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Chapter 1

Stochastic Processes

1.1 Basic Definitions

Let Ω be a sample space, A be a σ-algebra on Ω and P be a probability measure on Ω.

Definition 1.1.1 A stochastic (or random) process is formally defined to be a col-
lection of random variables {Xn}n∈T indexed by some set T and defined on a common
probability space (Ω,A,P). The random variables all take values in the same range-space
I; this may be Rn (a vector-valued process) or some other measurable space.

• The set T will generally be R, R+ = [0,∞), Z = {. . . ,−1, 0, 1, 2, . . . } or Z+ =
{0, 1, 2, . . . }. In all of these cases, the parameter t ∈ T may be thought of as time
e.g. if T = Z or Z+, one sometimes speaks of a random sequence.

• The range I of the random variables is called the state space.

In describing a stochastic process as we have done, there is a certain psychological bias:
one tends to regard the process primarily as a function on T whose values for each t ∈ T
are random variables. Of course, we’re really dealing with one function of two variables
X = X(t, ω) where t ∈ T , ω ∈ Ω.

• For each fixed t the function X(t, ·) is measurable with respect to A.

• If we instead fix an ω ∈ Ω, we obtain a function X(·, ω) : T → I which is called a
trajectory or a path/sample-function of the process. This can be thought of
as the evolution of a particular particle in some random process.

1.2 Random Walks

Definition 1.2.1 A random walk is the process (Sn)n⩾1 where Sn = X1 + · · · +Xn

and (Xi)i⩾1 is a sequence of independent and identically distributed random variables.

The special case in which each Xi possesses a Bernoulli (±1, 1/2) distribution is called
a simple random walk.

We can ask a few questions about Sn:

1) What is the probability P(Sn = k)?

2) What is the probability that Sn will visit k by time n?

3) Does Sn always return to its starting point?

4) How long do we expect it to take for Sn to return to its starting point?
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Figure 1.1: An example of a random walk (Sn)n⩾1.

We’ll denote the starting position
of a stochastic process with a sub-
script e.g. Px(A) refers to the prob-
ability of some event A occurring
given that the initial state of the
process is x.

Let (Sn)n⩾0 be a simple random walk with S0 = 0. What is P0(Sn = k)?

Denote the number of steps up and down by m and k respectively. Then m+ l = n and
m− l = k. This implies that m = (n+ k)/2 and so

P0(Sn = k) = P({no. of steps up}) = P
(
n+ k

2

)
=

(
n

n+k
2

)
p

n+k
2 (1− p)

n−k
2 .

However, the remaining 3 questions don’t have such an easy answer. We’ll need to
develop a systematic method to find their solutions.

Definition 1.2.2 (Geometric Variables) Let X1, X2, . . . be i.i.d. Bernoulli (1, 0; p) and
define τ ..= min{n : Xn = 1}. Then P(τ = n) = (1 − p)n−1p because the first (n − 1)
values of X1, . . . , Xn−1 need to be equal to 0 and Xn = 1. τ can be thought of as the
first time a random walk makes an upwards step.

Definition 1.2.3 (Conditional Probabilities) If X and Y are discrete random variables,
then

P(X = a |Y = b) ..=
P(X = a, Y = b)

P(X = b)

=
P(Y = b |X = a)P(X = a)

P(Y = b)
.

Conditional probabilities are important because they can be used to define the statistics
of a stochastic process through transition probabilities πx,y

..= P(Sn+1 = x |Sn = y).
We’ll see this later on.

Definition 1.2.4 The conditional expectation of a discrete random variable X given
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a random variable Y is defined by

E[X |Y ] ..=
∑
a

P(X = a |Y ).

Conditional expectation is just an expectation but it’s computed with respect to a condi-
tional probability. Informally, it is what we expect X to be knowing (the value of) Y .
Since Y is a random variable, E[X |Y ] is also a random variable.

1.3 Simple Random Walks

In this section, we’ll familiarise ourselves with some basic techniques used in stochastic
processes to compute things. We’ll explore these through the example of a simple
random walk. We already defined a simple random walk as Sn = X1 + · · ·+Xn where
(Xi)i⩾1 are Bernoulli (±1; 1/2). However, there is an alternate formulation which is
more general and can be extended to define general stochastic processes. This definition
relies on specifying the conditional probabilities:

Definition 1.3.1 A simple random walk starting at a is a sequence of random variables
(Sn)n⩾1 such that

• S0 = a with probability 1

• P(Sn = x |Sn−1 = y, Sn−2, . . . , S1, S0) = P(Sn = x |Sn−1 = y) = 1/2 if x = y ± 1.

In general, we’ll be making use of joint probabilities P(Sn1
= a1, · · · , Snk

= ak) with
n1 < · · · < nk. Using the above conditional law it turns out to be equal to

k∏
i=1

P
(
Sni

= ai
∣∣Sni−1

= ai−1

)
.

1.3.1 A FIRST COMPUTATION: REFLECTION PRINCIPLE

Let (Sn) be a simple random walk starting at 0. Compute P0

(
max
k⩽n

{Sk} ⩾ b

)
for b ∈ Z+.

Definition 1.3.2 The hitting time of a point b will be denoted by

τb ..= min{k ⩾ 1: Sk = b}.

We can think of this hitting time as the first time that the random walk attains the value
b.

The events

{
max
k⩽n

{Sk} ⩾ b

}
and {τb ⩽ n} are identical. That is, P0

(
max
k⩽n

{Sk} ⩾ b

)
=

P0(τb ⩽ n).

First of all

P0(Sn ⩾ b) = P0(Sn ⩾ b, τb ⩽ n) =

n∑
k=1

P0(Sn ⩾ b, τb = k).
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Figure 1.2: Pictorial representation of τb.

This implies, by the correspondence of events above, that: {τb ⩽ n} =
⋃n

k=1{τb = k}.

P0(Sn ⩾ b) = P0(Sn ⩾ b, τb ⩽ n)

=

n∑
k=1

P0(Sn ⩾ b, τb = k)

=

n∑
k=1

P0(Sn ⩾ b, Sk = b,max{S1, . . . , Sk} < b)

=

n∑
k=1

P0(Sn ⩾ b |Sk = b,max{S1, . . . , Sk} < b) · P0(Sk = b,max{S1, . . . , Sk} < b)

=

n∑
k=1

P0(Sn ⩾ b |Sk = b)P0(Sk = b,max{S1, . . . , Sk} < b) by the Markov property

=

n∑
k=1

Pb(Sn−k ⩾ b)P0(Sk = b,max{S1, . . . , Sk} < b)

=

n∑
k=1

{
Pb(Sn−k > b) + Pb(Sn−k = b)

}
· P0(Sk = b,max{S1, . . . , Sk} < b)

(1)
=

n∑
k=1

(
1

2
+

1

2
Pb(Sn−k = b)

)
P0(τb = k)

=
1

2

n∑
k=1

P0(τb = k) +
1

2

n∑
k=1

Pb(τb = k)Pb(Sn−k = b)

=
1

2
P0(τb ⩽ n) +

1

2
P0(Sn = b)

Where we used in (1) the fact that via symmetry:

1 = Pb(Sn−k = b) + Pb(Sn−k > b) + Pb(Sn−k < b)

= Pb(Sn−k = b) + 2Pb(Sn−k > b)
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which implies that

Pb(Sn−k > b) =
1

2
− 1

2
Pb(Sn−k = b). (1.1)

By rearranging, we arrive at the equation

P0(τb ⩽ n) = 2P0(Sn ⩾ b)− P0(Sn = b).

Definition 1.3.3 Let p ̸= 1/2. We call Sn = X1 + · · · +Xn an asymmetric simple
random walk if (Xi)i⩾1 are independent, identically distributed with P(Xi = 1) = p =
1− P(Xi = −1).

Let (Sn)n⩾1 be an asymmetric simple random walk starting from 0 with probability of
step-up being equal to p. Let a < 0 < b. Compute P0(τa < τb).

Let’s define u(x) ..= Px(τa < τb) i.e. u(x) represents the probability starting from x that
Sn will hit a before it hits b. We’ll set up an equation and this will be a prototype
example that we’ll develop into a method later.

The idea is to decompose according to the first step. Sn can either take a step up or
down from x:

u(x) ..= Px(τa < τb)

= Px(τa < τb, S1 = x+ 1) + Px(τa < τb, S1 = x− 1)

= Px(S1 = x+ 1)Px(τa < τb |S1 = x+ 1) + Px(S1 = x− 1)Px(τa < τb |S1 = x− 1)

= pPx+1(τa < τb) + (1− p)Px−1(τa < τb) by the Markov property

= pu(x+ 1) + (1− p)u(x− 1)

This is a 2-term recursive relation i.e. a difference equation. To solve it, we also need
boundary conditions: u(a) = 1 i.e. the probability of starting from a and hitting a is
certain and u(b) = 0 i.e. the probability of starting at a and hitting b first is impossible.

Thus, we need to solve the boundary value problem:
u(x) = pu(x+ 1) + (1− p)u(x− 1)

u(a) = 1

u(b) = 2

The general method to solve such a problem involves guessing a solution of the form
tx where g is a constant parameter to be determined. Inserting this into the difference
equation and dividing through by tx−1 (for t ̸= 0) gives pt2 − t+ (1− p) = 0. This has
solutions

t1,2 =
1±

√
1− 4(1− p)p

2p
.

This means that the recurrence relation of order 2 is satisfied by any linear combination
of (t1)

x and (t2)
x i.e. u(x) = Atx1 +Btx2 .

In the case that p = 1/2, t1 = t2 and so u(x) = A+Bx. Let’s assume that p ̸= 1− p as
the simple random walk is asymmetric. The constants A,B can be determined by the
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boundary conditions {
1 = u(a) = Ata1 +Bta2
0 = u(b) = Atb1 +Btb2

We know how to solve this system of two equations with in unknowns:

A =

∣∣∣∣1 ta2
0 tb2

∣∣∣∣∣∣∣∣ta1 tb2
tb1 tb2

∣∣∣∣ , B =

∣∣∣∣ta1 1
tb1 0

∣∣∣∣∣∣∣∣ta1 tb2
tb1 tb2

∣∣∣∣
So with these constants, the desired probability is P0(τa < τb) = u(0) = A+B.

Simplifying in the case that p = 1/2, the system of equations becomes{
1 = u(a) = Aa+B

0 = u(b) = Ab+B
=⇒ A =

1

a− b
, B =

b

b− a

so the general solution is u(x) =
x

a− b
+

b

b− a
and the desired probability is

P0(()τa < τb) = u(0) =
b

b− a
.

As a sanity check, we can interpret limb→∞ P0(τa < τb) as P0(τa < ∞) and we can verify
that limb→∞ P0(τa < τb) = 1 i.e. the probability that you will ever hit a is 1. This
property is called recurrence i.e. for a symmetric simple random walk, the probability
that you will always come back to a certain point is certain.

However, if we consider an asymmetric simple random walk e.g. p > 1/2

lim
b→∞

P0(τa < τb) < 1.

We call this property transience i.e. there’s a non-trivial probability that the process
will never return to a state from which it started.

1.4 Generating Functions

Let’s recall the definition of a generating function of a discrete probability distribution.
Let X : Ω → A ⊆ R be a discrete random variable defined on a sample space Ω. The
probability distribution (or mass) function pX : A → [0, 1] for X is defined ∀x ∈ A
by pX(a) = P(X = a) = P({ω ∈ Ω: X(ω) = a}) and satisfies∑

a∈A

pX(a) = 1.

Definition 1.4.1 The probability generating function of a discrete, non-negative
random variable X is the map p̂X defined for z ∈ C by

p̂X(z) ..= E
[
zX
]
=

∞∑
a=0

zapX(a).

If we let z = eλ, we obtain the Laplace transform.
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Now consider a random walk Sn = X1 + · · · + Xn with (Xi)i⩾1 i.i.d. variables. The
generating function, which we denote by p̂Sn

(t) will be given by

p̂Sn
(t) = E

[
tSn
]

= E
[
tX1+···+Xn

]
= E

[
n∏

i=1

tXi

]
=

n∏
i=1

E
[
tXi
]

by independence

= E
[
tX1
]n

as the Xi are identically distributed

=.. (p̂X(t))
n

where p̂X denotes the generating function of the random variable X.

1.4.1 COMPUTATIONS INVOLVING GENERATING FUNCTIONS

Let (Sn)n⩾1 be a simple random walk and define

• p0(n) ..= P0(Sn = 0)

• τ0 = min{n ⩾ 1: Sn = 0}
• f0(n) ..= P0(τ0 = n) = P0(S1 ̸= 0, . . . , Sn−1 ̸= 0, Sn = 0).

We can compute

p0(n) = P0(Sn = 0) =

(
n

n/2

)
pn/2(1− p)n/21{n even}

because in order to hit 0 at time n, #{steps up} = #{steps down} = n/2. If n is odd,
then p0(n) = 0. However, f0(·) is less easy to compute. We’ll do this by setting up an
equation:

It holds that p0(n) =

n∑
k=1

f0(k)p0(n− k).

This is difficult to solve for f0(k) so we’ll transform it by using generating functions. To
do so, multiply both sides by sn and sum over n. For the series to converge, we have to
choose |s| < 1.
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Figure 1.3: Pictorial representations of p0 and f0.

p̂0(s) ..=

∞∑
n=0

snp0(n)

= p0(0) +

∞∑
n=1

snp0(n)

= 1 +

∞∑
n=1

sn
n∑

k=1

f0(k)p0(n− k)

= 1 +

∞∑
n=1

n∑
k=1

skf0(k) · sn−kp0(n− k)

= 1 +

∞∑
k=1

∞∑
n=k

skf0(k) · sn−kp0(n− k)

= 1 +

∞∑
k=1

skf0(k)

∞∑
n=k

sn−kp0(n− k)

= 1 +

∞∑
k=1

skf0(k)

∞∑
n=0

snp0(n)

=.. 1 + f̂0(s)p̂0(s).

Thus, we’ve derived the equation p̂0(s) = 1 + f̂0(s)p̂0(s) which is trivial to solve:

f̂0(s) =
p̂0(s)− 1

p̂0(s)
. (1.2)
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Inverting f̂0(s) to get f0(n), though possible, is not trivial. Nevertheless, we obtain

useful information from our solution for f̂0(s). For example, we can compute f̂0(1) by
taking limits:

f̂0(s) ..= lim
s↑1

∞∑
n=0

snf0(n)

=

∞∑
n=0

lim
s↑1

snf0(n)

=

∞∑
n=0

f0(n)

=

∞∑
n=0

P0(τ0 = n)

= P0(τ0 < ∞)

Thus, f̂0(1) gives the probability that the random walk will return to 0 in finite time.
Furthermore, we have from (2) that

f̂0(1) = lim
s↑1

p̂0(s)− 1

p̂0(s)
(1.3)

Now we focus on computing p̂0(s):

p̂0(s) ..=

∞∑
n=0

snp0(n)

=

∞∑
n=0

sn
(

n

n/2

)
pn/2(1− p)n/21{n even}

n=2k
=

∞∑
k=0

(s2p(1− p))k
(
2k

k

)
=

1√
1− 4s2(1− p)p

Therefore, p̂0(1) =
1√

1− 4(1− p)p
. If p ̸= 1/2, p̂0(1) < ∞. However, if p = 1/2 then

p̂0(1) = ∞.

Substituting back into equation (3), we have that

(i) p = 1/2 =⇒ P0(τ0 < ∞) =.. f̂0(1) =
p̂0(1)− 1

p̂0(1)
= 1

(ii) p ̸= 1/2 =⇒ P0(τ0 < ∞) = 1− |2p− 1| < 1.

• In case (i), we’ll say that “0 is recurrent” i.e. 0 will be revisited an infinite number
of times.

• In case (ii), we’ll say that “0 is invariant” i.e. 0 will be visited only finitely many
times.
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It’s important to know that although we know we’ll return to 0 at some point, it may
be an “infinite” amount of time/number of steps before we do.

We can also compute the expected return time E0[τ0]:

df̂

ds
(s)
∣∣∣
s=1

=
d

ds

( ∞∑
n=1

snf0(n)

)∣∣∣
s=1

=

∞∑
n=1

nf0(n)

=

∞∑
n=1

n P0(τ0 = n)

= E[τ01{τ0 < ∞}]

Using our expression for f̂0(s), we compute its derivative at s = 1 as:

f̂ ′
0(s)

∣∣∣
s=1

=
4p(1− p)√

1− 4s2p(1− p)

∣∣∣∣∣
s=1

=
4p(1− p)√
1− 4p(1− p)

We already know that p = 1/2 means that P0(τ0 < ∞) = 1. Therefore,

E0[τ0] = E0[τ0 (1{τ0 < ∞}+ 1{τ0 = ∞})]
= E0[τ01{τ0 < ∞}] + E0[1{τ0 = ∞}]
= E0[τ01{τ0 < ∞}] +∞ · P0(τ0 = ∞)︸ ︷︷ ︸

=0
= E0[τ01{τ0 < ∞}]

= f̂ ′(1) = ∞

• E0[τ0] = ∞ will be referred to as the state 0 being null recurrent.

• E0[τ0] < ∞ will be referred to as the state 0 being positive recurrent”.

In the case that p ̸= 1/2, we have that E0[τ01{τ0 < ∞}] = 4p(1− p)√
1− 4p(1− p)

.

Furthermore,
E0[τ0] = E0[τ01{τ0 < ∞}] + E0[1{τ0 = ∞}]

⩾ E0[τ01{τ0 = ∞}]
= ∞ · P0(τ0 = ∞)︸ ︷︷ ︸

>0

= ∞.

If the simple random walk is asymmetric, we may never return back to 0 i.e. we expect
that it may take an infinite amount of time. It’s also important to note that if a state
is transient, it’s also null recurrent.

Let |s| < 1. We wish to compute the generating function E1[s
τ0 ] of τ0 ..= min{n ⩾ 0: Sn =

0}.

Notice that we’ve redefined the starting time for τ0 but the starting location is 1 instead
of 0. This change of state makes the method developed earlier not applicable. We’ll
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compute the generating function by deriving a difference equation starting at a general
state x > 0.

u(x) ..= Ex[s
τ0 ]

The intuition is the same as before. You can either go up or down a step.

We’ll also use that (∗) τ0 should be thought of as a function of the random walk i.e.
τ0(S0, S1, S2, . . . ).

u(x) ..= Ex[s
τ0 ]

= Ex[s
τ0 : S1 = x+ 1] + Ex[s

τ0 : S1 = x− 1]

= Ex[s
τ0 |S1 = x+ 1] · Px(S1 = x+ 1) + Ex[s

τ0 |S1 = x− 1] · Px(S1 = x− 1) by conditioning

= Ex

[
sτ0(S0,S1,... )

∣∣∣S1 = x+ 1
]
· p+ Ex

[
sτ0(S0,S1,... )

∣∣∣S1 = x− 1
]
· (1− p)

= Ex

[
s1+τ0(S1,S2,... )

∣∣∣S1 = x+ 1
]
· p+ Ex

[
s1+τ0(S1,S2,... )

∣∣∣S1 = x− 1
]
· (1− p) by the Markov property

Going back to the equation, we have that

u(x) = sEx

[
sτ0(S1,S2,... )

∣∣∣S1 = x+ 1
]
· p+ sEx

[
sτ0(S1,S2,... )

∣∣∣S1 = x− 1
]
· (1− p)

= sEx

[
sτ0(S0,S1,... )

∣∣∣S1 = x+ 1
]
· p+ sEx

[
sτ0(S0,S1,... )

∣∣∣S1 = x− 1
]
· (1− p) by the Markov property

= ps · u(x+ 1) + (1− p)s · u(x− 1)

As before, we need boundary conditions

• u(0) = E0[s
τ0 ] = E0

[
s0
]
= 1

• u(∞) = E∞[sτ0 ] = E∞[s∞] = E∞[0] = 0 ∵ |s| < 1

Thus, we need to solve the boundary value problem:
u(x) = ps · u(x+ 1) + (1− p)s · u(x− 1), x > 0

u(0) = 1

u(∞) = 0

The solutions will again be of the form tx and upon substitution, we obtain the equation
pst2 − t+ (1− p)s = 0 which has solutions

t1,2 =
1±

√
1− 4s2p(1− p)

2ps
.

The solution has the form u(x) = Atx1 + Btx2 and with the boundary conditions, A = 0
and B = 1 so

u(x) = tx2 =

(
1−

√
1− 4s2p(1− p)

2ps

)x

As an example, we can use the above formula to find that

11



1−
√
1− 4p(1− p)

2p
= lim

s↑1
Ex[s

τ0 ] = lim
s↑1

{
Ex[s

τ0 : τ0 < ∞] +
��������: 0

Ex[s
τ0 : τ0 = ∞]

}
= lim

s↑1
Ex[s

τ0 : τ0 < ∞]

= Ex

[
lim
s↑1

sτ0 : τ0 < ∞
]

by the DCT since all the sτ0 are bounded

= Ex[1{τ0 < ∞}]
= Px(τ0 < ∞).
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1.5 Branching Processes

Let X be the non-negative integer-valued random variable denoting the number of off-
spring of an individual. Let Xj

k denote the number of offspring of the kth person in the

jth generation. The collection (Xj
k)

j=0,1,2,...
k=1,2,3,... is independent and identically distributed

to X.

t = 0

t = 1

t = 2

Figure 1.4: An example of a branching process where the highlighted node is represented
by X1

3 = 3.

Let Zn be the random variable describing the number of individuals in generation n.
This random variable has a recursive nature described by

Zn+1 =

Zn∑
i=1

Xn
i .

We can now ask the question of whether the genealogy will become extinct or sur-
vive ad infinitum. By introducing the random variable Zn that describes the number
of individuals in generation n, we can reformulate the question to finding out what
P({Zn = 0 eventually}) is:

P({Zn = 0 eventually}) = P

(⋃
n

{Zn = 0}

)

= P

⋃
n

⋂
m⩾n

{Zm = 0}


= lim

n→∞
P({Zn = 0}) by monotonicity.

So we’re interested in computing η ..= limn→∞ P({Zn = 0}). We can do this by using
moment generating functions. Define

p̂Zn
(t) ..= E

[
tZn
]

= E
[
tZn , Zn = 0

]
+ E

[
tZn , Zn ̸= 0

]
= P(Zn = 0) + E

[
tZn , Zn ̸= 0

]
and taking the limit as t ↓ 0 gives

p̂Zn(0) = P(Zn = 0) + lim
t↓0

E
[
tZn , Zn ̸= 0

]
= P(Zn = 0) + E

[
lim
t↓0

tZn , Zn ̸= 0

]
= P(Zn = 0) + E[0, Zn ̸= 0]

= P(Zn = 0).
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We’ll use the recursive nature of Zn to find a recursion for p̂Zn
(t).

First of all, p̂Z1
(t) ..= E

[
tZ1
]
= E

[
tX
]
= p̂X(t) and:

p̂Zn+1
(t) ..= E

[
tZn+1

]
= E

[
tX

n
1 +···+Xn

Zn

]
= E

[
E
[
tX

n
1 +···+Xn

Zn

∣∣∣Zn

]]
=
∑
k

E
[
tX

n
1 +···+Xn

Zn

∣∣∣Zn = k
]
P(Zn = k)

=
∑
k

E
[
tX

n
1 +···+Xn

k

]
P(Zn = k)

=
∑
k

E
[
tX
]kP(Zn = k) by independence and identical distribution

=
∑
k

p̂X(t)kP(Zn = k)

= E
[
p̂X(t)Zn

]
= p̂Zn(p̂X(t))

So we conclude that p̂Zn+1
(t) = p̂Zn

(p̂X(t)).

We can iterate this relation to obtain p̂Zn+1(t) = (p̂X ◦ · · · ◦ p̂X)︸ ︷︷ ︸
(n+1) times

(t) = p̂X(p̂Zn(t)).

Setting t = 0 to obtain p̂Zn+1(0) = p̂X(p̂Zn(0)) and letting n → ∞ gives η = p̂X(η).
Since p̂X is an expectation, we must justify passing a limit inside to the argument
as n → ∞. This can be done with the Dominated Convergence Theorem. Thus,
η ..= P(Zn = 0 eventually) is a fixed point of p̂X . We cannot solve it exactly but we can
make some progress via numerical methods.

• It’s important to note that in general, if (An)n⩾1 is a sequence of events, then

P({Ak happens eventually}) ̸= lim
n→∞

P(An)

but we know that if zn = 0, then for all k ⩾ n, zk = 0. This is actually a property
of measures (of which P is an example) called upward monotone convergence/con-
tinuity from below.

• We couldn’t have computed the moment generating function of Zn+1 by regular
means i.e. as

p̂Zn+1
(t) ..= E

[
tZn+1

]
= E

[
t
∑Zn

i=1 Xn
i

]
ind.
=

Zn∏
i=1

E
[
tX

n
i

]
because Zn is a random variable and not a fixed number. In Nikos’ words - “If
something is random but you wish for it to be a fixed number, then condition it.”
This is the reason for the conditional expectation calculation.
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1.5.1 NUMERICAL SOLUTIONS

We can use information about p̂X to figure out what it looks like graphically. This will

guide us to locating any fixed point solutions η. Note that p̂X(1) = E
[
tX
]∣∣∣

t=1
= 1 and

t 7−→ p̂X(t) is convex because p̂′′X(t) > 0.

Solutions to the fixed point equation will lie on the curve f(t) = t. Thus, how many
solutions we have depends on the number of intersections between p̂X(t) and t. The
aforementioned convexity means that we have two cases to distinguish depending on the
slope of p̂X(t) at t = 1.

1

1

t

p̂X(t)

1

1

t

p̂X(t)

Figure 1.5: Two sketches of fixed point solutions of p̂X(t) depending on the slope at 1:
the left is ⩽ 1 and the right is > 1.

The slope can be computed at 1 as

p̂′X(1) =
d

dt
E
[
tX
] ∣∣∣

t=1
= E

[
d

dt
tX
]∣∣∣

t=1
= E

[
XtX−1

] ∣∣∣
t=1

= E[X].

• If p̂′X(1) = E[X] ⩽ 1, then the only solution of p̂X(η) = η is η = 1.

• If p̂′X(1) = E[X] > 1, then there is another1 solution in [0, 1] beside η = 1.

Numerically, the idea is to start with some initial point η0 ∈ (0, 1) and iterate the
equation ηi+1 = p̂X(ηi) for i = 0, 1, . . . in order to obtain a sequence (ηi)i∈N converging
to some value. A natural question to ask in this case is if the sequence actually converges.
Let n,m ⩾ 0.

|ηm+1 − ηm| = |p̂X(ηm)− p̂X(ηm−1)|
MVT
= |p̂′X(ηm−1) · (ηm − ηm−1)|
< α|ηm − ηm−1|
< α2|ηm−1 − ηm−2|
< . . .

< αm −→ 0 because α ∈ (0, 1).

Thus, (ηi)i∈N ⊂ R is Cauchy and therefore convergent because (R, | · |) is complete.

1We can disregard any solutions greater than 1 because η = lim
n→∞

P(Zn = 0) ⩽ 1.
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1.6 Markov Processes

1.6.1 FORMALISMS

Let (Xn)n⩾1 be a stochastic process. Let I be a countable set.

To define a Markov process and describe its behaviour, we intuitively need know only
two pieces of information:

(1) The nature of the start of the process: We may start from a random location so
we may not know the value of X0 but we often know its distribution, the initial
distribution of the process.

(2) How we move from one state to the next: We’ll define this through objects called
transition probabilities.

Definition 1.6.1 • Each i ∈ I is called a state and I is called the state-space.

• We say that λ = (λi : i ∈ I) is a measure on I if 0 ⩽ λi < ∞ for all i ∈ I. If, in
addition, the total mass

∑
i∈I λi = 1, then we call λ a distribution.

• For a random variable X : Ω → I, suppose that we set

λi = P(X = i) = P({ω : X(ω) = i}).

Then λ defines a distribution, the distribution of X. We think of X as modelling
a random state which takes the value i with probability λi.

Definition 1.6.2 A matrix P = (Pij : i, j ∈ I) is called stochastic if every row is a
distribution i.e. for all i, j ∈ I:

•
∑
j∈I

Pij = 1

• Pi,j ∈ [0, 1].

There is a one-to-one correspondence between stochastic matrices and state diagrams like
those we’ll see below. We realise stochastic matrices in terms of transition probabilities.
For example, the probability to move from state 3 at t = 0 to state 1 at t = 1 in the first
diagram below is equal to 1/2. We’ll formalise this properly after some more exposition.

e.g. Consider the following state diagrams and their corresponding stochastic matrices:
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1/2

1/2

1

3 2

1

α

β

1 2

P =

 0 1 0
0 1/2 1/2

1/2 0 1/2



P =

(
1− α a
β 1− β

)

Thus, we can formalise the rules for a Markov chain with a definition involving the
corresponding matrices P :

Definition 1.6.3 A process (Xn)n⩾0 is called a Markov chain with initial distri-
bution λ and transition matrix P if

(i) X0 has distribution λ;

(ii) for n ⩾ 0, conditional on Xn = i, Xn+1 has distribution (Pij : j ∈ I) and is
independent of X0, · · · , Xn−1.

More explicitly, these conditions state that for n ⩾ 0 and i0, · · · , in+1 ∈ I:

(i) P(X0 = i0) = λi0 ;

(ii) P(Xn+1 = in+1 |X0 = i0, · · · , Xn = in) = Pinin+1
.

For short, we say that (Xn)n⩾0 is Markov (λ, P ).

Theorem 1.6.4 A discrete-time random process (Xn)n⩾0 is Markov (λ, P ) iff ∀i0, . . . , in ∈
I:

P(X0 = i0, . . . , Xn = in) = λi0

n∏
i=1

Pi−1,i

where λ is the initial distribution and P is the probability matrix.

Note that each entry in λ = (λi) with λi ⩾ 0 and
∑

λi = 1 is the probability that X is
at position i.

Proof. The forward implication begins with supposing thatXi is a Markov (λ, P ) chain.

P(X0 = i0) = λi0

P(X0 = i0, X1 = i1) = P(X1 = i1 |X0 = i0) · P(X0 = i0)

= Pi0,i1λi0

P(X0 = i0, X1 = i1, X2 = i2) = P(X2 = i2 |X0 = i0, X1 = i1)P(X0 = i0, X1 = i1)

= P(X2 = i2 |X0 = i0, X1 = i1)Pi0,i1λi0

= P(X2 = i2 |X1 = i1)Pi0,i1λi0 by the Markov property

= λi0Pi0,i1Pi1,i2

17



The general case is given by

P(X0 = i0, X1 = i1, . . . , Xn = in)

= P(Xn = in |X0 = i0, . . . , Xn−1 = in−1)P(X0 = i0, . . . , Xn−1 = in−1)

= Pin−1,in · . . . · Pi0,i1λi0 by the Markov property

= λi0

n∏
j=1

Pij−1,ij

The reverse implication is as follows:

P(Xn = in |Xn−1 = in−1, . . . , X0 = i0) =
P(Xn = in, . . . , X0 = i0)

P(Xn−1 = in−1, . . . , X0 = i0)

=

λi0

n∏
j=1

Pij−1,ij

λi0

n−1∏
j=1

Pij−1,ij

= Pin−1,in

Thus, Xi is a Markov (λ, P ) chain. ■

The next result reinforces the idea that a Markov chain has no memory. Write δi =
(δij : j ∈ I) for the unit mass at i, where

δij =

{
1 if i = j

0 otherwise.

1.6.2 MARKOV PROPERTY

Theorem 1.6.5 Let (Xn)n⩾0 be Markov (λ, P ). Then, conditional on Xm = i, (Xm+n)n⩾0

is Markov (δi, P ) and is independent of the random variables X0, . . . , Xm.

Proof. The goal is to show that for any event A determined by X0, . . . , Xm, we have
that

P({Xm = im, . . . , Xm+n = im+n} ∩A |Xm = i) = δi,imPim,im+1
·. . .·Pim+n−1,im+n

P(A |Xm = i).

The result will thusly follow from the prior theorem. We’ll begin by considering the case
of elementary events A = {X0 = i0, . . . , Xm = im}. By the prior theorem, we have that

P({X0 = i0, . . . , Xm+n = im+n and i = im})
P(Xm = i)

=
δi,imPim,im+1

· . . . · Pim+n−1,im+n
P(X0 = i0, . . . , Xm = im and i = im)

P(Xm = i)
.

Since any event A determined by X0, . . . , Xm can be written as a countable disjoint
union of elementary events A =

⊔∞
k=1 Ak, the desired identity for A holds by summing

up the corresponding identities for the Ak. ■
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The rest of this section concerns the following question: What is the probability that
after n steps, our Markov chain is in a given state? In other words, what is the value of
P(Xn = i |X0 = j)?

Notation

• We regard distributions and measures λ as row vectors whose components are
indexed by I, just as P is a matrix whose entries are indexed by I × I.

• Thus, we can define a new measure λP by straight-forward matrix multiplication.
This works for infinite matrices and infinite row vectors as well.

• We’ll write P
(n)
i,j = (Pn)i,j for the (i, j)th entry of Pn.

• In the case where λi > 0, we’ll write Pi(A) for the conditional probability P(A |X0 = i).

By the Markov property at time m = 0, under Pi, (Xn)n⩾0 is Markov (δi, P ) so the
behaviour of (Xn)n⩾0 under Pi doesn’t depend on λ.

Theorem 1.6.6 Let (Xn)n⩾0 be Markov (λ, P ). Then, for all n,m ⩾ 0:

(i) P(Xn = j) = (λPn)j;

(ii) Pi(Xn = j) = P(Xn+m = j |Xm = i) = P
(n)
i,j .

Proof. (i) By theorem 1, we have that

P(Xn = j) =
∑
i0∈I

. . .
∑

in−1∈I

P(X0 = i0, . . . , Xn−1 = in−1, Xn = j)

=
∑
i0∈I

. . .
∑

in−1∈I

λi0Pi0,i1 · . . . · Pin−1,j

= (λPn)j

(ii) By the Markov property, conditional on Xm = i, (Xm+n)n⩾0 is Markov (δi, P ) so
we just take λ = δi in (i).

■

In light of this theorem, we call P
(n)
i,j the n-step transition probability from state

i to state j.

e.g. Consider the second 2-state diagram from the beginning of this chapter.

α

β

1 2

Note that

P1(Xn = 1) =


1 if n = 0

1− α if n = 1

(1− α)2 + αβ if n = 2

? for n > 2.
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How can one compute P1(Xn = 1) for n > 2? Note that:

P 2 =

(
(1− α)2 + αβ α(1− α) + α(1− β)

β(1− α) + (1− β)β αβ + (1− β)2

)

In general, we can see that P1(Xn = 1) = Pn
1,1 so we need to compute Pn:

Pn+1 = PnP =

(
P

(n+1)
1,1 P

(n+1)
1,2

P
(n+1)
2,1 P

(n+1)
2,2

)
=

(
P

(n)
1,1 P

(n)
1,2

P
(n)
2,1 P

(n)
2,2

)(
1− α α
β 1− β

)

=

(1− α)P
(n)
1,1 + βP

(n)
1,2 αP

(n)
1,1 + (1− β)P

(n)
1,2

(1− α)P
(n)
2,1 + βP

(n)
2,2 αP

(n)
2,1 + (1− β)P

(n)
2,2



This tells us that the (1, 1) entry in the Pn+1 matrix is given by the recursive formula

P
(n+1)
1,1 = (1− α)P

(n)
1,1 + βP

(n)
1,1 .

This is a non-closed equation so, in principle, it cannot be solved on its own. However,

in this case we can close it because P
(n)
1,2 = 1− P

(n)
1,1 which implies that

P
(n+1)
1,1 = (1− α− β)P

(n)
1,1 + β where P

(0)
1,1 = 1.

This is an inhomogeneous recursive equation of order 1.

We can solve equations like these by:

(1) Find the general solution to the homogeneous equation P
(n+1)
1,1 = (1−α− β)P

(n)
1,1 .

(2) Find a special solution to the inhomogeneous equation (by guessing).

(3) Finally, form a linear combination of the two and use initial/boundary conditions
to determine the constants.

When we do this, the general solution of the equation that describes our process is given
by

P
(n)
1,1 = 1 · α

α+ β
+

α

α+ β
· (1− α− β)n.

∴ P1(Xn = 1) = (Pn)1,1 =.. P
(n)
1,1 =


1 if n = 0

1− α if n = 1

(1− α)2 + αβ if n = 2
α

α+ β
+

α

α+ β
(1− α− β)n if n > 2.

We had a 2-state Markov chain, we wanted to find P(Xn = 1) so we looked at special
cases n = 0, n = 1, n = 2, played with matrices to get a recursive equation (not closed),
closed the recursion and then solved it.
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Here we outline the general approach to computing Pi(Xn = j) for a Markov chain with
transition probability matrix P .

• Find the eigenvalues of P (of which there are as many eigenvalues as states |I| if
they are distinct.

=⇒ Pi(Xn = j) =

|I|∑
i=1

aiλ
n
i

where the constants ai are to be determined by |I| initial conditions.
• In the case that the eigenvalues are not distinct e.g. λ1 has multiplicity m, then
besides λn

1 , one will also have to include nλn
1 , . . . , n

m−1λn
1 in the subsequent com-

putations.

=⇒ Pi(Xn = j) =

m−1∑
i=0

ain
iλn

1 +

|I|∑
i=2

aiλ
n
i

1.6.3 CLASS STRUCTURE

Figure 1.6: A sketch of two classes that don’t communicate.

If there isn’t a link between two classes, then we call the diagram reducible. We can
break the whole system into smaller classes that don’t communicate. If a link does exist,
we say the classes communicate. If we have a situation like above, we say the Markov
chain irreducible.

Definition 1.6.7 We’ll say that state i communicates with state j if Pi(Xn = j for some n > 0) >
0.

Pi

(
τ{j} < ∞

)
> 0 where τ{j} or τj denotes min{n ⩾ 0: Xn = j}.

Theorem 1.6.8 If i ̸= j, TFAE:

• i communicates with j

• ∃i1, . . . , in ∈ I for some n ⩾ 0 s.t. pi1,i2 · · · · · pin,j > 0

• p
(n)
i,j > 0 for some n ⩾ 0

Figure 1.7: A sketch of two classes that don’t communicate.

1.6.4 HITTING PROBABILITIES

Let’s assume that (Xn)n⩾0 is a Markov chain with state space I and let A ⊆ I. The
hitting time of A is the random variable τA : Ω → {0, 1, 2, . . . } ∪ {∞} defined by

τA(ω) ..= inf{n ⩾ 0: Xn(ω) ∈ A}.

So far, we’ve been using a singleton set A = {j}. The question, as always, is how we
can compute Px(τA < ∞). Previously, when (Xn)n⩾0 was a random walk, we found the
hitting probability when A = {0}.
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To answer the question, we’ll set up a boundary value problem. Let hA(x) ..= Px(τA < ∞).

Theorem 1.6.9

hA(x) =


∑
y

px,yhA(y), if x ̸∈ A

1, if x ∈ A

is the minimal solution to the above boundary value problem. (It’s also an example of a
harmonic function)

Proof. • hA indeed solves the boundary value problem:

hA(x) ..= Px(τA < ∞)

=
∑
y∈I

Px(τA < ∞, x1 = y)

=
∑
y∈I

Px(τA < ∞|x1 = y)P(x1 = y)

=
∑
y∈I

Px,yPy(τA < ∞)

=..
∑
y∈I

Px,yhA(y)

...

...

...

■
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1.6.5 BIRTH & DEATH

Let I = N0 and consider

where pi+ qi = 1 (i.e. the population model is simplified by disregarding the case where
the population remains the same).

e.g. Compute Pi(τ0 < ∞) =.. h(i) where τ0 ..= min{n ⩾ 0: Xn = 0}.

Any question of this type can be formulated by a difference equation with boundary
values.

h(i) = qih(i− 1) + pih(i+ 1)

⇐⇒ (pi + qi)h(i) = qih(i− 1) + pih(i+ 1)

=⇒ qi (hi − hi−1)︸ ︷︷ ︸
=.. H(i)

= pi (hi+1 − hi)︸ ︷︷ ︸
=.. H(i+1)

=⇒ H(i+ 1) =
qi
pi
H(i)

So we’ve written our 2-term difference equation in a single term. Using the recursion,
we get:

H(i+ 1) =

i∏
k=1

qk
pk

H(1)

⇐⇒ h(i)− h(i− 1) =

(
i∏

k=1

qk
pk

)
(h(1)− h(0))

End of Stochastic1.pdf document.
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