
(

1√
n

)2 = lim
n→∞

nRY

(
t√
n

)
= 0.

Since RY

(
0√
n

)
is equal to a sum of terms that have (t/

√
n)k as a factor, then its limit is also zero

for t = 0. Thus, for any fixed t we can write:

lim
n→∞

MXn−µ
σ/
√
n

(t) = lim
n→∞

(
MY

(
t√
n

))n
= lim

n→∞

(
1 +

t2

2n
+RY

(
t√
n

))n

= lim
n→∞

(
1 +

1

n

(
t2

n
+ nRY

(
t√
n

)))n

= lim
n→∞

(
1 +

an
n

)n
= exp

(
lim
n→∞

an

)
where an = t2

n + nRY

(
t√
n

) n→∞−→ t2

2

= exp

(
t2

n

)
■
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20.6 The Normal Approximation to the Binomial Distribution

We can view a binomially distributed random variable Y ∼ Bin(n, p) as the sum of a collection of

X1, . . . , Xn
i.i.d.∼ Bernoulli(p)

with E(Xi) = p and Var(Xi) = p(1 − p). Consequently, when n is large, the sample fraction of
successes

Y

n
=

1

n

n∑
i=1

Xi

possesses an approximately normal sampling distribution with mean µ = E(Xi) = p and variance
σ2/n = p(1− p)/n.

A useful rule of thumb is that the normal approximation to the binomial distribution is appro-
priate when p± 3

√
pq/n ∈ (0, 1).

• Exercise 7.44 [6] =⇒ a more convenient, but equivalent, criterion is that the normal ap-
proximation is adequate if

n > 9

(
larger of p, q
smaller of p, q

)
• Exercise 7.45 [6] =⇒ for some values of p, this criterion is sometimes met for more moderate

values of n.
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CHAPTER 21

Goodness of Estimators, Point and Interval

Statistics is about making inferences about a population based on information contained in a
sample. Populations are characterised by numerical descriptive measures called parameters so the
objective of many statistical investigations is to make an inference about (one or more) population
parameters.

• A single number calculated from a sample which is used to estimate a population parameter
is called a point estimate.

• Interval estimates can also be computed from a sample to enclose a population parameter.

In either case, we use an estimator1 to compute an estimate.

Definition 21.0.1 Let X = (X1, . . . , Xn) : (Ω,F)→ (E, E) = (
∏n

1 Ei,⊗n
1Ei) be a random sample

where the Xi : (Ω,F) → (Ei, Ei) are s.t. Xi ∼
i.i.d.

Pθ, and θ is a fixed population parameter to be
estimated/enclosed.

• We call T : X(Ω)→ S a statistic if:

◦ (E, E) is a Borel space,
◦ S contains all singletons,
◦ T is (E|X(Ω),S)-measurable, and
◦ T doesn’t depend on any unknown parameters (including θ).

• If T is a statistic, and the random element T ◦X is used to estimate a population parameter,
then we call T ◦X an estimator.

21.1 Point Estimation

Given a statistic T , a point estimator is a random element T ◦X that one uses to approximate
θ. Point estimation is thus the the endeavour to give the best single estimated value of a
parameter — to find such a statistic T s.t. T ◦X is a good approximation of θ.

Criteria for comparing point estimators include biasedness, variance, mean square error, and
Wackerly [7] mentions the error of estimation ε ..= |θ̂ − θ|.

21.2 Interval Estimation

Interval estimation is the specification of a range of values within which the true parameter θ is
asserted to lie, and an interval estimator is (informally) a rule specifying how one can use sample
measurements to calculate two numbers that form the endpoints of such an interval. Ideally:

• the interval will contain the target parameter θ,

• and it will be relatively narrow.

1A rule or method of estimating a parameter of a population, usually expressed as a function of sample values.
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One or both of the endpoints will vary randomly from sample to sample (i.e. at least one endpoint
is a function of the random sample). Therefore, the length and location of the interval are random
quantities.

The goal is to find an interval estimator capable of generating narrow intervals that have a high
probability of enclosing θ.

Interval estimation is the problem of finding two statistics L,U : X(Ω)→ S s.t.

P(L ⩽ θ ⩽ U) ⩾ 1− α.

The random interval [L,U ] is the interval estimator of θ with confidence level 1− α.
The assertion that θ lies in this interval will be true, on average, in a proportion 1− α of the
cases where the assertion is made.

There is no general algorithm for interval estimation. But there is a general outline.

Remarks (Terminological)

• Interval estimators are also called confidence intervals.

• The upper and lower endpoints of a confidence interval are called the upper and lower
confidence limits, respectively.

• The probability that a confidence interval will enclose θ-fixed is called the confidence co-
efficient (or a confidence level), denoted by 1− α.

• The term significance level is reserved for α itself.

A high confidence coefficient associated with our interval estimator means we can be highly confi-
dent that any realisation interval I ∋ θ.

Definition 21.2.1 More generally, a confidence set is a random subset of a
parameter space which has a specified probability of containing unknown param-
eters under repeated sampling. The best-known example is a confidence interval,
but a confidence set may comprise disjoint subsets or may lie in a set of dimension
greater than 1.

Sometimes we’re interested in a one-sided confidence interval. This occurs when either L is
−∞, or U is +∞ (but not both at the same time).

21.3 Bias and MSE of Point Estimators

• A point estimator θ̂ of a population parameter θ is called unbiased if E
(
θ̂
)
= θ.

◦ Otherwise, θ̂ is said to be biased.

• The bias of a point estimator is given by E
(
θ̂
)
− θ.

If an estimator is unbiased, we’d like for its variance to be as small as possible so that in repeated
sampling, a higher fraction of estimates will be close to θ.

Another measure of goodness is the mean square error of a point estimator θ̂ defined by:

MSE(θ̂) = E
(
(θ̂ − θ)2

)
.

Lemma 21.3.1 The mean square error of θ̂ is a function of both the variance and bias of θ̂.
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Proof.
MSE(θ̂) = E

(
(θ̂ − θ)2

)
= E

(
θ̂2 − 2θ̂θ + θ2

)
= E

(
θ̂2
)
− 2E(θ̂)θ + θ2

= E
(
θ̂2
)
− E(θ̂)2︸ ︷︷ ︸

=Var(θ̂)

+ E(θ̂)2 − 2E(θ̂)θ + θ2︸ ︷︷ ︸
=(Bias(θ̂))2

■

Example Examples of unbiased point estimators:

• The sample mean X

• The sample proportion p̂ = Y/n (to estimate a binomial parameter p in Y ∼ Bin(n, p))

We can construct more examples of unbiased estimators that follow our intuition e.g. Suppose
that we have two independent random samples of n1 and n2 observations selected from two different
populations. We can estimate the difference between means µ1 − µ2 by considering the difference
in sample means.

To facilitate communication, we use the notation σ2
θ̂

to denote the variance of the sampling
distribution of the estimator θ̂. The standard deviation of the sampling distribution of the estimator
θ̂, σθ̂ =

√
(σθ̂)

2, is usually called the standard error of the estimator.
Biased estimators also exist.

Example Let Y1, . . . , Yn be a random sample with E(Yi) = µ and Var(Yi) = σ2. Show that

S′2 =
1

n

n∑
i=1

(Yi − Y )2

is a biased estimator for σ2.

E
(
S′2
)
= E

(
1

n

n∑
i=1

(Yi − Y )2

)

= E

(
1

n

((
n∑

i=1

Y 2
i

)
− nY )2

))

=
1

n

n∑
i=1

E
(
Y 2
i

)
− E

(
Y

2
)

= E
(
Y 2
1

)
− E

(
Y

2
)

= Var(Y1) + (E(Y1))2 − (Var
(
Y
)
+
(
E
(
Y
))2

)

= σ2 + µ2 − σ2
Y
− (µY )

2

= σ2
(
1− 1

n

)
̸= σ2.

21.4 Evaluating the Goodness of a Point Estimator

The error of estimation ε is the distance between an estimator and its target parameter

ε ..= |θ̂ − θ|.

As mentioned earlier, we aren’t able to predict the error of estimation ε for a particular estimate
since ε is a random variable, but we can make probability statements about it.
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Example Suppose that θ̂ is an unbiased estimator of θ, and has a known sampling distribution
with density f

θ̂
. Let b > 0.

The probability that the error of estimation is less than b is P(|θ̂ − θ| ⩽ b). Graphically, it
would be represented by the area under the density curve over (θ − b, θ + b). We can think of b
as a probabilistic bound on the error of estimation. If b is small, then P(|θ̂ − θ| < small) can be
regarded as a measure of goodness of a single estimate. This probability identifies the fraction of
times, in repeated sampling, that the estimator θ̂ falls within b units of θ (the target parameter).

Suppose that we wish to know the b > 0 s.t. P(ε < b) = 0.9.

• If we know the sampling distribution of θ̂, we can search for a value of b s.t.∫ θ+b

θ−b
f(θ̂) dθ̂ = 0.90.

• Irrespective of knowing the sampling distribution of θ̂, if we know that θ̂ is an unbiased point
estimator of θ, then we can find an approximate bound on ε by expressing b as a multiple of
the standard error of θ̂.

Example Chebyshev’s theorem tells us that if we let b = kσ
θ̂
, then

P(ε < b) = P
(
|θ̂ − θ| < kσ

θ̂

)
⩾ 1− 1

k2
.

A convenient value to take is k = 2. Hence, P
(
ε < 2σ

θ̂

)
⩾ 0.75. Most random variables observed in

nature lie within 2 standard deviations of their mean with probability ≈ 0.95. Chebyshev’s theorem
is often very conservative when it comes to the bounds for probabilities. The actual probability
often exceeds the Chebyshev bounds by a lot.

21.5 Pivotal Method for Interval Estimation

A method for finding confidence intervals. The method depends on finding a pivotal quantity that
possesses 2 characteristics:

• It’s a function of the sample measurements and the unknown parameter θ, where θ is the
only unknown quantity.

• Its probability distribution doesn’t depend on θ.

Definition 21.5.1 A pivotal quantity is a function of sample values and one or more parameters [4]
with a distribution that does not depend on the parameters. The concept is mainly used in the
construction of confidence intervals.

Example 21.5.2 If X ∼ N (µ, s2) where s2 is an estimated variance, then (X−µ)/(S/
√
n) follows

a t-distribution and may be used to define confidence limits for estimating µ.

If the probability distribution of the pivotal quantity is known, then the following logic can be
used to form the desired interval estimate e.g.

1. Y -r.v., c > 0 constant, and P(a ⩽ Y ⩽ b) = 0.7

2. Then certainly P(ca ⩽ cY ⩽ cb) = 0.7

3. Similarly, P(ca+ d ⩽ cY + d ⩽ cb+ d) = 0.7

4. i.e. the probability is unaffected by an affine transformation of Y

and so we can use operations like these to form the desired interval estimator.
Let Y ∼ Exp(θ). We want to find a pivotal quantity U = g(Y, θ) s.t. fU doesn’t depend on θ.



Goodness of Estimators, Point and Interval 230

Example 21.5.3 U = g(Y, θ) =
1

θ
Y has distribution

fU (u) =

{
e−u, u > 0

0, otherwise

We’ve found a pivotal quantity. We want an interval estimator with confidence coefficient 0.90 so
we’re looking for numbers a and b s.t.

P(a ⩽ U ⩽ b) = 0.90.

One way to do this is to choose a and b s.t.

P(U < a) = 0.05 and P(U > b) = 0.05

It follows that
0.90 = P(0.051 ⩽ U ⩽ 2.996) = P

(
· · · ⩽ Y

θ
⩽ . . .

)
.

Since Y ∼ Exp(θ), Y > 0 so we can divide through by Y to get

= P
(
· · ·
Y

⩽
1

θ
⩽
. . .

Y

)
and taking reciprocals (which is permitted because Y > 0) gives

= P
(
Y

· · ·
⩾ θ ⩾

Y

. . .

)
= P(θÛ ⩾ θ ⩾ θL̂)

Example 21.5.4 Suppose that we take a single observation from a uniformly distributed popula-
tion U [0, θ] where θ-unknown. Find a 95% lower confidence bound for θ.

Solution: Let X ∼ U([0, θ]) represent the act of sampling one element from a U([0, θ])-distributed
population. We’re tasked with finding a 95% lower confidence bound for θ i.e. we wish to find a
statistic L s.t. P(L ⩽ θ) ⩾ 0.95. We’ll do so by first finding a pivotal quantity.

The distribution of X is given by

FX(x) = P({X ⩽ x})
= E

(
1X−1((−∞,x])

)
= E(h(X)) where h = 1(−∞,x]

=

∫
Ω
h(X) dP =

∫
R
hdPX =

∫
R
hϕX dλ

=

∫
R
1(−∞,x](y)ϕX(y) dλ(y)

=

∫
R
1(−∞,x](y)

1

θ
1[0,θ](y) dy

=

∫ x

0

1

θ
dy =

x

θ

It may be worth dividing X through by θ to standardise the stretching of the density as θ increases.
Try U = X/θ. Then

FU (u) = P({U ⩽ u})
= P({X/θ ⩽ u})
= P({X ⩽ uθ})
= FX(uθ) = u
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i.e. the distribution of U is uniform on [0, 1] and independent of θ. Thus, U is a pivotal quantity.
Now I want to use the distribution of U , and re-arrange it to get a lower confidence interval about
θ. For any c ∈ [0, 1]:

P
({

X

θ
⩽ c

})
= P({X ⩽ cθ}) = P

({
X

c
⩽ θ

})
Since U is uniform, this term is equal to c.

∴ c = P
({

X

c
⩽ θ

})
Now we can let c = 0.95 to get the 95% confidence interval.

21.6 Selecting the Sample Size

• The design of an experiment is essentially a plan for purchasing a quantity of information.

◦ We should seek to minimise the cost of obtaining said information.

• The sampling procedure (or experimental design) affects the quantity of information per
measurement.

+ This, together with the sample size n, controls the total amount of relevant information
in a sample.

Attention will now be focused on the sample size n,
with the discussion branching off into small and large

samples:

This section is on a potential discussion between an experimenter and statistician, highlighting
the process of selecting a sample size:
Experimenter: How many measurements should be included in the sample to calculate my esti-
mate?

Statistician: Depends on how much “information” you want out of the sample e.g. accuracy i.e.
You should specify a bound on the error of estimation.

Experimenter: I want to estimate the true average daily yield µ of a chemical, and for the error
of estimation to be less than 5 tons with probability 0.95.

Statistician: Here the statistician assumes the sample is large, and so the distribution of the
sample mean is asymptotically normal. Approximately 95% of the sample means will lie within
2σY of µ in repeated sampling, so you’re asking that 2σY = 5 i.e. 2σ√

n
= 5 i.e. n = 4σ2

25 . Unless σ
is known, we can estimate σ with 0.25 ∗ range (since damn near every observation is within 4σ of
the mean). So what’s your range?

Experimenter: 84 tons!

Statistician: Therefore, σ ≈ 84/4 = 21 so n = 4σ2

25 ≈ 71. So with a sample size of n = 71, we can
be reasonably certain (with confidence coefficient ≈ .95) that our estimate will lie within 5 tons of
µ, the true average daily yield.

Note that we can’t obtain an exact numerical value for n = 4σ2

25 because the variability of the
estimator Y depends on the variability of the population σ from which the sample was drawn.
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21.7 Large-Sample Confidence Intervals

It turns out that some common unbiased point estimators we’ve seen can all be approximated (for
a large sample size) by a normal sampling distribution with standard errors as follows:

target parameter θ sample size(s) point estimator θ̂ E(θ̂) standard error σ
θ̂

µ n X µ σ√
n

p n p̂ = Y
n p

√
pq
n

µ1 − µ2 n1 and n2 X1 −X2 µ1 − µ2
√

(σ1)2

n1
+ (σ2)2

n2

p1 − p2 n1 and n2 p1 − p2 µ1 − µ2
√

p1q1
n1

+ p2q2
n2

Table 21.1: The second row is for Y ∼ Bin(n, p), and the bottom two rows are for independent
samples.

For large samples,

Z =
θ̂ − θ
σ
θ̂

possesses approximately a standard normal distribution. Therefore, Z forms (at least approximate-
ly/asymptotically) a pivotal quantity, and so we can use the pivotal method to develop confidence
intervals for the target parameter θ.

Example 21.7.1 Let θ̂ be a statistic that’s normally distributed with mean θ and standard error
σ
θ̂
. Find a confidence interval for θ that possesses a confidence coefficient equal to (1− α).

Solution: The quantity

Z =
θ̂ − θ
σ
θ̂

∼ N (0, 1).

The distribution of this random variable doesn’t depend on θ and Z = g(θ̂, θ) so we can use it as
a pivotal quantity. We can select values zα/2 and −zα/2

α/2 α/2

−zα/2 zα/2 y

fY (y)

in the support of this distribution corresponding to the tails such that:

1− α = P
(
−zα/2 ⩽ Z ⩽ zα/2

)
= P

(
−zα/2 ⩽ θ̂−θ

σ
θ̂

⩽ zα/2

)
= P

(
−zα/2σθ̂ ⩽ θ̂ − θ ⩽ zα/2σθ̂

)
= P

(
−zα/2σθ̂ − θ̂ ⩽ −θ ⩽ zα/2σθ̂ − θ̂

)
= P

(
zα/2σθ̂ + θ̂ ⩾ θ ⩾ θ̂ − zα/2σθ̂

)
= P(θÛ ⩾ θ ⩾ θL̂)
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are the confidence limits for an approximately 100(1 − α)% confidence interval (i.e. an interval
estimator with confidence coefficient 1− α).

When computing an interval based on a realised sample x1, . . . , xn of observations, the interval
either contains the true parameter or not. You’re 95% confident that the interval contains the
parameter because the procedure that generates intervals that contain the parameter 95% of the
times the procedure is used.

21.8 Small-Sample Confidence Intervals

This section will operate under the assumptions of:

• a sample randomly selected from a normal population (for discussion concerning µ)

• two independent normally distributed random samples

However, if the interval estimator is to be of any value, it must work reasonably well2 even if the
population(s) from which the sample(s) is(/are) draw is/are not normal.

21.8.1 µ

Suppose that X1, . . . , Xn is a random sample from a normally distributed population with mean µ
and variance σ2. Let X and S2 denote the sample mean and sample variance, respectively. We’d
like to construct a confidence interval for the population mean when σ2 is unknown, and the sample
size is too small to permit us to apply the large-sample techniques from earlier.

We know that (X − µ)/(S/
√
n) has a tn−1 distribution. Call that quantity T . This will be the

pivotal quantity we use to construct a confidence interval for µ. We can find values tα/2 and −tα/2
s.t.

P
(
−tα/2 ⩽ T ⩽ tα/2

)
= 1− α.

Similar to before, we can manipulate this probability to make µ the subject:

= P
(
−tα/2 ⩽ X−µ

(S/
√
n)

⩽ tα/2

)
= P

(−tα/2 S√
n
−X ⩽ −µ ⩽

tα/2 S√
n
−X

)
= P

(
tα/2 S√

n
+X ⩾ µ ⩾ X −

tα/2 S√
n

)
So the resulting confidence interval for µ with confidence coefficient 1− α is[

X −
tα/2 S√

n
,X +

tα/2 S√
n

]
.

21.8.2 µ1 − µ2

Suppose that we’re interested in comparing the means of two normal populations, one with mean µ1
and variance (σ1)2, and the other with mean µ2 and variance (σ2)2. If the samples are independent,
confidence intervals for µ1 − µ2 based on a t-distributed random variable can be constructed if we
assume both populations have a common but unknown variance σ2 = (σ1)

2 = (σ2)
2.

Let X1 and X2 be their respective sample means. The large-sample confidence interval can be
developed by using

Z =
(X1 −X2)− (µ1 − µ2)√

(σ1)2

n1
+ (σ1)2

n1

2Working reasonably well means that the confidence coefficient should not be affected by modest departures
from normality. For most mound-shaped population distributions, experimental studies indicate these confidence
intervals maintain confidence coefficients close to the nominal values used in their calculations.
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as a pivotal quantity. Since we assume the normal random samples have a shared variance

Z =
(X1 −X2)− (µ1 − µ2)

σ
√

1
n1

+ 1
n1

and σ is unknown so we need to find an estimator of the common variance σ2 so we can construct
a quantity with a t-distribution.

The usual unbiased estimator of σ2 is obtained by pooling the sample data to obtain the pooled
estimator S2

p :

S2
p

..=

∑n1
i=1(X1,i −X1)

2 +
∑n2

i=1(X2,i −X1)
2

n1 + n2 − 2

=
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2
.

This final expression is a weighted average of S2
1 and S2

2 , giving larger weight to the sample variance
associated with the larger sample size. Further,

W =
(n1 + n2 − 2)S2

p

σ2
=

(n1 − 1)S2
1

σ2
+

(n2 − 1)S2
2

σ2

is the sum of two independent χ2-distributed random variables with (n1 − 1) and (n2 − 1) degrees
of freedom, respectively.

∴W ∼ χ2
(n1−1)+(n2−1).

Since Z and W are independent, we can form the pivotal quantity

T =
Z√
W
ν

= . . . =
(X1 −X2)− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

which by construction is a quantity with a t-distribution with (n1 + n2 − 2) degrees of freedom.
Proceeding as before, the confidence interval for (µ1 − µ2) has the form

(X1 −X2)± tα/2Sp
√

1
n1

+ 1
n2

where tα/2 is determined from the t-distribution with (n1 + n2 − 2) degrees of freedom.

21.9 Confidence Intervals for σ2

Throughout our construction of confidence intervals for µ, we used S2 to estimate σ2 when σ2 was
unknown. In addition to needing information about σ2 to calculate confidence interval for µ or
µ1 − µ2, we may be interested in forming a confidence interval for σ2 itself:

We need a pivotal quantity once more. Let X1, . . . , Xn
i.i.d.∼ N (µ, σ2) with µ and σ2 both

unknown. We know that
(n− 1)S2

σ2
∼ χ2

n−1

so we can proceed to find numbers χ2
L and χ2

U s.t.

P
(
χ2
L ⩽ (n−1)S2

σ2 ⩽ χ2
U

)
= 1− α

for any confidence coefficient (1− α). The χ2
n−1 density isn’t symmetric so we have some freedom

in choosing the lower and upper confidence limits. We’d like to find the shortest interval that
includes σ2 with probability (1− α). This is complicated in general and requires a trial-and-error
search for the appropriate values. We compromise by choosing points that cut off equal tail areas,
as indicated below:
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β = 2

χ2
L χ2

U

Re-arranging the probability statement gives

P

(
(n− 1)S2

χ2
α/2

⩽ σ2 ⩽
(n− 1)S2

χ2
1−(α/2)

)
= 1− α

and so a 100(1− α)% confidence interval for σ2 is(
(n− 1)S2

χ2
α/2

,
(n− 1)S2

χ2
1−(α/2)

)
.

Note that the confidence intervals for σ2 in this section can differ markedly from the nomi-
nal level if the sampled population isn’t normally distributed. This observation comes from the
examples in [7].

21.10 Summary

Calling back to the earlier comment on parameters having mound-shaped distributions and their
confidence intervals maintaining confidence coefficients close to “the nominal values used in their
calculations,” I can now use the example of estimating µ (in the small-sample case) to explain:

• We assume normality of the random sample X1, . . . , Xn so X is also normally distributed.
(θ̂ = X in this case)

• Then we construct a pivotal quantity T = (X − µ)/(S/
√
n) where we approximate σ2 with

S2.
T ∼ tn−1

• This leads to the nominal probability statement that for a confidence level (1 − α), there
exists some real number tα/2,n−1 such that

P
(
−tα/2,n−1 ⩽ T ⩽ tα/2,n−1

)
= 1− α

where (1− α) is the nominal confidence interval.

• We re-write the statement to get a confidence interval for µ:

P
(
X − tα/2,n−1 S√

n
⩽ µ ⩽ X + tα/2,n−1

S√
n

)
= 1− α

However, we must keep in mind that our original formulation of the problem did not assume any
normality:

• X1, . . . , Xn
i.i.d.∼ P, E(Xi) = µ-unknown, Var(Xi) = σ2-unknown

• P is a mound-shaped distribution.
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In this case, for a mound-shaped distribution, the distribution of the pivotal quantity T isn’t
necessarily tn−1. For a confidence level of 1 − α, there exist quantities Q··· that are the true tail
probabilities of the actual distribution of T :

P
(
T ⩽ Qα/2,n

)
= α

2

P
(
T ⩽ Q1−(α/2),n

)
= 1− α

2

In practice, we typically don’t know the true distribution of T so we construct the confidence
interval for the idealised normal case where T ∼ tn−1 and use the (potentially) wrong quantities
tα/2 and −tα/2 which satisfy for some γ ∈ [0, 1], the equation:

P
(
X − tα/2,n−1 S√

n
⩽ µ ⩽ X + tα/2,n−1

S√
n

)
= 1− γ.

One can see the disparity below if the mound-shape is sufficiently skewed.

t1−α
2

tα
2

α/2α/2

1− γ

Qα
2

Q1−α
2

Figure 21.1: The true density of T which is mound-shaped. The true tail quantiles Qα/2 and
Q1−(α/2) form a confidence interval for σ2 with confidence coefficient 1− α.

21.11 Properties of Point Estimators

21.11.1 RELATIVE EFFICIENCY

It’s possible to obtain more than one unbiased estimator for the same target parameter θ. We often
prefer the estimator with the smaller variance. That is, if both estimators θ1̂ and θ2̂ are unbiased,
θ1̂ is relatively more efficient than θ2̂ if

Var(θ1̂) < Var(θ2̂).

In fact, we use the ratio of their variance to define the relative efficiency of θ1̂ and θ2̂ i.e. the
efficiency of θ1̂ relative to θ2̂, denoted eff(θ1̂, θ2̂) is defined by

eff(θ1̂, θ2̂) ..=
Var(θ1̂)

Var
(
θ̂2

) .
21.11.2 CONSISTENCY

e.g. Suppose that a coin, which has a probability p of resulting in a head, is tossed n times. If the
tosses are independent, then the number of heads Y ∼ Bin(n, p). If p is unknown, Y/n =.. p̂ is an
estimator for p. As n→∞, Y/n should get closed to the true value of p i.e. for large n:

P
(∣∣∣∣Yn − p

∣∣∣∣ ⩽ ε

)
should be close to 1.
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Definition 21.11.1 The estimator θn̂ is said to be a consistent estimator of θ if ∀ε > 0:

lim
n→∞

P(|θn̂ − θ| ⩽ ε) = 1.

Remarks

• The above definition really just says that θn̂ is a consistent estimator of θ if, as the sample
size n goes to ∞, θn̂ converges in probability to its estimand θ.

• A stronger notion is that of θn̂ being a strongly consistent estimator — called as such if it
converges P-almost surely, as the sample size increases, to its estimand.

Theorem 21.11.2 (Theorem 9.1 [1]) An unbiased estimator θn̂ for θ is a consistent estimator for
θ if

lim
n→∞

Var(θn̂) = 0.

Proof. Let Y be a random variable with E(Y ) = µ and Var(Y ) = σ2 < ∞. Let k > 0. By
Chebyshev’s theorem:

P
(
|Y − µ| ⩾ kσ2

)
⩽

1

k2
.

For the random variable θn̂:
P(|θn̂ − E(θn̂)︸ ︷︷ ︸

= θ

| ⩾ kσ2
θ̂n
) ⩽

1

k2

where we note that the estimator is unbiased. Now let n be a fixed sample size. k > 0 can be
written in the form

k =
ε

σθ̂n
> 0.

Thus, for any fixed n:

0 ⩽ P(|θn̂ − θ| ⩾ ε) ⩽
σ2
θ̂n

ε2
=

Var(θn̂)

ε2
.

If limn→∞Var(θn̂) = 0, then the above expression goes to 0 i.e. θn̂ is a consistent estimator of
θ. ■

Lemma 21.11.3 (The Algebra of Convergence in Probability) Suppose that θn̂ converges in prob-
ability to θ, and φn̂ converges in probability to φ. Then:

1. θn̂ + φn̂ converges in probability to θ + φ

2. θn̂φn̂ converges in probability to θφ

3. Given that φ ̸= 0, θ̂n
φ̂n

converges in probability to θ/φ

4. If g is real-valued and continuous, then g(θn̂) converges in probability to g(θ).
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The rigorous justification for the large-sample confidence interval discussion for the mean of any
random sample X1, . . . , Xn involved the creation of a confidence interval X ± zα/2 σ√

n
with

confidence coefficient approximately equal to 1− α. If σ2 is known, this interval can and should
be calculated. If not, we can estimate σ2 with S2 without significant loss in accuracy. The
following theorem provides the theoretical justification:

Theorem 21.11.4 (Theorem 9.3 from [1]) Suppose that Un has a distribution function that
converges to a standard normal distribution as n→∞. If Wn converges in probability to 1, then
the distribution function of Un/Wn converges to a standard normal distribution function.

Example 21.11.5 Suppose that X1, . . . , Xn is a random sample of size n from a distribution
with E(Xi) = µ and Var(Xi) = σ2. Define

S2
n

..=
1

n− 1

n∑
i=1

(Xi −X)2.

Show that the distribution of (X − µ)/(Sn/
√
n) converges to a standard normal distribution.

Solution:

uneasy
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CHAPTER 22

Data Reduction

Let X : (Ω,F)→ (E, E) be a random sample, and T be a statistic of X. Thus, T : (X(Ω), E|X(Ω))→
(S,S) is E|X(Ω)-S-measurable by Definition 16.2.1. It follows that the composition T ◦ X is
(σ(X),S)-measurable. By the σ(X)-measurability of T ◦X, it’s true that the following inclusion
is one of sigma-algebras:

σ(T ◦X) ⊆ σ(X).

Since σ-algebras have a natural interpretation as amounts of information (in this case, required to
fully determine a random variable), the inclusion above is what is meant by a statistic T providing
a form of data-reduction (under the guise of summarising samples in a functional sense i.e. two
realisations x and y of X are indistinguishable from the perspective of T if T (x) = T (y)).

There are three important principles of data reduction; partitioned into two sub-flavours:

• methods of data reduction that don’t discard important information about the unknown
parameter θ

• methods that successfully discard information that’s irrelevant as far as gaining knowledge
about θ is concerned

The Sufficiency Principle promotes a method of data reduction that doesn’t discard information
about θ while achieving some summary of the data.

22.1 Sufficiency

Informally, a sufficient statistic is a function that, when composed with the data, provides as much
information about a parameter of interest as the entire dataset does. An undergraduate definition
commonly found in undergraduate books/dictionaries is as follows:

Definition 22.1.1 A property of an estimator defined by Fisher (1992). A statistic T is said to be [4]
sufficient for a parameter θ if the distribution of a sample X1, . . . , Xn given T = t does not depend
on θ.

At first glance, I couldn’t claim to understand what was being said in this definition. The
following general definition in Billingsley [17, p. 450] helped me connect the dots:

Notation: Denote by Pθ[A | G] and Eθ[X | G] the conditional probabilities and
expected values computed with respect to the probability measure Pθ on (Ω,F).

Suppose that for each θ ∈ Θ, where Θ is an indexing set, Pθ is a probability measure on
a measurable space (Ω,F). In statistics, the problem is to draw inferences about the unknown
parameter θ from an observation.

Definition 22.1.2 A sub-σ-algebra G ⊆ F is called sufficient for the family {Pθ}θ∈Θ if
versions of Pθ[A | G] can be chosen that are independent of θ — that is, if there exists a function
p : F × Ω→ [0, 1] s.t. ∀θ ∈ Θ:

∀A ∈ F , p(A, ·) is a version of Pθ[A | G].

In the above definition, there’s no requirement that p(·, ω) is a measure for fixed ω. The key
takeaway is the order of quantifiers — there exists a single kernel p that works for all θ.
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The general idea in Billingsley’s definition is that although there may be informa-
tion in F not already contained in G, this information is irrelevant to the drawing
of inferences about θ.

This got me thinking about how the two definitions are connected. Let X = (X1, . . . , Xn) be a
random sample of Xi : (Ω,F)→ (Ei, Ei) s.t. Xi ∼

i.i.d.
Pθ i.e. (Xi)♯P = Pθ. Thus, PX = ⊗nP.

A statistic T is called sufficient for θ iff σ(T ) is a sufficient σ-algebra for the family {⊗nPθ}θ∈Θ
defined on (X(Ω), E|X(Ω)).

(Ω,F)

P

X

(
E =

n∏
i=1

Ei, E =
n⊗

i=1

Ei
)

(
X(Ω), E

∣∣
X(Ω)

)

X♯P = ⊗nPθ

T

T♯PX

(S,S)

Figure 22.1: A visualisation to keep track of the spaces, maps between them, and the probability
measures that live on their respective σ-algebras.

Now we’ll derive an expression that characterises the conditional distribution of the sample X given
T in two1 equivalent ways. Afterwards, I’ll explain the implications of sufficiency of T for θ.

Approach 1 — Reason through (Ω,F ,P)

By our definition of a statistic, T ∈ MeasE|X(Ω),S(X(Ω) ;S) ⇐⇒ T ◦X ∈ Measσ(X),S(Ω ;S), and
the latter in particular2 implies (F ,S)-measurability of T ◦X. Also, the earlier discussion of data
reduction tells us that σ(T ◦X) ⊆ σ(X) as σ-algebras, and so we have a viable sub-σ-algebra to
condition on. In practice, (S,S) is some Borel space so suppose that’s the case. Then the conditions
of Corollary 18.3.12 are satisfied by Y = T ◦X, and so there exists a system of proper regular
conditional probability measures generated by T ◦X on F = σ(X) i.e.

∃κT◦Xθ : σ(X)× S → [0, 1] s.t.

1. ∀PT◦X t ∈ S, we have that κT◦Xθ (· , t) is a probability measure concentrated on (T◦X)−1({t})

2. for each A ∈ σ(X), κT◦Xθ (A, ·) is a version of P[A | G = σ(T ◦X)], and is PT◦X-integrable,
and

3. ∀A ∈ σ(X), ∀D ∈ S, the following disintegration formula holds:

P
(
A ∩ (T ◦X)−1(D)

)
=

∫
D
κT◦Xθ (A, t) dPT◦X(t).

1There is no need to do it both ways but it’s a good sign that they’re consistent.
2If we let D ∈ S, then (T ◦X)−1(D) ∈ σ(X) ⊆ F .
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Approach 2 — Reason through
(
X(Ω), E

∣∣
X(Ω)

,⊗nPθ

)
Begin with the pushed-forward probability space in the subsection title. It’s immediate
from the measurability of T that σ(T ) is a sub-σ-algebra of E|X(Ω). With the same assumption
that (S,S) is Borel, the same corollary with Y = T this time gives us the existence of a system of
proper regular conditional probabilities on E|X(Ω) generated by T i.e.

∃κTθ : E
∣∣
X(Ω)

× S → [0, 1] s.t.

1. for T♯ ⊗n Pθ-a.e. t ∈ S, we have that κTθ (· , t) is a probability measure concentrated on
T−1({t}),

2. for each A ∈ E
∣∣
X(Ω)

, κTθ (A, ·) is a version of (⊗nPθ)[A | σ(T )], and is T♯⊗n Pθ-integrable, and

3. ∀B ∈ E
∣∣
X(Ω)

, ∀D ∈ S, the following disintegration formula holds:

PX

(
B ∩ T−1(D)

)
=(⊗nPθ)(B ∩ T−1(D)) =

∫
D
κTθ (B, t) d(T♯ ⊗n Pθ)(t).

These approaches are equivalent. Why?

The first disintegration formula holds for any A ∈ σ(X) and D ∈ S. Note that there exists some
B ∈ E s.t. A = X−1(B). Now we take the LHS from the disintegration formula and re-write it like
so:

P
(
A ∩ (T ◦X)−1(D)

)
= P

(
X−1(B) ∩X−1(T−1(D))

)
= P

(
X−1(B ∩ T−1(D))

)
= PX

(
B ∩ T−1(D)

)
.

From this equality, we conclude that∫
D
κT◦Xθ (A, t) dPT◦X(t) =

∫
D
κTθ (B, t) d(T♯PX)(t)

i.e. that for every A = X−1(B), we have that

κT◦Xθ (A, t) = κTθ (B, t) for PT◦X-almost every t ∈ S.

This mathematical consistency is entirely expected but good to verify nonetheless because it raises
an important point. Though it’s good to keep in mind that the underlying probability space is
there (Approach 1), one can typically avoid the pushforward measure X♯P = ⊗nPθ by
outright specifying n i.i.d. random variables, since one can then simply begin with the respective
product distribution on (E, E) which is typically (Rn,BRn).

This obfuscation of the underlying probability space seems to be the way mathematical statistics
is written.

�

What Sufficiency Means

A statistic T is called sufficient for θ iff σ(T ) is a sufficient σ-algebra for the family of probability
measures {PX = ⊗nPθ}θ∈Θ, all defined on (X(Ω), E

∣∣
X(Ω)

). These measures represent the possible
laws of the sample X. Thus, the undergraduate definition of sufficiency for a parameter is truly a
statement about sufficiency for a collection of probability measures that are indexed by θ ∈ Θ. To
summarise:
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The undergraduate statement that

“the conditional distribution of the sample
X given T = t is independent of θ”

is a short way of saying that for every θ ∈ Θ, if such a conditional distribution

κTθ : E
∣∣
X(Ω)

× S → [0, 1]

exists, then we can run through all B ∈ E|X(Ω) and pick versions of PX[B |σ(T )] that are
independent of θ. We denote this choice of kernel by dropping the θ and simply write

κ : E
∣∣
X(Ω)

× S → [0, 1].

This manifests in the disintegration formula of the conditional probability as follows:

PX

(
B ∩ T−1(D)

)
=

∫
D
κ(B, t) d(T♯ ⊗n Pθ)(t)

and so the θ-dependence of the law of X is entirely determined by T♯PX i.e. PT◦X. This is precisely
what Borovkov means in the following passage:

Knowing T ◦X is sufficient to construct
an estimator for the parameter θ; the rest
of the data contained in the sample X is
useless.

[18, p. 116]

And in simpler terms, sufficiency is a statement about how the conditional distribution of X
given T ◦X doesn’t depend on θ since θ has already been accounted for in the information σ(T ◦X)
provides:

σ(X)

σ(T ◦X)

Figure 22.2: All the information required to determined θ is within the sub-σ-algebra σ(T ◦X).
Conditioning on this information (taking it as given), means the resulting conditional distribution
of the sample X does not depend on θ i.e. the remaining information σ(X)\σ(T ◦X) is superfluous
with respect to determining θ.
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22.1.1 FACTORISATION THEOREM

This is another way to characterise sufficient statistics. We start with the disintegration formula.
For any B ∈ E

∣∣
X(Ω)

, and for any D ∈ S:

PX,θ

(
B ∩ T−1(D)

)
=

∫
D
κTθ (B, t) d(T♯PX,θ)(t).

Ideally, I’d like the following:

• For every PX,θ to have a density (i.e. that there exists some σ-finite measure µθ s.t. PX,θ ≪ µ
so the LHS of the disintegration formula looks like the Lebesgue integral of some fθ with
respect to µ.

◦ Preferably, I’d like for there to exist some dominating measure µ independent of θ for
which PX,θ ≪ µ for every θ ∈ Θ. I believe this is possible because we’re working with a
Borel space (X(Ω), E|X(Ω)).

• For conditions that allow me to write the RHS as a Lebesgue integral with respect to the
same measure µ.

Under these conditions, I can then compare fθ with a product of two functions as per the famous
Neyman-Fisher factorisation theorem for sufficient statistics.

Let’s assume that there exists a dominating measure µ for the family {PX,θ}θ∈Θ, and so every
PX,θ has density for µ-a.e. x ∈ X(Ω):

fθ(x) =
dPX,θ

dµ
.

Furthermore, since T is sufficient for the family {PX,θ}θ∈Θ, there exists a choice of kernel κ : E|X(Ω)×
S → [0, 1] that is independent of θ. With these two pieces of information, the disintegration formula
becomes: ∫

B∩T−1(D)
fθ(x) dµ(x) =

∫
D
κ(B, t) d(T♯PX,θ)(t).

Foresight tells me two things:

• For T♯PX,θ-a.e. t ∈ S, κ(·, t) is a probability measure, I can write

κ(B, t) =

∫
B
dκ(·, t)(x).

◦ If I assume further that each κ(·, t) is dominated by the same µ as earlier, then for µ-a.e.
x its density is given by

h(·, x) = dκ(·, t)
dµ

.

◦ There seems to be some formula that says because κ(·, ·) is measurable in the second
coordinate, the Radon-Nikodym derivatives (x, t) 7−→ h(x, t) are jointly measurable.

◦ Since the κ(·, t) are each concentrated on T−1({t}), each one assigns full mass to
T−1({t}), and so it follows that

0 = κ((T−1({t}))c, t) =
∫
(T−1({t}))c

h(x, t) dµ(x)

which implies that
h(x, t) = 0 for µ-a.e. x ∈ (T−1({t}))c

i.e. h(x, t) > 0 for µ-a.e. x ∈ T−1({t}).
Thus, we conclude that h(x, t) > 0 =⇒ T (x) = t. Equivalently, one can write this as

h(x, t) = h(x, T (x))1T−1({t})(x).



Data Reduction 244

• If I then assume that the family {T♯PX,θ}θ∈Θ is dominated by some measure ν, then at some
point I will need to exchange the order of integration (by Fubini-Tonelli) to get the Lebesgue
integral of some expression (that I wish to compare with fθ) with respect to µ.

If I take the above into account, I have:∫
B∩T−1(D)

fθ(x) dµ(x) =

∫
D
κ(B, t) d(T♯PX,θ)(t)

=

∫
D

∫
B
dκ(·, t)(x) d(T♯PX,θ)(t)

=

∫
D

∫
B
h(x, t) dµ(x) d(T♯PX,θ)(t)

=

∫
D

∫
B
h(x, t) dµ(x)gθ(t) dν(t)

=

∫
B

∫
D
h(x, t)gθ(t) dν(t) dµ(x) by Fubini-Tonelli

=

∫
B

∫
D
h(x, T (x))1T−1({t})(x)gθ(t) dν(t) dµ(x)

=

∫
B
h(x, T (x))gθ(T (x)) dµ(x)

and so we conclude that fθ(x) = h(x, T (x))gθ(T (x)) for µ-a.e. x ∈ X(Ω).

Schervish [5, p. 89] states the theorem as follows (I’ve adapted the notation to suit my own
conventions):

Theorem 22.1.3 (Theorem 2.21) Assume that {Pθ}θ∈Θ is a parametric family such that Pθ ≪ ν
(σ-finite) for all θ and dPθ/ dν(x) = fθ(x). Then T (X) is sufficient for Θ iff there are functions
m1 and m2 such that

fθ(x) = m1(x)m2(T (x), θ), for all θ.

What’s curious is that the proof of this theorem doesn’t make so many domination assumptions,
but the proof involves constructing a dominating measure that the author calls ν∗. Not really sure
what to think of this, but I certainly believe my proof makes more assumptions than necessary.

uneasy

According to [1], future topics on data reduction include:

1. The Likelihood Principle describes a function of the parameter, determined by the ob-
served sample, that contains all the information about θ that’s available from the sample.

2. The Equivariance Principle prescribes yet another method of data reduction that still
preserves some important features of the model.

2025-12-12

I’m putting a halt to my studies on data reduction to
study some Stochastic Processes and Machine

Learning. I imagine the latter will bring me back to
data reduction techniques.
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CHAPTER 23

Temp

23.1 2025-09-21, Decomposing Spaces

I need to recover the link to the .pdf by Michael Betancourt but it offered some nice structure and
notation to describe partitioning sets.

Consider a finite partition P = {B1, . . . , Bn} of a space X. The indexing implicitly defines a
bijective index function that maps each cell to its corresponding integer index:

bP : P −→ {1, . . . , n}
: Bi 7−→ i.

We can also define an inclusion function that maps each point x in the ambient space X into the
partition cell that contains it:

ιP : X −→ P
: x 7−→ {Bi ∈ P : x ∈ Bi}.

Composing these functions defines a third that maps points to partition cell indices.

ϕP : X −→ {1, . . . , n}
: x 7−→ {i ∈ {1, . . . , n} : xi ∈ Bi ∈ P}.

Since P is a partition, each x ∈ X belongs to only one partition cell. This means that ϕP is
surjective. The level set of ϕP for a given index is

(ϕP)
−1({i}) = {x ∈ X : ϕP(x) = i}

= Bi.

Consequently, we can completely reconstruct1 the cells of the partition P from these level sets as
follows:

P = {B1 = (ϕP)
−1({1}), . . . , Bn(ϕP)

−1({n})}.
Different permutations of the labels define different index functions bP and hence different

composite maps ϕP . The level sets of these functions, however, are always the same, allowing us
to work with whichever indexing might be most convenient in a given application. This implicit
definition of a partition by a surjective function immediately generalises to any type of partition
(countable, uncountable).

Every function f : X → Y decomposes the set X into level sets f−1({y}) that are not only
disjoint, but also cover X i.e.

X =
⊔
y∈Y

f−1({y}).

If f is surjective, then f−1({y}) ̸= ∅ for every y ∈ Y . Consequently, the level sets of every surjective
function implicitly defines a partition where each cell is indexed by a unique output value.

• If |Y | <∞, then the level sets of f define a finite partition (resp. countable, uncountable).

Example 23.1.1 An uncountable partition defined this way is given by the function

f : R2 −→ R

: (x, y) 7−→
√
x2 + y2 =.. r.

Note that the level sets f−1({r}) are concentric circles with centre (0, 0) and radius r.
1The cells in a partition are unordered so the exact indexing we use is arbitrary.
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Partitions consisting of measurable sets are particularly important in probability theory. Let
(X,F ,P) be a probability space. When the cells of a partition are all elements of F , then P ⊆ F
and we call such a P a measurable partition.

Only when the output space is equipped with a σ-algebra that contains all the singletons, does a
measurable, surjective function define a measurable partition.

�

23.1.1 APPLICATION TO CONDITIONING

When it comes to defining conditional probability, any measurable subset A ∈ F that completely
overlaps with the conditioning partition cell Bi, A∩Bj = Bj , is allocated full conditional probability
P(A |Bj) = 1. If A doesn’t overlap with Bj , the it’s allocated zero conditional probability. Indeed,
P(· |Bj) is a probability measure, and is more “singular” than one would expect of a probability
measure over X in the sense that all the conditional probability concentrates within Bj itself.

Intuitively, this suggests that we may interpret a conditional probability distribution given Bj

as a restriction of P to a particular cell, and via the subspace σ-algebra we may view P(· |Bj) as a
map : F|Bj → [0, 1]. Thus, we have two valid interpretations of P(· |Bj) as a probability measure
on F that concentrates on Bj , or a probability measure on F|Bj .

23.2 2025-10-13, Lebesgue-Stieltjes Measure

Proposition 23.2.1 Let F : R→ R be non-decreasing and right continuous. Define

F (±∞) = lim
x→±∞

F (x).

Set

• A = {∅} ∪


n⋃

j=1

(aj , bj ] : n ∈ N,−∞ ⩽ a1 < b1 < a2 < . . . < bn ⩽∞


• µ0(∅) = 0

• µ0

( n⋃
j=1

(aj , bj ]
)
=

n∑
j=1

(
F (bj)− F (aj)

)
. for every element in A.

In the above, replace (a, b] by (a, b) when b =∞.
Then, µ0 is a pre-measure on A.

From the above lemma, for any non-decreasing and right continuous F : R → R, µ0 is a pre-
measure, and we know that BR is generated by the collection of half-open intervals (a, b]. Further-
more, µ0 is σ-finite since R = ∪n∈N(n, n + 1] and µ0((n, n + 1]) = 1 < ∞. By Caratheodory’s
extension theorem, there exists a unique Borel measure µF on R that extends µ0 to BR.

Let G : R → R be another non-decreasing and right continuous function. Then µF = µG iff
F −G is constant.
Proof.

µF = µG ⇐⇒ the corresponding pre-measures are equal

⇐⇒ µF0((a, b]) = µG0((a, b]) for all a < b

⇐⇒ F (b)− F (a) = G(b)−G(a) for all a < b

⇐⇒ F (b)−G(b)︸ ︷︷ ︸
=.. (F−G)(b)

= F (a)−G(a)︸ ︷︷ ︸
=.. (F−G)(a)

for all a < b

■
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Theorem 23.2.2 (Characterisation) If µ is a Borel measure on R, and is finite on all bounded
Borel sets, then ∃F : R→ R that is right continuous and non-decreasing s.t.

µ = µF .

This F is given by

F (x) =


µ((0, x]) if x > 0

0 if x = 0

−µ((x, 0]) if x > 0.

Proof.

µF ((a, b]) = F (b)− F (a) =


µ((0, b])− µ((0, a]) if 0 ⩽ a < b

µ((0, b]) + µ((a, 0]) if a < 0 ⩽ b

−µ((b, 0]) + µ((a, 0]) if a < b < 0.

■

23.3 2025-11-11, Hypothesis Testing

These are the things I learned about hypothesis testing from brawthy and Catullus in the Statistics
Discord server. The original question from user Cartesian was:

Are p-values just conditional probabilities? My understanding
of them has always been

P(this sample statistic or one more extreme | null hypothesis).

This opened up a lot of questions. I don’t know what a p-value is. I don’t know what a null
hypothesis is. However, I wondered if p-values involve testing the validity of a hypothesis? One of
the responses was from Catullus:

Suppose we have a family {Pθ}θ∈Θ of probability measures on
some measurable space, we have some test statistic T , and we
wish to test the null θ = θ0 for some known value θ0. Then the
p value is Pθ0(T ⩾ t) where t is the value of T in your specific
sample.

(Note in particular that we’re not conditioning, we’re just work-
ing with a specific probability measure that corresponds to the
null.)

This looks similar to the formulation of sufficiency, something I can understand apart from “we
wish to test the null ... for some known value θ0”. What type of mathematical object is “the null”?

brawthy set up a toy example as follows:

Imagine you’re conscripted to determine the rate of failure for
GPUs. You have an assembly line and are told you can sam-
ple n number of GPUs to test per day. You talk to business
management about what you think is an acceptable number of
failures — maybe 5 in 20.

Now you have some assumptions about the process that leads
you to believe the Bernoulli model is acceptable for this (it’s
probably not a good model because I’d expect most manufac-
turing in this space to have some weird correlations with re-
spect to the fabrication process but it works here). So you’ve
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packaged a statement about some population parameter, a
model (I guess we should say likelihood because what is a
model of not a combination of parameters and a likelihood)
you think is acceptable (the Bernoulli — a probability mea-
sure!) and now you go forth and want to compute the p value
under the assumption of correct specification of the model and
some range of potential failure rate is acceptable.

I’d formalise this as follows. You have a sample X (random element) of GPUs, and we assume
the underlying process is governed by some true probability measure in the family {Pθ}θ∈Θ, where
Pθ is shorthand for the distribution of the sample2 X. So the test statistic is some function, say T ,
of the sample values that represents something we want to test. Practically speaking, I guess the
choice of a particular test statistic is two-fold:

1. We don’t wish to lose any information in the summary of the sample values by applying this
test statistic T , and

2. We wish for the CDF of the push-forward distribution (T♯Pθ) to be easier to interpret.

Catullus corrected my final remark: [...] the point of using
a test statistic is because we want some statistic whose distri-
bution under the null is known and because we want a single
value so we can compare it.

Furthermore, “the null” in our example is a statement hypothesised about the “tolerable number
of failures.” Mathematically speaking, the null hypothesis is a statement specifying some subspace
of Θ in which the true parameter is posited (or hypothesised) to live e.g. θ ∈ {θ0} for some fixed
θ0 is the subspace corresponding to the null hypothesis that θ = θ0 (in our case, that the failure
rate is θ0).

It’s late in these notes to mention this but so far, we’ve been operating under the assumption
that we’ve correctly specified the family of laws the sample’s distribution could possibly live in.
In other words, we assume that the “true” law that generated our sample is in the family we
chose. This is called the assumption of correct specification.

Then a (the?) p-value is

Pθ0(T ⩾ t) = Pθ0

(
T−1([t,+∞))

)
= (T♯Pθ0)([t,+∞)).

2This is X♯P if we wish to specify the underlying probability space that governs the randomness of the experiment.
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CHAPTER A

Rings ?↔ Algebras

The build-up of the theory for constructing measures across the literature I’ve encountered is not
consistent; some authors use semi-rings, others use semi-algebras. There must be some common
thread. I aim to reconcile both paths (or at least understand each one separately if they are
indeed not connected).

uneasy

Definition A.0.1 A semi-ring is a collection I ⊆ 2X s.t.

• ∅ ∈ I,

• A,B ∈ I =⇒ A ∩B ∈ I,

• For A,B ∈ I s.t. A ⊆ B, we can write B\A as a finite pairwise disjoint union of {Cj}nj=1 ⊆ I
i.e.

B \A =

n⊔
j=1

Cj .

Definition A.0.2 A ring is a collection R ⊆ 2X that is closed under finite unions and relative
complements:

• A,B ∈ R =⇒ A ∪B ∈ R,

• A,B ∈ R s.t. A ⊆ B =⇒ B \A ∈ R.

Note that a ring is not defined to have the whole space X as a member. For our purposes,
we have and will be defining outer measures using set functions from covers of our space. For
example, every algebra A on X is trivially a cover (since ∅ ∈ A ∋ X). The forthcoming statements
about pre-measures on algebras equally apply when replacing ‘algebra’ with ‘ring’ because of the
following lemma:

Lemma A.0.3 Let A ⊆ 2X . Then TFAE:

• A is an algebra.

• A is a ring and contains the whole space X.

Proof.

=⇒ Suppose that A is an algebra. Then X ∈ A and A is closed under finite unions by assumption.
All that remains to show is closure under relative complements. Let A,B ∈ A s.t. A ⊆ B.
We wish to show that B \ A ∈ A. Since B \ A = B ∩ Ac and A ∈ A =⇒ Ac ∈ A, we
conclude that B \A ∈ A by the closure of A under finite intersections.

⇐= For the converse, suppose that A is a ring s.t. X ∈ A. Then A is certainly closed under finite
unions by assumption. What remains to show is closure under (absolute) complements. Let
A ∈ A. We wish to show that X \ A ∈ A. This is automatic from a ring’s closure under
relative complements since A,X ∈ A are s.t. A ⊆ X.

■
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CHAPTER B

Extending Properties

X ̸= ∅

Definition B.0.1 A subsetM of 2X is called a λ-system1 if it satisfies:

(a) X ∈M

(b) Closure under relative complements: If A,B ∈M with A ⊆ B, then B \A ∈M

(c) Closure under increasing (monotone) sequences: If for every n ∈ N : An ∈M and An ⊆ An+1,
then

⋃
n∈NAn ∈M.

Proposition B.0.2 The intersection of any two λ-systems is a λ-system.

Definition B.0.3 The λ-system generated by a collection C ⊆ 2X , denoted by λ(C), is defined
as the intersection of all λ-systemsM on X that contain C.

B.1 π-λ Theorem

Theorem B.1.1 (π-λ Theorem) Let C ⊆ 2X be closed under finite intersections.2 Then λ(C) =
σ(C).

Proof.

⊆ Any σ-algebra is a λ-system, so certainly λ(C) ⊆ σ(C).

⊇ It’s enough to verify that λ(C) is a σ-field (from which it follows that σ(C) being the smallest
σ-field containing C tells us that σ(C) ⊆ λ(C)). Since λ(C) is already a λ-system, it suffices
to show that it’s also closed under finite intersections.

For every A ∈ 2X , defineMA
..= {B ∈ λ(C) : A ∩B ∈ λ(C)}.

1. Fix A ∈ C.
If we can show that C ⊆ MA and thatMA is a λ-system, then we’ll be able to conclude
that λ(C) ⊆MA i.e.

(∀A ∈ C)(∀B ∈ λ(C)) A ∩B ∈ λ(C) (*)

i.e. λ(C) is closed under intersection with A.
◦ For the first part, C is closed under finite intersections so for any B ∈ C, B ∩A ∈ C

i.e. C ⊆ MA.
◦ To show thatMA is a λ-system.

(a) Since A ∈ C ⊆ λ(C) and λ(C) is closed under intersections, A ∩X = A ∈ λ(C)
i.e. X ∈MA.

1This is the monotone form of a λ-system. The original Dynkin form is characterised by a collection D
satisfying

• ∅ ∈ D,

• closure under absolute complements i.e. A ∈ D =⇒ X \A ∈ D, and

• closure under countable unions of pairwise disjoint sets.

2This is known as a π-system.
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(b) Suppose that B1, B2 ∈MA and B1 ⊆ B2. We wish to show that B2 \B1 ∈MA

i.e. that A ∩ (B2 \B1) ∈ λ(C).

A ∩ (B2 \B1) = (A ∩B2) \ (A ∩B1)

which is the relative complement of two sets in λ(C), and is thus in λ(C).
(c) For closure under increasing limits, let {Bn}n∈N ⊆MA with Bn ↑ B. We wish

to show that B ∈ MA. Since λ(C) is a λ-system,
⋃

n∈NBn =.. B ∈ λ(C). Now
note that

A ∩B = A ∩

(⋃
n∈N

Bn

)
=
⋃
n∈N

(A ∩Bn)

is a union of increasing elements of λ(C) because for all n ∈ N : Bn ∈ MA and
Bn ⊆ Bn+1 =⇒ A ∩Bn ⊆ A ∩Bn+1. Thus, B ∈MA.

2. Now we fix A ∈ λ(C).
To show that C ⊆ MA, let C ∈ C. In step 1, we concluded thatMC ⊇ λ(C) i.e. (*):

(∀C ∈ C, ∀A ∈ λ(C)) C ∩A ∈ λ(C).

Since A ∈ λ(C), it follows that A ∈ MC i.e. C ∩ A ∈ λ(C). But, this is precisely what
it means for C ∈ MA. Hence, for every C ∈ C, C ∈ MA i.e. C ⊆ MA. A similar
argument to step 1 says thatMA is a λ-system, and it follows that for every A ∈ λ(C),
we have that λ(C) ⊆MA i.e. λ(C) is closed under finite intersections.

■

Corollary B.1.2 For any λ-systemM containing C, we get σ(C) = λ(C) ⊆M.
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CHAPTER C

The Big Three

This entire section is based on the videos by Nicolas Lanchier on these three theorems.

C.1 Monotone Convergence Theorem

Theorem C.1.1 (Monotone Convergence Theorem) Let {Xn}n∈N be a non-decreasing1 sequence
of non-negative measurable functions with pointwise limit X. Then, X is measurable and

lim
n→∞

∫
Ω
X dµ =

∫
Ω

(
lim
n→∞

Xn

)
dµ.

Lemma C.1.2 Let {An}n∈N ⊆ F be a non-decreasing sequence of sets. Then

lim
n→∞

µ(An) = µ
(
lim
n→∞

An

)
.

This limit is similar to the MCT — a weak monotone convergence theorem that follows from
the MCT by letting Xn = 1An and noticing that:∫

Ω
1An dµ = µ(An).

Proof. Since {An} is increasing, its limit is the countable union A ..=
⋃

n∈NAn. We can disjointify
the sequence into a new sequence {Bn}n∈N of mutually disjoint sets with the same union so that
we’re in a place to capitalise on σ-additivity:

µ(An) = µ
( n⊔

k=1

Bk

)
=

n∑
k=1

µ(Bk)

Therefore, we conclude that:

lim
n→∞

µ(An) = lim
n→∞

n∑
k=1

µ(Bk)

=
∞∑
k=1

µ(Bk)

= µ
(⊔

k

Bk

)
= µ

(⋃
n

An

)
= µ

(
lim
n→∞

An

)
■

Now recall the statement2 of the theorem:

F ⊇ {Xn}n∈N ↑ X =⇒ X ∈ F , lim
n→∞

∫
Ω
Xn dµ =

∫
Ω

(
lim
n→∞

Xn

)
dµ.

1Non-decreasing doesn’t apply to the individual Xn themselves . What is meant by a non-decreasing sequence
is that for all ω ∈ Ω and n ∈ N:

Xn(ω) ⩽ Xn+1(ω)

i.e. for each ω ∈ Ω, {Xn(ω)}n∈N is a non-decreasing sequence in R which has a limit (possibly ∞). (Should this be
R?) Therefore, the pointwise limit X(ω) exists for every ω.

2This is shorthand for X being (F ,BR)-measurable.

https://www.youtube.com/watch?v=0bJUBGS0uDg
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Proof of the MCT. We’ll begin by observing that ∀a ∈ R:

X−1((−∞, a]) = {X ⩽ a}

=
{(

lim
n→∞

Xn

)
< a

}
=

{(
sup
n
Xn

)
< a

}
= {ω ∈ Ω : ∀n ∈ N, Xn(ω) < a}

=

∞⋂
n=1

{Xn < a}

∈ F

In the 3rd equality, we noted that for each ω ∈ Ω, {Xn(ω)}n∈N is non-decreasing and so the limit
is the supremum. Finally, we conclude that X ∈ F since the collection {(−∞, a] : a ∈ R} is a
generating set for BR.

Now we prove the equality by demonstrating both inequalities.
⩽

The integral is a monotone operator and Xn ↑ X so for every n ∈ N:∫
Ω
Xn dµ ⩽

∫
Ω
X dµ =..

∫
Ω

(
lim
k→∞

Xk

)
dµ

and taking the limit of this inequality as n→∞ gives the desired result.
⩾

The outline of this direction is to define an arbitrary non-negative simple function 0 ⩽ s ⩽ X
and consider a sequence of sets comparing the sequence of Xn to s so that we may compare the
integral of the Xn to s. So fix ε > 0 (small), and let s-simple be s.t. 0 ⩽ s ⩽ X. The sets
An = {Xn ⩾ (1−ε)s} will be useful and we will apply the previous lemma on them. First we must
verify that {An}n∈N is a non-decreasing sequence:

If ω ∈ An, then Xn(ω) > (1 − ε)s(ω), but by monotonicity, Xn+1(ω) ⩾ Xn(ω) so Xn+1(ω) ⩾
(1− ε)s(ω) i.e. ω ∈ An+1. Thus, {An}n∈N is an non-decreasing sequence.

WHAT IS THE LIMIT OF THIS INCREASING SEQUENCE OF SETS?

Since X is the limit of the Xn, for each ω ∈ Ω we know that Xn(ω) ↑ X(ω), and so there exists
some N ∈ N s.t. n ⩾ N =⇒ Xn(ω) ⩾ (1− ε)X(ω). Since 0 ⩽ s ⩽ X, we have the inequality:

Xn(ω) ⩾ (1− ε)X(ω) ⩾ (1− ε)s(ω)

i.e. ω ∈ An. This means that Ω ⊂ An for large enough n. Thus, An ↑ Ω.
Now we want to compare the Lebesgue integral of Xn w.r.t. µ with the Lebesgue integral of s.

By construction, we only know how to compare Xn and s on An.∫
Ω
Xn dµ ⩾

∫
Ω
Xn1An dµ by monotonicity

=

∫
An

Xn dµ

⩾
∫
An

(1− ε)s dµ

= (1− ε)
∫
An

s dµ by linearity

The next step is to understand the quantity in the final equality. We already have that An ↑ Ω.
Let’s introduce ν(A) ..=

∫
An
s dµ. Since s and the indicator functions of An ∈ F are non-negative,
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it’s clear that ν is non-negative. It’s clear that if s ≡ 1, ν(A) = µ(A). More generally, it’s simple
to conclude that for any non-negative simple function s, ν is a non-negative measure.

Now we’re in the position to apply the previous lemma with ν on the non-decreasing sequence
An ↑ Ω. ∫

Ω
Xn dµ ⩾ (1− ε)

∫
An

s dµ =.. (1− ε)ν(An)

By Lemma C.1.2, ν(An) ↑ ν(Ω) =
∫
Ω s dµ and so taking the limit of the expression above as

n→∞ gives

lim
n→∞

∫
Ω
Xn dµ ⩾ (1− ε)

∫
Ω
s dµ.

This expression is true for every ε > 0, and 0 ⩽ s ⩽ X is arbitrary, so we may take the limit as
ε→ 0+ and the supremum over such simple s to get:

lim
n→∞

∫
Ω
Xn dµ ⩾ lim

ε→0+
sup

0⩽s⩽X
(1− ε)

∫
Ω
s dµ

= sup
0⩽s⩽X

∫
Ω
s dµ

=..

∫
Ω
X dµ

=..

∫
Ω

(
lim
n→∞

Xn

)
dµ

where the second equality is our definition of the Lebesgue integral of non-negative X ∈ F . ■

C.2 Dominated Convergence Theorem

Theorem C.2.1 (Dominated Convergence Theorem) Let {Xn}n∈N be a sequence of measurable
functions dominated by some integrable function and with pointwise limit X. Then X is integrable,

lim
n→∞

∫
Ω
|Xn −X|dµ = 0 and lim

n→∞

∫
Ω
Xn dµ =

∫
Ω

(
lim
n→∞

Xn

)
dµ.

Remarks

• The phrase ‘dominated by some integrable function’ means that ∃Y ∈ F which is integrable
(i.e.

∫
Ω |Y |dµ <∞) s.t. ∀n ∈ N : |Xn| ⩽ Y is the domination condition.

• To contrast with the MCT, the DCT doesn’t assume monotonicity of {Xn}. Thus, there’s
no guarantee of convergence (pointwise) to a limit. To remedy this, we add a pointwise limit
to our assumptions.

i.e. the MCT’s
(

non-negative
and monotone

)
is replaced by

(
dominating function
∃pointwise limit

)
This new set of assumptions offers

◦ a slightly stronger conclusion that X is integrable, and
◦ a stronger type of convergence in the L1 sense.

The first step is to prove Fatou’s lemma:

C.2.1 FATOU’S LEMMA

Theorem C.2.2 (Fatou’s Lemma) Let {Xn}n∈N be a sequence of non-negative measurable func-
tions. Then ∫

Ω

(
lim inf
n→∞

Xn

)
dµ ⩽ lim inf

n→∞

∫
Ω
Xn dµ.
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Remarks C.2.3

• The conditions of Fatou’s lemma don’t guarantee any convergence but we can still define a
lim inf and the result is an inequality.

Proof. Note that

lim inf
n→∞

Xn
..= lim

n→∞

(
inf
k⩾n

Xk

)
︸ ︷︷ ︸

=..Zn

and Zn is non-decreasing by definition.3 Thus, Zn ↑ lim infn→∞Xn.
Now we can apply the monotone convergence theorem to the non-decreasing sequence of non-

negative positive measurable functions Zn:

lim
n→∞

∫
Ω
Zn dµ =

∫
Ω

lim
n→∞

Zn dµ

=

∫
Ω
lim inf
n→∞

Xn dµ

Now for the statement of the theorem:∫
Ω

(
lim inf
n→∞

Xn

)
dµ ..=

∫
Ω

lim
n→∞

(
inf
k⩾n

Xn

)
dµ

=..

∫
Ω

lim
n→∞

Zn dµ

= lim
n→∞

∫
Ω
Zn dµ by the MCT

= lim inf
n→∞

∫
Ω
Zn dµ

⩽ lim inf
n→∞

∫
Ω
Xn dµ

The penultimate equality is because if the limit exists, then it certainly agrees with the lim inf (and
the lim sup). The final inequality follows from monotonicity of the integral. Since Zn = infk⩾nXk,
then certainly Zn ⩽ Xn because Xn is included in the collection of measurable functions we’re
taking the inf of. ■

Proof of the DCT.

1. • X is by definition the pointwise limit of the Xn, and | · | is a continuous function so:

|X| =
∣∣∣ lim
n→∞

Xn

∣∣∣ = lim
n→∞

|Xn|.

• Combining the dominating assumption ∀n ∈ N : |Xn| ⩽ Y with the point above implies
that

|X| = lim
n→∞

|Xn| ⩽ |Y |

i.e. |X| ⩽ |Y |.
• Finally, by monotonicity of the integral, we conclude that∫

Ω
|X| dµ ⩽

∫
Ω
|Y |dµ <∞.

2. Apply Fatou’s lemma to the sequence of functions Zn = 2Y − |Xn −X|.

3Informally, looking at smaller and smaller sets as you push the tail along means the infimum is non-decreasing.
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Check the assumptions:

• Zn-measurable? Sums and differences of measurable functions are measurable.
• Zn ⩾ 0? Triangle inequality.

lim inf
n→∞

Zn = lim inf
n→∞

(2Y − |Xn −X|)

=
(
lim inf
n→∞

2Y
)
−
(
lim sup
n→∞

|Xn −X|
)

︸ ︷︷ ︸
=0

= 2Y

By Fatou’s lemma:∫
Ω
2Y dµ =

∫
lim inf
n→∞

Zn dµ

⩽ lim inf
n→∞

∫
Ω
Zn dµ Fatou

= lim inf
n→∞

∫
Ω
(2Y − |Xn −X|) dµ

=

∫
Ω
2Y dµ− lim sup

n→∞
|Xn −X|︸ ︷︷ ︸

⩾ 0

dµ

︸ ︷︷ ︸
⩾ 0

by linearity

⩽
∫
Ω
2Y dµ

and we are done because we have an expression∫
Ω
2Y dµ ⩽ . . . ⩽ . . . ⩽

∫
Ω
2Y dµ

which forces us to conclude the inequalities are equalities and thus

lim sup
n→∞

∫
Ω
|Xn −X| dµ = 0.

Now note that since
∫
Ω |Xn − X|dµ is non-negative, the lim inf must be non-negative, and

lim inf ⩽ lim sup so they are both equal to 0, and so the limit

lim
n→∞

|Xn −X| dµ = 0.

3. Now consider the difference:∣∣∣∣∫
Ω
Xn dµ−

∫
Ω
X dµ

∣∣∣∣ = ∣∣∣∣∫
Ω
(Xn −X) dµ

∣∣∣∣ by linearity

⩽

∣∣∣∣∫
Ω
|Xn −X|dµ

∣∣∣∣ by monotonicity of the integral
since (Xn−X)⩽|Xn−X|

=

∫
Ω
|Xn −X|dµ

n→∞−→ 0 by step 2, concluding the DCT.

■
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C.3 Non-Example for MCT/DCT

Let (Ω,F , µ) = (R,BR, λ). Consider the piecewise linear functions Xn illustrated below. Each Xn

is supported4 on its respective half-open interval e.g. X1 is supported on (1/2, 1], X2 on (1/4, 1/2]
etc.

1/8 1/4 1/2 1

4

8

16

X1

X2

X3· · ·

x

Figure C.1: Plots of X1, X2, and X3 on their respective supports.

Each Xn, supported on (a, b] with highest point (c, h) where c = (a+ b)/2 is the
midpoint of (a, b], and h is the height of the triangle, is of the form

Xn(x) =

h− 2h

b− a

∣∣∣∣x− a+ b

2

∣∣∣∣ , x ∈ (a, b]

0, otherwise.

Now let a = (1/2)n+1, b = (1/2)n, h = 2n+1, and so c = 3/(2n+1) to obtain Xn.

For each n ∈ N, Xn takes the form

Xn(x) =

2n+1 − 22n+3

∣∣∣∣x− 3

2n+1

∣∣∣∣ , x ∈
(
(1/2)n+1, (1/2)n

]
0, otherwise.

The supports of theXn are disjoint so there’s no monotonicity of the sequence on their supports.
The smallest measurable function Y that dominates all the Xn is their sum; it’s not integrable.

•

∫
R
X1 dλ = area(triangle) = 1

2(1−
1
2)(4) = 1

•

∫
R
X2 dλ = area(triangle) = 1

2(
1
2 −

1
4)(8) = 1

... Proceeding inductively, each step halves the base length and doubles the height of the
triangle.

4This is the traditional (non-probabilistic) definition of support of a function; the set of points on which the
function is non-zero.
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•

∫
R
Xn dλ = 1 for every n ∈ N

∴ lim
n→∞

∫
R
Xn dλ = 1.

Therefore, the Lebesgue integral of Y with respect to λ is equal to
∑∞

n=1 1 =∞. The domination
condition is not satisfied.

Now we focus on the limit of the Xn as n → ∞. The support of every Xn is a subset of R⩾0

i.e. Xn(x) = 0 for all x ⩽ 0. Take x > 0. Then we can always find an N ∈ N large enough s.t.
(1/2)N < x. This means that Xn+1 has support ((1/2)N+1, (1/2)N ] i.e. Xn+1(x) = 0. The same
applies to Xn+2(x) = 0, Xn+3(x) = 0 and so on. This means that eventually, the limit of Xn(x)
for any x > 0 is zero.

The only value missing is x = 0 itself. However, with the way the Xn were defined, Xn(0) = 0
for all n. Therefore, limn→∞Xn = 0. Clearly, the Lebesgue integral of the limit of the Xn w.r.t λ
is zero.

Thus, we’ve constructed a sequence of measurable functions with

∞ = lim
n→∞

∫
R
Xn dλ ̸=

∫
R

lim
n→∞

Xn dλ = 0,

so the conditions of monotonicity and the assumption of domination in the MCT and DCT, re-
spectively, are both important.

C.4 Fubini’s Theorem

Theorem C.4.1 (Fubini’s Theorem) Let (ΩS ,FS , µS) and (ΩT ,FT , µT ) be two σ-finite measure
spaces. Define:

• Ω = ΩS × ΩT

• F = σ({A×B : A ∈ FS , B ∈ FT })

• The unique product measure µ on F satisfying µ(A×B) = µS(A)µT (B)

For every measurable function X : Ω → R that is either non-negative or integrable on a σ-finite
measure space (Ω,F , µ),∫

Ω
X dµ =

∫
ΩS

∫
ΩT

X dµT dµS =

∫
ΩT

∫
ΩS

X dµS dµT .

C.5 Non-Example for Fubini’s Theorem

Let Ω = [0, 1]× [0, 1], µS = µT = λ.

• Subdivide the unit square as follows (black, red, blue, and so on...)

• and label ⊕ for each square on the diagonal, and ⊖ above each ⊕.
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1/8 1/4 1/2 1

1/8

1/4

1/2

1

⊕

⊕

⊕

⊕

⊖

⊖

⊖

s

t

We’re going to use the counterexample from the MCT/DCT section to construct a function X
of two variables (s, t) in the following way:

• On each square with a ⊕, starting from the top-right
[
1
2 , 1
]
×
[
1
2 , 1
]
, we define X1(s)X1(t).

◦ and proceed inductively down the main diagonal of ⊕ squares i.e. on
[
1
4 ,

1
2

]
×
[
1
4 ,

1
2

]
define X2(s)X2(t) etc.

• Now take the highest ⊖ in the diagram
[
1
4 ,

1
2

]
×
[
1
2 , 1
]

and define −X2(s)X1(t) on it.

• . . . follow the pattern.

Assume the function is zero elsewhere (everywhere that isn’t shaded). Then X > 0 on the
interiors of the ⊕ squares, and X < 0 on the interiors of the ⊖ rectangles. The negative sign is so
that our function doesn’t satisfy the non-negative requirement of Fubini’s theorem.
Visually, our function X looks like:

• square-based pyramids of increasing height on the ⊕ squares as you get closer to the origin,

• and on the ⊖ rectangles, they face downwards but the magnitude of the height increases as
the squares get closer to the origin.
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· · ·
· · ·

s

t

X(s, t)

Figure C.2: A plot of the constructed X(s, t).

Now for the calculations:

• Fix t first and consider:∫ 1

0
X(s, t) ds =

∫ 1

0
Xn(s)Xn(t) ds−

∫ 1

0
Xn+1(s)Xn(t) ds for some n

= Xn(t)
(∫ 1

0
Xn(s) ds︸ ︷︷ ︸
=1

−
∫ 1

0
Xn+1(s) ds︸ ︷︷ ︸

=1

)
= 0

Therefore,
∫ 1

0

∫ 1

0
X(s, t) ds dt = 0.

• Fix s < 1/2 first and consider the integral across a vertical line:∫ 1

0
X(s, t) dt =

∫ 1

0
Xn(s)Xn(t) dt−

∫ 1

0
Xn(s)Xn−1(t) dt for n > 1

= Xn(s)
(∫ 1

0
Xn(t) dt−

∫ 1

0
Xn−1(t) dt

)
= 0.

• Fix s > 1/2. No ⊖ rectangle is crossed but the first square is:∫ 1

0
X(s, t) dt =

∫ 1

0
X1(s)X1(t) dt = X1(s).

Therefore,
∫ 1

0

∫ 1

0
X(s, t) dtds =

∫ 1

0
X1(s) ds = 1.

Also, note that |X| is a bunch of positive pyramids increasing in height (as we get closer to the
origin) so the integral of |X| is infinite i.e. X is not integrable. So the assumptions of Fubini’s
theorem are not satisfied for our constructed X. The order of integration matters.
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CHAPTER D

Conditional Independence

This chapter also contains results from [3] but I’m
figuring out where to put it.

D.1 Relating Conditional Expectation and Independence

Then a theorem that characterises independence in terms of conditional expectations:

Theorem D.1.1 Two sub-σ-algebras G1 and G2 of F are independent iff ∀B ∈ G2, we have
E[1B | G1] = P(B). Furthermore, if G1 and G2 are independent, we have that ∀X ⩾ 0 s.t. X ∈ G2
(or every X ∈ L1(Ω,G2,P)):

E[X | G1] = E(X).

Proof.

=⇒ Suppose that G1 and G2 are independent, and let X ⩾ 0 be G2-measurable. Then, for any
non-negative G1 measurable random variable Z, we have that X and Z are independent and
thus

E(ZX) = E(Z)E(X) = E(ZE(X))

and so the constant random variable E(X) satisfies the characteristic property of E[X | G1].
This implies that P-a.s.

E[X | G1] = E(X).

Then we conclude by noting that in particular,

E[1B | G1] = E(1B) = P(B).

The same result holds for integrable X by considering X = X+ −X−.

⇐= Conversely, suppose that ∀B ∈ G2 : E[1B | G1] = P(B). Then for every A ∈ G1, and for every
B ∈ G2:

P(A ∩B) = E(1A∩B)

= E(1A1B)

= E(1AE[1B | G1]) by the averaging property of E(1B | G1)
= E(1AP(B))

= P(A)P(B)

i.e. G1 and G2 are independent σ-algebras.

■

Remarks D.1.2 Let X and Y be two real random variables. The random variables that are
σ(X)-measurable are exactly the measurable functions of X. If we let G1 = σ(Y ) and G2 = σ(X),
the preceding theorem tells us that X ∈ G2 and Y ∈ G1 are independent iff

E[h(X) |Y ] = E(h(X))

for every Borel-measurable function h : R→ R s.t. E(|h(X)|) <∞ (i.e. h(X) ∈ L1).
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The next theorem states informally that, given a sub-σ-algebra G ⊆ F , if you have two random
variables X, Y such that:

• X is independent from G

• Y is G-measurable

then conditioning a function g(X,Y ) on G means that Y behaves like a constant, so the best
approximation of g(X,Y ) when knowing G is given by integrating g( · , Y ) with respect to the law
of X.

Theorem D.1.3 Let (E, E) and (S,S) be two measurable spaces, and let X and Y be two random
variables taking values in E and S respectively. Assume that X is independent of G and that Y is
G-measurable. Then for every (E ⊗ S)-measurable function g : E × S → [0,+∞):

E[g(X,Y ) | G] =
∫
Ω
g(x, Y ) dPX ,

where the RHS is the composition of the random variable Y with the mapping Ψ: S → [0,+∞)
defined by

Ψ(y) =

∫
Ω
g(x, y) dPX .

Proof. We need to show that for any Z ⩾ 0 that is G-measurable, we have

E(g(X,Y )Z) = E(Ψ(Y )Z).

The picture is:

(E, E)

(Ω,F) (E × S, E ⊗ S) [0,+∞)

(S,S)

ι1G⊥X

G∋Y

g

ι2

Ψ

and the conclusion is that Ψ ◦ Y = E[g(X,Y ) | G].
Write P(X,Y,Z) for the law of the triple (X,Y, Z), which is a probability measure on E × S ×

B[0,+∞). Since X is independent of G, X is independent of the pair (Y,Z), and therefore

P(X,Y,Z) = PX ⊗ P(Y,Z).

Then,

E(g(X,Y )Z) =

∫
E×S×[0,+∞)

gZ dP(X,Y,Z)

=

∫
E×S×[0,+∞)

gZ dPX ⊗ P(Y,Z)

=

∫
S×[0,+∞)

z

(∫
E
g(x, y) dPX

)
dP(Y,Z) by Fubini’s Theorem

=

∫
S×[0,+∞)

zΨ(y) dP(Y,Z)

= E(Ψ(Y )Z)

■
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Then a proposition about G1 ∨ G2 (the smallest σ-algebra that contains both G1 and G2 —
sub-σ-algebras of F).

Proposition D.1.4 Let Z be a random variable in L1, and let G1 and G2 be two sub-σ-algebras
of F . Assume that G2 is independent of σ(Z) ∨ G1. Then

E[Z | G1 ∨ G2] = E[Z | G1].

Proof. It suffices to prove the equality

E(1AZ) = E(1AE[Z | G1])

holds for every A ∈ G1 ∨ G2. Consider the case where A = B ∩ C with B ∈ G1, C ∈ G2. Then we
have

E(1AZ) = E(1B1CZ)

= E(1C1BZ)

= E(1C)E(1BZ) since G2 ⊥ σ(Z) ∨ G1
= P(C)E(1BZ)

= E(P(C)1BZ)

= E(P(C)1BE[Z | G1]) by the averaging property of E[Z | G1] since P(C)1B ∈ G
= E(1C1BE[Z | G1])
= E(1AE[Z | G1])

Replacing the constant P(C) with 1C within the expectation is legitimate because 1C is indepen-
dent of 1B and E[Z | G1].

Thus, the class of all sets A ∈ G1 ∨ G2 that satisfy

E(1AZ) = E(1AE[Z | G1]) (†)

contains a class closed under finite intersections (a π-system) that generate the σ-field G1 ∨G2. An
application of the π-λ theorem shows that (†) holds for every A ∈ G1 ∨ G2. ■
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CHAPTER E

Future Topics

E.1 Hypothesis Tests

Hypothesis testing is a general term for assessing whether sample data is consistent or otherwise [19]
with statements made about the population.

Definition E.1.1 A statistical hypothesis is a hypothesis concerning the parameter or form of [4]
the probability distribution for a designated population or populations, or, more generally, of a
probabilistic mechanism which is supposed to generate the observations.

A null hypothesis is typically the ‘no difference’ or ‘no association’ hypothesis to be tested
(usually by means of a significance test) against an alternative hypothesis that postulates non-zero
difference or association.

Definition E.1.2 An effect is said to be significant if the value of the statistic used to test it lies [4]
outside acceptable limits, so that there’s strong evidence against the hypothesis that the effect is
not present. A test of significance is one which, by use of a test statistic, purports to provide
a test of the hypothesis that the effect is absent. By extension, the critical values of the statistics
are themselves called significant.



265

Bibliography

[1] George Casella and Roger Berger. Statistical Inference. CRC Press, 2nd edition, 2024.

[2] Nicolas Lanchier. Stochastic Modeling. Springer, 2017.

[3] Jean-François Le Gall. Measure Theory, Probability, and Stochastic Processes. Springer, 2022.

[4] Yadolah Dodge. The Oxford Dictionary of Statistical Terms. Oxford University Press, USA,
2003.

[5] Mark John Schervish. Theory of Statistics. Springer Science & Business Media, 2012.

[6] Dennis David Wackerly, William Mendenhall III, and Richard Lewis Scheaffer. Mathematical
Statistics with Applications. Duxbury Press, 6th edition, 2001.

[7] Dennis David Wackerly, William Mendenhall III, and Richard Lewis Scheaffer. Mathematical
Statistics with Applications. Thomson Brooks/Cole, 7th edition, 2008.

[8] Gerald Budge Folland. Real Analysis: Modern Techniques and Their Applications. John Wiley
& Sons, 2nd edition, 1999.

[9] Kai Lai Chung. Elementary Probability Theory with Stochastic Processes. Springer, 3rd edition,
1979.

[10] Jun Shao. Mathematical Statistics. Springer, 2nd edition, 1999.

[11] Yiping Cheng. A Mathematically Sensible Explanation of the Concept of Statistical Population.
arXiv Pre-Print, arXiv:1704.01732, 2017.

[12] Erhan Çinlar. Probability and Stochastics. Springer, 2011.

[13] Krishna Balasundaram Athreya and Soumendra Nath Lahiri. Measure Theory and Probability
Theory. Springer, 2006.

[14] Vladimir Igorevich Bogachev. Measure Theory Vol II. Springer, 2006.

[15] Malempati Madhusudana Rao and Randall J Swift. Probability Theory with Applications.
Springer, 2nd edition, 2006.

[16] Michel Loève. Probability Theory II. Springer, 4th edition, 1978.

[17] Patrick Billingsley. Probability and Measure. John Wiley & Sons, 3rd edition, 1995.

[18] Aleksandr Alekseevich Borovkov. Mathematical Statistics. CRC Press, 1999.

[19] Anders Skrondal and Brian Sidney Everitt. The Cambridge Dictionary of Statistics. Cambridge
University Press, 4th edition, 2010.


	Introduction
	Describing/characterising a set of measurements
	Visualising Data


	Mathematical Framework of Experiments
	Experiments
	Probability
	Frequentist Interpretation
	Kolmogorov's Axiomatic Framework

	Collections of Events, F
	Generating (Sigma-)Algebras

	The Extended Real Line, Rbar
	Measures on F
	Sub-sigma-algebras and Subspace Measures
	Completion of Measure

	Why Not Always F = Power Set of X?
	A Non-Measurable Set (Vitali Set)
	Damage Control

	Probability Measures
	Defining Omega and Counting Subsets

	Independence
	(Naïve) Conditional Probability

	Constructing Measures
	Terminology
	Chapter Roadmap
	Approximation by Covering
	Outer Measure

	Outer Measurability and Carathéodory Extension
	Refined Carathéodory Extension
	Extension From S to Alg(S)
	Extension From Alg(S) to Sigma(S)
	Uniqueness Of Our Extension

	Defining the Lebesgue Measure
	Product Measures

	Measurable Functions
	Random Variables
	Properties of Measurable Functions
	Probability Distribution of X
	Support of Probability Distribution
	Borel Spaces
	Measurable Classification of Borel Spaces
	Topological Support of Probability Measure


	Measuring Functions (Integral)
	Historical Shortcomings
	Definition of the Lebesgue Integral
	MCT, Fatou, DCT, and Fubini
	Absolute Continuity & Radon-Nikodým Derivative
	Pushforward Measure & Change of Variables
	Types of Random Variables
	Absolutely Continuous
	Discrete


	Random Vectors
	Probability Distribution of Random Vector
	Joint CDF

	Types of Random Vectors
	Marginal Distributions
	Conditional Distributions
	Jointly Discrete
	Jointly Absolutely Continuous

	Independence of Random Variables

	Averages, Dispersion, and Correlation
	Variance
	Covariance
	Correlation
	Calculating Expectations and Variances of Linear Combinations

	Discrete Probability Distributions
	Uniform
	Bernoulli
	An Important Point!
	Binomial
	(Discrete) Geometric
	Memorylessness

	Negative Binomial
	Hypergeometric
	Hypergeometric Approximates Binomial

	Point Processes (Random Scatters)
	Point Processes
	Poisson Point Processes
	Poisson Processes
	A Bridge to Absolutely Continuous Distributions


	Absolutely Continuous Distributions
	Uniform Distribution
	Normal Distribution
	Standard Normal
	Link: Normal Approximates Binomial

	Gamma Distribution
	Shape
	Scale Parameter
	Link: Poisson and Gamma

	Gamma(nu/2, beta=2) The Chi-Squared Distribution (Positive Integer nu)
	Gamma(alpha=1, beta), The Exponential Distribution
	Memorylessness
	Link: Exponential and Geometric

	Beta Distribution
	Link: Beta and Binomial

	Chebyshev's Theorem
	Expectations of Discontinuous Functions and Mixed Probability Distributions
	Expectation of a Mixed Random Variable

	Summary
	Location-Scale Families

	Moment-Generating Functions
	Technical Points
	Generating Moments
	Alternative Derivation

	Multivariable Distributions
	Multinomial Distribution
	Bivariable Normal Distribution

	Population and Sampling
	What Really Is A Population?
	Inadequacies of a Single Space
	The Two-Space Framework
	Simple Random Sampling With Replacement (SRSWR)
	Canonical Randomness
	Constructive Proof For h (Population at most countable)
	Non-trivial Example (SRSWR)

	Simple Random Sampling

	Functions of Random Variables
	Statistics, Estimators and Estimates
	How ``Good'' Is An Estimator?

	The 3 Methods
	Method of Distribution Functions
	Z = X+Y
	Leibniz's Integral Rule
	Z = X-Y
	Z = X-Y (Non-Negative X, Y)
	R = sqrt(X2 + Y2)
	Z = X/Y
	Z = max(X,Y), W = min(X,Y)
	Z = max(X,Y)
	W = min(X,Y)
	Z = max(X,Y)/min(X,Y)

	Method of Transformations
	Method of Moment-Generating Functions
	Multivariable/variate Transformations Using Jacobians
	Order Statistics

	Sampling Distributions
	Sampling From A Normally Distributed Population
	Multivariable-Multivariate Transformations

	The t-distribution
	The Density of Student's t-distribution
	Properties of the t_nu-distribution

	The F-Distribution
	The Density of the F-distribution
	Properties of the F_(nu1,nu2)-distribution


	More Measurability
	Theorem A.42
	Application: Defining a Statistic

	Conditional Expectation
	Prequel to Abstract Conditional Expectation
	Abstract Conditional Expectation (X in L1)
	Properties of Conditional Expectation (X in L1)
	An Illustrative Example of Conditional Expectation

	The Conditional Expectation (X >= 0)
	Properties of E[X|G] for X >= 0

	Conditional Expectation As Projection (X in L2)
	Application to Conditional Expectation

	More Properties of Conditional Expectation (X >= 0 or X in L1)

	Conditional Probability
	Conditional Probability of A given G
	Regular Conditional Probability
	Regular conditional distribution of X given G
	G gen. by partition
	Defining conditional expectation via r.c.p on F given G-arbitrary

	I'm Disintegrating
	Extending the Disintegration Formula
	Conditional law of X given Y
	Push-forward of Markov kernels
	Example: Conditional Density Formula
	So many random variables


	Disintegration (Separable Case)
	Atoms
	Decomposition Theorem

	Approximation
	Approximation
	Convergence in Probability
	Consistency
	Jensen's Inequality

	Almost Sure Convergence
	Convergence in Distribution
	An Approximation for X-bar — Classical Central Limit Theorem
	The Normal Approximation to the Binomial Distribution

	Goodness of Estimators, Point and Interval
	Point Estimation
	Interval Estimation
	Bias and MSE of Point Estimators
	Evaluating the Goodness of a Point Estimator
	Pivotal Method for Interval Estimation
	Selecting the Sample Size
	Large-Sample Confidence Intervals
	Small-Sample Confidence Intervals
	mu
	mu1-mu2

	Confidence Intervals for Variance
	Summary
	Properties of Point Estimators
	Relative Efficiency
	Consistency


	Data Reduction
	Sufficiency
	Factorisation Theorem


	Temp
	2025-09-21, Decomposing Spaces
	Application to Conditioning

	2025-10-13, Lebesgue-Stieltjes Measure
	2025-11-11, Hypothesis Testing

	Rings <-> Algebras
	Extending Properties
	pi-lambda Theorem

	The Big Three
	Monotone Convergence Theorem
	Dominated Convergence Theorem
	Fatou's Lemma

	Non-Example for MCT/DCT
	Fubini's Theorem
	Non-Example for Fubini's Theorem

	Conditional Independence
	Relating Conditional Expectation and Independence

	Future Topics
	Hypothesis Tests


