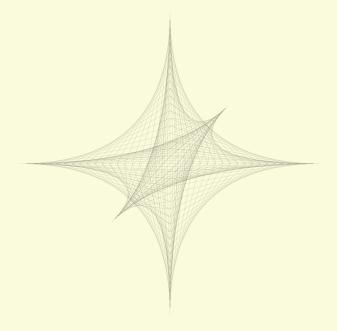
Stochastic Processes

by Khallil Benyattou



Contents

Chapter	r 1 Stochastic Processes	
1.1	Basic Definitions	1
1.2	Random Walks	1
1.3	Simple Random Walks	3
	A First Computation: Reflection Principle (4).	
1.4	Generating Functions	7
	Computations involving generating functions (8).	
1.5	Branching Processes	14
	Numerical Solutions (16).	
1.6	Markov Processes	18
	Formalisms (18). Markov Property (20). Class Structure (24). Hitting Probabilities (24). Birth	1
	fr Dooth (26)	

Chapter 1

Stochastic Processes

1.1 Basic Definitions

Let Ω be a sample space, \mathcal{A} be a σ -algebra on Ω and \mathbb{P} be a probability measure on Ω .

Definition 1.1.1 A stochastic (or random) process is formally defined to be a collection of random variables $\{X_n\}_{n\in T}$ indexed by some set T and defined on a common probability space $(\Omega, \mathcal{A}, \mathbb{P})$. The random variables all take values in the same range-space I; this may be \mathbb{R}^n (a vector-valued process) or some other measurable space.

- The set T will generally be \mathbb{R} , $\mathbb{R}^+ = [0, \infty)$, $\mathbb{Z} = \{\dots, -1, 0, 1, 2, \dots\}$ or $\mathbb{Z}^+ = \{0, 1, 2, \dots\}$. In all of these cases, the parameter $t \in T$ may be thought of as time e.g. if $T = \mathbb{Z}$ or \mathbb{Z}^+ , one sometimes speaks of a **random sequence**.
- The range I of the random variables is called the **state space**.

In describing a stochastic process as we have done, there is a certain psychological bias: one tends to regard the process primarily as a function on T whose values for each $t \in T$ are random variables. Of course, we're really dealing with one function of two variables $X = X(t, \omega)$ where $t \in T$, $\omega \in \Omega$.

- For each fixed t the function $X(t,\cdot)$ is measurable with respect to \mathcal{A} .
- If we instead fix an ω ∈ Ω, we obtain a function X(·,ω): T → I which is called a
 trajectory or a path/sample-function of the process. This can be thought of
 as the evolution of a particular particle in some random process.

1.2 Random Walks

Definition 1.2.1 A random walk is the process $(S_n)_{n\geqslant 1}$ where $S_n=X_1+\cdots+X_n$ and $(X_i)_{i\geqslant 1}$ is a sequence of independent and identically distributed random variables.

The special case in which each X_i possesses a Bernoulli $(\pm 1, 1/2)$ distribution is called a **simple random walk**.

We can ask a few questions about S_n :

- 1) What is the probability $\mathbb{P}(S_n = k)$?
- 2) What is the probability that S_n will visit k by time n?
- 3) Does S_n always return to its starting point?
- 4) How long do we expect it to take for S_n to return to its starting point?

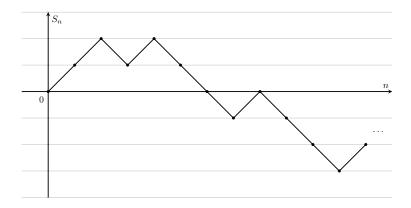


Figure 1.1: An example of a random walk $(S_n)_{n\geqslant 1}$.

We'll denote the starting position of a stochastic process with a subscript e.g. $\mathbb{P}_x(A)$ refers to the probability of some event A occurring given that the initial state of the process is x.

Let $(S_n)_{n\geqslant 0}$ be a simple random walk with $S_0=0$. What is $\mathbb{P}_0(S_n=k)$?

Denote the number of steps up and down by m and k respectively. Then m+l=n and m-l=k. This implies that m=(n+k)/2 and so

$$\mathbb{P}_0(S_n = k) = \mathbb{P}(\{\text{no. of steps up}\}) = \mathbb{P}\left(\frac{n+k}{2}\right) = \binom{n}{\frac{n+k}{2}}p^{\frac{n+k}{2}}(1-p)^{\frac{n-k}{2}}.$$

However, the remaining 3 questions don't have such an easy answer. We'll need to develop a systematic method to find their solutions.

Definition 1.2.2 (Geometric Variables) Let X_1, X_2, \ldots be i.i.d. Bernoulli (1, 0; p) and define $\tau := \min\{n \colon X_n = 1\}$. Then $\mathbb{P}(\tau = n) = (1 - p)^{n-1}p$ because the first (n - 1) values of X_1, \ldots, X_{n-1} need to be equal to 0 and $X_n = 1$. τ can be thought of as the first time a random walk makes an upwards step.

Definition 1.2.3 (Conditional Probabilities) If X and Y are discrete random variables, then

$$\begin{split} \mathbb{P}(X=a\,|\,Y=b) &:= \frac{\mathbb{P}(X=a,Y=b)}{\mathbb{P}(X=b)} \\ &= \frac{\mathbb{P}(Y=b\,|\,X=a)\mathbb{P}(X=a)}{\mathbb{P}(Y=b)}. \end{split}$$

Conditional probabilities are important because they can be used to define the statistics of a stochastic process through transition probabilities $\pi_{x,y} := \mathbb{P}(S_{n+1} = x \mid S_n = y)$. We'll see this later on.

Definition 1.2.4 The conditional expectation of a discrete random variable X given

a random variable Y is defined by

$$\mathbb{E}[X \mid Y] := \sum_{a} \mathbb{P}(X = a \mid Y).$$

Conditional expectation is just an expectation but it's computed with respect to a conditional probability. Informally, it is what we expect X to be knowing (the value of) Y. Since Y is a random variable, $\mathbb{E}[X \mid Y]$ is also a random variable.

1.3 Simple Random Walks

In this section, we'll familiarise ourselves with some basic techniques used in stochastic processes to compute things. We'll explore these through the example of a simple random walk. We already defined a simple random walk as $S_n = X_1 + \cdots + X_n$ where $(X_i)_{i\geqslant 1}$ are Bernoulli ($\pm 1; 1/2$). However, there is an alternate formulation which is more general and can be extended to define general stochastic processes. This definition relies on specifying the conditional probabilities:

Definition 1.3.1 A simple random walk starting at a is a sequence of random variables $(S_n)_{n\geqslant 1}$ such that

- $S_0 = a$ with probability 1
- $\mathbb{P}(S_n = x \mid S_{n-1} = y, S_{n-2}, \dots, S_1, S_0) = \mathbb{P}(S_n = x \mid S_{n-1} = y) = 1/2 \text{ if } x = y \pm 1.$

In general, we'll be making use of joint probabilities $\mathbb{P}(S_{n_1} = a_1, \dots, S_{n_k} = a_k)$ with $n_1 < \dots < n_k$. Using the above conditional law it turns out to be equal to

$$\prod_{i=1}^{k} \mathbb{P}(S_{n_i} = a_i \mid S_{n_{i-1}} = a_{i-1}).$$

1.3.1 A FIRST COMPUTATION: REFLECTION PRINCIPLE

Let (S_n) be a simple random walk starting at 0. Compute $\mathbb{P}_0\left(\max_{k\leq n}\{S_k\}\geqslant b\right)$ for $b\in\mathbb{Z}^+$.

Definition 1.3.2 The hitting time of a point b will be denoted by

$$\tau_b := \min\{k \geqslant 1 \colon S_k = b\}.$$

We can think of this hitting time as the first time that the random walk attains the value b.

The events $\left\{\max_{k\leqslant n}\{S_k\}\geqslant b\right\}$ and $\{\tau_b\leqslant n\}$ are identical. That is, $\mathbb{P}_0\left(\max_{k\leqslant n}\{S_k\}\geqslant b\right)=\mathbb{P}_0(\tau_b\leqslant n)$.

First of all

$$\mathbb{P}_0(S_n \geqslant b) = \mathbb{P}_0(S_n \geqslant b, \tau_b \leqslant n) = \sum_{k=1}^n \mathbb{P}_0(S_n \geqslant b, \tau_b = k).$$

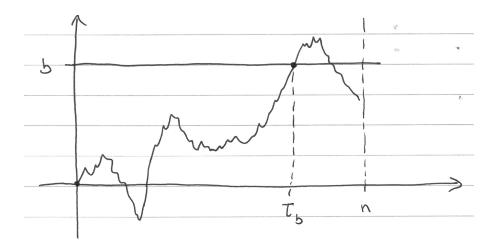


Figure 1.2: Pictorial representation of τ_b .

This implies, by the correspondence of events above, that: $\{\tau_b \leqslant n\} = \bigcup_{k=1}^n \{\tau_b = k\}$.

$$\begin{split} \mathbb{P}_{0}(S_{n} \geqslant b) &= \mathbb{P}_{0}(S_{n} \geqslant b, \tau_{b} \leqslant n) \\ &= \sum_{k=1}^{n} \mathbb{P}_{0}(S_{n} \geqslant b, \tau_{b} = k) \\ &= \sum_{k=1}^{n} \mathbb{P}_{0}(S_{n} \geqslant b, S_{k} = b, \max\{S_{1}, \dots, S_{k}\} < b) \\ &= \sum_{k=1}^{n} \mathbb{P}_{0}(S_{n} \geqslant b \, | \, S_{k} = b, \max\{S_{1}, \dots, S_{k}\} < b) \cdot \mathbb{P}_{0}(S_{k} = b, \max\{S_{1}, \dots, S_{k}\} < b) \\ &= \sum_{k=1}^{n} \mathbb{P}_{0}(S_{n} \geqslant b \, | \, S_{k} = b) \mathbb{P}_{0}(S_{k} = b, \max\{S_{1}, \dots, S_{k}\} < b) \text{ by the Markov property} \\ &= \sum_{k=1}^{n} \mathbb{P}_{b}(S_{n-k} \geqslant b) \mathbb{P}_{0}(S_{k} = b, \max\{S_{1}, \dots, S_{k}\} < b) \\ &= \sum_{k=1}^{n} \left\{ \mathbb{P}_{b}(S_{n-k} > b) + \mathbb{P}_{b}(S_{n-k} = b) \right\} \cdot \mathbb{P}_{0}(S_{k} = b, \max\{S_{1}, \dots, S_{k}\} < b) \\ &= \sum_{k=1}^{n} \left\{ \mathbb{P}_{b}(S_{n-k} > b) + \mathbb{P}_{b}(S_{n-k} = b) \right\} \mathbb{P}_{0}(\tau_{b} = b, \max\{S_{1}, \dots, S_{k}\} < b) \\ &= \frac{1}{2} \sum_{k=1}^{n} \mathbb{P}_{0}(\tau_{b} = k) + \frac{1}{2} \sum_{k=1}^{n} \mathbb{P}_{b}(\tau_{b} = k) \mathbb{P}_{b}(S_{n-k} = b) \\ &= \frac{1}{2} \mathbb{P}_{0}(\tau_{b} \leqslant n) + \frac{1}{2} \mathbb{P}_{0}(S_{n} = b) \end{split}$$

Where we used in (1) the fact that via symmetry:

$$1 = \mathbb{P}_b(S_{n-k} = b) + \mathbb{P}_b(S_{n-k} > b) + \mathbb{P}_b(S_{n-k} < b)$$
$$= \mathbb{P}_b(S_{n-k} = b) + 2\mathbb{P}_b(S_{n-k} > b)$$

which implies that

$$\mathbb{P}_b(S_{n-k} > b) = \frac{1}{2} - \frac{1}{2} \mathbb{P}_b(S_{n-k} = b). \tag{1.1}$$

By rearranging, we arrive at the equation

$$\mathbb{P}_0(\tau_b \leqslant n) = 2\mathbb{P}_0(S_n \geqslant b) - \mathbb{P}_0(S_n = b).$$

Definition 1.3.3 Let $p \neq 1/2$. We call $S_n = X_1 + \cdots + X_n$ an **asymmetric simple** random walk if $(X_i)_{i \geqslant 1}$ are independent, identically distributed with $\mathbb{P}(X_i = 1) = p = 1 - \mathbb{P}(X_i = -1)$.

Let $(S_n)_{n\geqslant 1}$ be an asymmetric simple random walk starting from 0 with probability of step-up being equal to p. Let a<0< b. Compute $\mathbb{P}_0(\tau_a<\tau_b)$.

Let's define $u(x) := \mathbb{P}_x(\tau_a < \tau_b)$ i.e. u(x) represents the probability starting from x that S_n will hit a before it hits b. We'll set up an equation and this will be a prototype example that we'll develop into a method later.

The idea is to decompose according to the first step. S_n can either take a step up or down from x:

$$u(x) := \mathbb{P}_x(\tau_a < \tau_b)$$

$$= \mathbb{P}_x(\tau_a < \tau_b, S_1 = x + 1) + \mathbb{P}_x(\tau_a < \tau_b, S_1 = x - 1)$$

$$= \mathbb{P}_x(S_1 = x + 1)\mathbb{P}_x(\tau_a < \tau_b \mid S_1 = x + 1) + \mathbb{P}_x(S_1 = x - 1)\mathbb{P}_x(\tau_a < \tau_b \mid S_1 = x - 1)$$

$$= p\mathbb{P}_{x+1}(\tau_a < \tau_b) + (1 - p)\mathbb{P}_{x-1}(\tau_a < \tau_b) \text{ by the Markov property}$$

$$= pu(x + 1) + (1 - p)u(x - 1)$$

This is a 2-term recursive relation i.e. a difference equation. To solve it, we also need boundary conditions: u(a) = 1 i.e. the probability of starting from a and hitting a is certain and u(b) = 0 i.e. the probability of starting at a and hitting b first is impossible.

Thus, we need to solve the boundary value problem:

$$\begin{cases} u(x) = pu(x+1) + (1-p)u(x-1) \\ u(a) = 1 \\ u(b) = 2 \end{cases}$$

The general method to solve such a problem involves guessing a solution of the form t^x where g is a constant parameter to be determined. Inserting this into the difference equation and dividing through by t^{x-1} (for $t \neq 0$) gives $pt^2 - t + (1-p) = 0$. This has solutions

$$t_{1,2} = \frac{1 \pm \sqrt{1 - 4(1 - p)p}}{2p}.$$

This means that the recurrence relation of order 2 is satisfied by any linear combination of $(t_1)^x$ and $(t_2)^x$ i.e. $u(x) = At_1^x + Bt_2^x$.

In the case that p = 1/2, $t_1 = t_2$ and so u(x) = A + Bx. Let's assume that $p \neq 1 - p$ as the simple random walk is asymmetric. The constants A, B can be determined by the

boundary conditions

$$\begin{cases} 1 = u(a) = At_1^a + Bt_2^a \\ 0 = u(b) = At_1^b + Bt_2^b \end{cases}$$

We know how to solve this system of two equations with in unknowns:

$$A = \frac{\begin{vmatrix} 1 & t_2^a \\ 0 & t_2^b \end{vmatrix}}{\begin{vmatrix} t_1^a & t_2^b \\ t_1^b & t_2^b \end{vmatrix}}, \quad B = \frac{\begin{vmatrix} t_1^a & 1 \\ t_1^b & 0 \end{vmatrix}}{\begin{vmatrix} t_1^a & t_2^b \\ t_1^a & t_2^b \end{vmatrix}}$$

So with these constants, the desired probability is $\mathbb{P}_0(\tau_a < \tau_b) = u(0) = A + B$.

Simplifying in the case that p = 1/2, the system of equations becomes

$$\begin{cases} 1 = u(a) = Aa + B \\ 0 = u(b) = Ab + B \end{cases} \implies A = \frac{1}{a - b}, B = \frac{b}{b - a}$$

so the general solution is $u(x) = \frac{x}{a-b} + \frac{b}{b-a}$ and the desired probability is

$$\mathbb{P}_0(()\tau_a < \tau_b) = u(0) = \frac{b}{b-a}.$$

As a sanity check, we can interpret $\lim_{b\to\infty} \mathbb{P}_0(\tau_a < \tau_b)$ as $\mathbb{P}_0(\tau_a < \infty)$ and we can verify that $\lim_{b\to\infty} \mathbb{P}_0(\tau_a < \tau_b) = 1$ i.e. the probability that you will ever hit a is 1. This property is called recurrence i.e. for a symmetric simple random walk, the probability that you will always come back to a certain point is certain.

However, if we consider an asymmetric simple random walk e.g. p > 1/2

$$\lim_{b\to\infty} \mathbb{P}_0(\tau_a < \tau_b) < 1.$$

We call this property transience i.e. there's a non-trivial probability that the process will never return to a state from which it started.

1.4 Generating Functions

Let's recall the definition of a generating function of a discrete probability distribution. Let $X \colon \Omega \to A \subseteq \mathbb{R}$ be a discrete random variable defined on a sample space Ω . The **probability distribution** (or **mass**) **function** $p_X \colon A \to [0,1]$ for X is defined $\forall x \in A$ by $p_X(a) = \mathbb{P}(X = a) = \mathbb{P}(\{\omega \in \Omega \colon X(\omega) = a\})$ and satisfies

$$\sum_{a \in A} p_X(a) = 1.$$

Definition 1.4.1 The probability generating function of a discrete, non-negative random variable X is the map \hat{p}_X defined for $z \in \mathbb{C}$ by

$$\hat{p}_X(z) := \mathbb{E}\big[z^X\big] = \sum_{a=0}^{\infty} z^a p_X(a).$$

If we let $z = e^{\lambda}$, we obtain the Laplace transform.

Now consider a random walk $S_n = X_1 + \cdots + X_n$ with $(X_i)_{i \ge 1}$ i.i.d. variables. The generating function, which we denote by $\hat{p}_{S_n}(t)$ will be given by

$$\hat{p}_{S_n}(t) = \mathbb{E}\big[t^{S_n}\big] = \mathbb{E}\big[t^{X_1 + \dots + X_n}\big] = \mathbb{E}\bigg[\prod_{i=1}^n t^{X_i}\bigg] = \prod_{i=1}^n \mathbb{E}\big[t^{X_i}\big] \text{ by independence}$$

$$= \mathbb{E}\big[t^{X_1}\big]^n \text{ as the } X_i \text{ are identically distributed}$$

$$=: (\hat{p}_X(t))^n$$

where \hat{p}_X denotes the generating function of the random variable X.

1.4.1 Computations involving generating functions

Let $(S_n)_{n\geqslant 1}$ be a simple random walk and define

- $p_0(n) := \mathbb{P}_0(S_n = 0)$
- $\tau_0 = \min\{n \ge 1 : S_n = 0\}$
- $f_0(n) := \mathbb{P}_0(\tau_0 = n) = \mathbb{P}_0(S_1 \neq 0, \dots, S_{n-1} \neq 0, S_n = 0).$

We can compute

$$p_0(n) = \mathbb{P}_0(S_n = 0) = \binom{n}{n/2} p^{n/2} (1-p)^{n/2} \mathbb{1}\{n \text{ even}\}$$

because in order to hit 0 at time n, $\#\{\text{steps up}\} = \#\{\text{steps down}\} = n/2$. If n is odd, then $p_0(n) = 0$. However, $f_0(\cdot)$ is less easy to compute. We'll do this by setting up an equation:

It holds that
$$p_0(n) = \sum_{k=1}^{n} f_0(k) p_0(n-k)$$
.

This is difficult to solve for $f_0(k)$ so we'll transform it by using generating functions. To do so, multiply both sides by s^n and sum over n. For the series to converge, we have to choose |s| < 1.

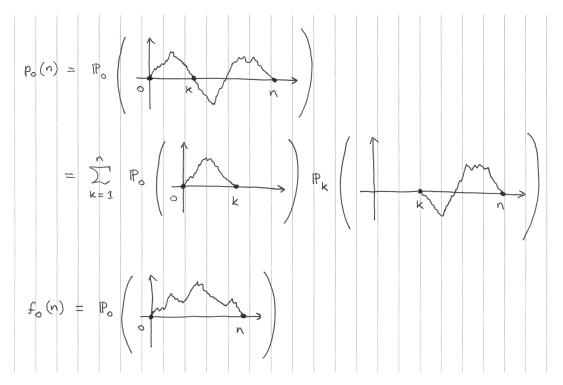


Figure 1.3: Pictorial representations of p_0 and f_0 .

$$\begin{split} \hat{p}_0(s) &:= \sum_{n=0}^{\infty} s^n p_0(n) \\ &= p_0(0) + \sum_{n=1}^{\infty} s^n p_0(n) \\ &= 1 + \sum_{n=1}^{\infty} s^n \sum_{k=1}^{n} f_0(k) p_0(n-k) \\ &= 1 + \sum_{n=1}^{\infty} \sum_{k=1}^{n} s^k f_0(k) \cdot s^{n-k} p_0(n-k) \\ &= 1 + \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} s^k f_0(k) \cdot s^{n-k} p_0(n-k) \\ &= 1 + \sum_{k=1}^{\infty} s^k f_0(k) \sum_{n=k}^{\infty} s^{n-k} p_0(n-k) \\ &= 1 + \sum_{k=1}^{\infty} s^k f_0(k) \sum_{n=k}^{\infty} s^n p_0(n) \\ &= 1 + \hat{f}_0(s) \hat{p}_0(s). \end{split}$$

Thus, we've derived the equation $\hat{p}_0(s) = 1 + \hat{f}_0(s)\hat{p}_0(s)$ which is trivial to solve:

$$\hat{f}_0(s) = \frac{\hat{p}_0(s) - 1}{\hat{p}_0(s)}. (1.2)$$

Inverting $\hat{f}_0(s)$ to get $f_0(n)$, though possible, is not trivial. Nevertheless, we obtain useful information from our solution for $\hat{f}_0(s)$. For example, we can compute $\hat{f}_0(1)$ by taking limits:

$$\hat{f}_0(s) := \lim_{s \uparrow 1} \sum_{n=0}^{\infty} s^n f_0(n)$$

$$= \sum_{n=0}^{\infty} \lim_{s \uparrow 1} s^n f_0(n)$$

$$= \sum_{n=0}^{\infty} f_0(n)$$

$$= \sum_{n=0}^{\infty} \mathbb{P}_0(\tau_0 = n)$$

$$= \mathbb{P}_0(\tau_0 < \infty)$$

Thus, $\hat{f}_0(1)$ gives the probability that the random walk will return to 0 in finite time. Furthermore, we have from (2) that

$$\hat{f}_0(1) = \lim_{s \uparrow 1} \frac{\hat{p}_0(s) - 1}{\hat{p}_0(s)} \tag{1.3}$$

Now we focus on computing $\hat{p}_0(s)$:

$$\hat{p}_0(s) := \sum_{n=0}^{\infty} s^n p_0(n)$$

$$= \sum_{n=0}^{\infty} s^n \binom{n}{n/2} p^{n/2} (1-p)^{n/2} \mathbb{1}\{n \text{ even}\}$$

$$\stackrel{n=2k}{=} \sum_{k=0}^{\infty} (s^2 p(1-p))^k \binom{2k}{k}$$

$$= \frac{1}{\sqrt{1-4s^2(1-p)p}}$$

Therefore, $\hat{p}_0(1) = \frac{1}{\sqrt{1 - 4(1 - p)p}}$. If $p \neq 1/2$, $\hat{p}_0(1) < \infty$. However, if p = 1/2 then $\hat{p}_0(1) = \infty$.

Substituting back into equation (3), we have that

(i)
$$p = 1/2 \implies \mathbb{P}_0(\tau_0 < \infty) =: \hat{f}_0(1) = \frac{\hat{p}_0(1) - 1}{\hat{p}_0(1)} = 1$$

(ii)
$$p \neq 1/2 \implies \mathbb{P}_0(\tau_0 < \infty) = 1 - |2p - 1| < 1.$$

- In case (i), we'll say that "0 is recurrent" i.e. 0 will be revisited an infinite number of times.
- In case (ii), we'll say that "0 is invariant" i.e. 0 will be visited only finitely many times.

It's important to know that although we know we'll return to 0 at some point, it may be an "infinite" amount of time/number of steps before we do.

We can also compute the expected return time $\mathbb{E}_0[\tau_0]$:

$$\frac{\mathrm{d}\hat{f}}{\mathrm{d}s}(s)\Big|_{s=1} = \frac{\mathrm{d}}{\mathrm{d}s} \left(\sum_{n=1}^{\infty} s^n f_0(n) \right) \Big|_{s=1}$$

$$= \sum_{n=1}^{\infty} n f_0(n)$$

$$= \sum_{n=1}^{\infty} n \mathbb{P}_0(\tau_0 = n)$$

$$= \mathbb{E}[\tau_0 \mathbb{1}\{\tau_0 < \infty\}]$$

Using our expression for $\hat{f}_0(s)$, we compute its derivative at s=1 as:

$$\left. \hat{f}'_0(s) \right|_{s=1} = \left. \frac{4p(1-p)}{\sqrt{1-4s^2p(1-p)}} \right|_{s=1} = \frac{4p(1-p)}{\sqrt{1-4p(1-p)}}$$

We already know that p=1/2 means that $\mathbb{P}_0(\tau_0<\infty)=1$. Therefore,

$$\begin{split} \mathbb{E}_0[\tau_0] &= \mathbb{E}_0[\tau_0 \left(\mathbb{1} \{ \tau_0 < \infty \} + \mathbb{1} \{ \tau_0 = \infty \} \right)] \\ &= \mathbb{E}_0[\tau_0 \mathbb{1} \{ \tau_0 < \infty \}] + \mathbb{E}_0[\mathbb{1} \{ \tau_0 = \infty \}] \\ &= \mathbb{E}_0[\tau_0 \mathbb{1} \{ \tau_0 < \infty \}] + \infty \cdot \underbrace{\mathbb{P}_0(\tau_0 = \infty)}_{=0} \\ &= \mathbb{E}_0[\tau_0 \mathbb{1} \{ \tau_0 < \infty \}] \\ &= \hat{f}'(1) = \infty \end{split}$$

- $\mathbb{E}_0[\tau_0] = \infty$ will be referred to as the state 0 being **null recurrent**.
- $\mathbb{E}_0[\tau_0] < \infty$ will be referred to as the state 0 being **positive recurrent**".

In the case that $p \neq 1/2$, we have that $\mathbb{E}_0[\tau_0 \mathbb{1}\{\tau_0 < \infty\}] = \frac{4p(1-p)}{\sqrt{1-4p(1-p)}}$.

Furthermore,

$$\mathbb{E}_{0}[\tau_{0}] = \mathbb{E}_{0}[\tau_{0}\mathbb{1}\{\tau_{0} < \infty\}] + \mathbb{E}_{0}[\mathbb{1}\{\tau_{0} = \infty\}]$$

$$\geqslant \mathbb{E}_{0}[\tau_{0}\mathbb{1}\{\tau_{0} = \infty\}]$$

$$= \infty \cdot \underbrace{\mathbb{P}_{0}(\tau_{0} = \infty)}_{>0} = \infty.$$

If the simple random walk is asymmetric, we may never return back to 0 i.e. we expect that it may take an infinite amount of time. It's also important to note that if a state is transient, it's also null recurrent.

Let |s| < 1. We wish to compute the generating function $\mathbb{E}_1[s^{\tau_0}]$ of $\tau_0 := \min\{n \ge 0 : S_n = 0\}$.

Notice that we've redefined the starting time for τ_0 but the starting location is 1 instead of 0. This change of state makes the method developed earlier not applicable. We'll

compute the generating function by deriving a difference equation starting at a general state x > 0.

$$u(x) := \mathbb{E}_x[s^{\tau_0}]$$

The intuition is the same as before. You can either go up or down a step.

We'll also use that (*) τ_0 should be thought of as a function of the random walk i.e. $\tau_0(S_0, S_1, S_2, \dots)$.

$$\begin{split} u(x) &:= \mathbb{E}_x[s^{\tau_0}] \\ &= \mathbb{E}_x[s^{\tau_0} : S_1 = x+1] + \mathbb{E}_x[s^{\tau_0} : S_1 = x-1] \\ &= \mathbb{E}_x[s^{\tau_0} \mid S_1 = x+1] \cdot \mathbb{P}_x(S_1 = x+1) + \mathbb{E}_x[s^{\tau_0} \mid S_1 = x-1] \cdot \mathbb{P}_x(S_1 = x-1) \ \text{ by conditioning} \\ &= \mathbb{E}_x \left[s^{\tau_0(S_0, S_1, \dots)} \middle| S_1 = x+1 \right] \cdot p + \mathbb{E}_x \left[s^{\tau_0(S_0, S_1, \dots)} \middle| S_1 = x-1 \right] \cdot (1-p) \\ &= \mathbb{E}_x \left[s^{1+\tau_0(S_1, S_2, \dots)} \middle| S_1 = x+1 \right] \cdot p + \mathbb{E}_x \left[s^{1+\tau_0(S_1, S_2, \dots)} \middle| S_1 = x-1 \right] \cdot (1-p) \ \text{ by the Markov property} \end{split}$$

Going back to the equation, we have that

$$\begin{split} u(x) &= s \mathbb{E}_x \left[s^{\tau_0(S_1, S_2, \dots)} \, \middle| \, S_1 = x + 1 \right] \cdot p + s \mathbb{E}_x \left[s^{\tau_0(S_1, S_2, \dots)} \, \middle| \, S_1 = x - 1 \right] \cdot (1 - p) \\ &= s \mathbb{E}_x \left[s^{\tau_0(S_0, S_1, \dots)} \, \middle| \, S_1 = x + 1 \right] \cdot p + s \mathbb{E}_x \left[s^{\tau_0(S_0, S_1, \dots)} \, \middle| \, S_1 = x - 1 \right] \cdot (1 - p) \end{split}$$
 by the Markov property
$$= ps \cdot u(x + 1) + (1 - p)s \cdot u(x - 1)$$

As before, we need boundary conditions

•
$$u(0) = \mathbb{E}_0[s^{\tau_0}] = \mathbb{E}_0[s^0] = 1$$

•
$$u(\infty) = \mathbb{E}_{\infty}[s^{\tau_0}] = \mathbb{E}_{\infty}[s^{\infty}] = \mathbb{E}_{\infty}[0] = 0$$
 : $|s| < 1$

Thus, we need to solve the boundary value problem:

$$\begin{cases} u(x) = ps \cdot u(x+1) + (1-p)s \cdot u(x-1), & x > 0 \\ u(0) = 1 \\ u(\infty) = 0 \end{cases}$$

The solutions will again be of the form t^x and upon substitution, we obtain the equation $pst^2 - t + (1 - p)s = 0$ which has solutions

$$t_{1,2} = \frac{1 \pm \sqrt{1 - 4s^2p(1 - p)}}{2ps}.$$

The solution has the form $u(x) = At_1^x + Bt_2^x$ and with the boundary conditions, A = 0 and B = 1 so

$$u(x) = t_2^x = \left(\frac{1 - \sqrt{1 - 4s^2p(1 - p)}}{2ps}\right)^x$$

As an example, we can use the above formula to find that

$$\begin{split} \frac{1-\sqrt{1-4p(1-p)}}{2p} &= \lim_{s\uparrow 1} \mathbb{E}_x[s^{\tau_0}] = \lim_{s\uparrow 1} \left\{ \mathbb{E}_x[s^{\tau_0}\colon \tau_0 < \infty] + \mathbb{E}_x[s^{\tau_0}\colon \tau_0 = \infty] \right\} \\ &= \lim_{s\uparrow 1} \mathbb{E}_x[s^{\tau_0}\colon \tau_0 < \infty] \\ &= \mathbb{E}_x \left[\lim_{s\uparrow 1} s^{\tau_0}\colon \tau_0 < \infty \right] \quad \text{by the DCT since all the } s^{\tau_0} \text{ are bounded} \\ &= \mathbb{E}_x[\mathbbm{1}\{\tau_0 < \infty\}] \\ &= \mathbb{P}_x(\tau_0 < \infty). \end{split}$$

1.5 Branching Processes

Let X be the non-negative integer-valued random variable denoting the number of offspring of an individual. Let X_k^j denote the number of offspring of the $k^{\rm th}$ person in the $j^{\rm th}$ generation. The collection $(X_k^j)_{k=1,2,3,\ldots}^{j=0,1,2,\ldots}$ is independent and identically distributed to X.

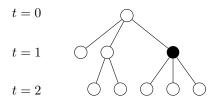


Figure 1.4: An example of a branching process where the highlighted node is represented by $X_3^1 = 3$.

Let Z_n be the random variable describing the number of individuals in generation n. This random variable has a recursive nature described by

$$Z_{n+1} = \sum_{i=1}^{Z_n} X_i^n.$$

We can now ask the question of whether the genealogy will become extinct or survive ad infinitum. By introducing the random variable Z_n that describes the number of individuals in generation n, we can reformulate the question to finding out what $\mathbb{P}(\{Z_n = 0 \text{ eventually}\})$ is:

$$\mathbb{P}(\{Z_n = 0 \text{ eventually}\}) = \mathbb{P}\left(\bigcup_n \{Z_n = 0\}\right)$$
$$= \mathbb{P}\left(\bigcup_n \bigcap_{m \geqslant n} \{Z_m = 0\}\right)$$
$$= \lim_{n \to \infty} \mathbb{P}(\{Z_n = 0\}) \text{ by monotonicity.}$$

So we're interested in computing $\eta := \lim_{n\to\infty} \mathbb{P}(\{Z_n = 0\})$. We can do this by using moment generating functions. Define

$$\begin{split} \hat{p}_{Z_n}(t) &:= \mathbb{E}\big[t^{Z_n}\big] \\ &= \mathbb{E}\big[t^{Z_n}, Z_n = 0\big] + \mathbb{E}\big[t^{Z_n}, Z_n \neq 0\big] \\ &= \mathbb{P}(Z_n = 0) + \mathbb{E}\big[t^{Z_n}, Z_n \neq 0\big] \end{split}$$

and taking the limit as $t \downarrow 0$ gives

$$\hat{p}_{Z_n}(0) = \mathbb{P}(Z_n = 0) + \lim_{t \downarrow 0} \mathbb{E}[t^{Z_n}, Z_n \neq 0]$$

$$= \mathbb{P}(Z_n = 0) + \mathbb{E}\left[\lim_{t \downarrow 0} t^{Z_n}, Z_n \neq 0\right]$$

$$= \mathbb{P}(Z_n = 0) + \mathbb{E}[0, Z_n \neq 0]$$

$$= \mathbb{P}(Z_n = 0).$$

We'll use the recursive nature of Z_n to find a recursion for $\hat{p}_{Z_n}(t)$.

First of all, $\hat{p}_{Z_1}(t) := \mathbb{E}[t^{Z_1}] = \mathbb{E}[t^X] = \hat{p}_X(t)$ and:

$$\begin{split} \hat{p}_{Z_{n+1}}(t) &:= \mathbb{E}\big[t^{Z_{n+1}}\big] = \mathbb{E}\Big[t^{X_1^n + \dots + X_{Z_n}^n}\Big] \\ &= \mathbb{E}\Big[\mathbb{E}\Big[t^{X_1^n + \dots + X_{Z_n}^n} \,\Big|\, Z_n\Big]\Big] \\ &= \sum_k \mathbb{E}\Big[t^{X_1^n + \dots + X_{Z_n}^n} \,\Big|\, Z_n = k\Big] \mathbb{P}(Z_n = k) \\ &= \sum_k \mathbb{E}\Big[t^{X_1^n + \dots + X_k^n}\Big] \mathbb{P}(Z_n = k) \\ &= \sum_k \mathbb{E}\big[t^X\big]^k \mathbb{P}(Z_n = k) \quad \text{by independence and identical distribution} \\ &= \sum_k \hat{p}_X(t)^k \mathbb{P}(Z_n = k) \\ &= \mathbb{E}\big[\hat{p}_X(t)^{Z_n}\big] \\ &= \hat{p}_{Z_n}(\hat{p}_X(t)) \end{split}$$

So we conclude that $\hat{p}_{Z_{n+1}}(t) = \hat{p}_{Z_n}(\hat{p}_X(t))$.

We can iterate this relation to obtain
$$\hat{p}_{Z_{n+1}}(t) = \underbrace{(\hat{p}_X \circ \cdots \circ \hat{p}_X)}_{(n+1) \text{ times}}(t) = \hat{p}_X(\hat{p}_{Z_n}(t)).$$

Setting t=0 to obtain $\hat{p}_{Z_{n+1}}(0)=\hat{p}_X(\hat{p}_{Z_n}(0))$ and letting $n\to\infty$ gives $\eta=\hat{p}_X(\eta)$. Since \hat{p}_X is an expectation, we must justify passing a limit inside to the argument as $n\to\infty$. This can be done with the Dominated Convergence Theorem. Thus, $\eta:=\mathbb{P}(Z_n=0 \text{ eventually})$ is a fixed point of \hat{p}_X . We cannot solve it exactly but we can make some progress via numerical methods.

• It's important to note that in general, if $(A_n)_{n\geqslant 1}$ is a sequence of events, then

$$\mathbb{P}(\{A_k \text{ happens eventually}\}) \neq \lim_{n \to \infty} \mathbb{P}(A_n)$$

but we know that if $z_n = 0$, then for all $k \ge n$, $z_k = 0$. This is actually a property of measures (of which \mathbb{P} is an example) called upward monotone convergence/continuity from below.

• We couldn't have computed the moment generating function of \mathbb{Z}_{n+1} by regular means i.e. as

$$\hat{p}_{Z_{n+1}}(t) := \mathbb{E}\big[t^{Z_{n+1}}\big] = \mathbb{E}\Big[t^{\sum_{i=1}^{Z_n} X_i^n}\Big] \overset{\text{ind.}}{=} \prod_{i=1}^{Z_n} \mathbb{E}\Big[t^{X_i^n}\Big]$$

because Z_n is a random variable and not a fixed number. In Nikos' words - "If something is random but you wish for it to be a fixed number, then condition it." This is the reason for the conditional expectation calculation.

1.5.1 Numerical Solutions

We can use information about \hat{p}_X to figure out what it looks like graphically. This will guide us to locating any fixed point solutions η . Note that $\hat{p}_X(1) = \mathbb{E}[t^X]\Big|_{t=1} = 1$ and $t \mapsto \hat{p}_X(t)$ is convex because $\hat{p}_X''(t) > 0$.

Solutions to the fixed point equation will lie on the curve f(t) = t. Thus, how many solutions we have depends on the number of intersections between $\hat{p}_X(t)$ and t. The aforementioned convexity means that we have two cases to distinguish depending on the slope of $\hat{p}_X(t)$ at t = 1.

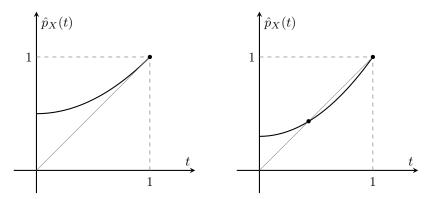


Figure 1.5: Two sketches of fixed point solutions of $\hat{p}_X(t)$ depending on the slope at 1: the left is ≤ 1 and the right is > 1.

The slope can be computed at 1 as

$$\hat{p}_X'(1) = \frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}\big[t^X\big] \ \Big|_{t=1} = \mathbb{E}\bigg[\frac{\mathrm{d}}{\mathrm{d}t}t^X\bigg]\bigg|_{t=1} = \mathbb{E}\big[Xt^{X-1}\big] \ \Big|_{t=1} = \mathbb{E}[X].$$

- If $\hat{p}_X'(1) = \mathbb{E}[X] \leqslant 1$, then the only solution of $\hat{p}_X(\eta) = \eta$ is $\eta = 1$.
- If $\hat{p}'_X(1) = \mathbb{E}[X] > 1$, then there is another solution in [0,1] beside $\eta = 1$.

Numerically, the idea is to start with some initial point $\eta_0 \in (0,1)$ and iterate the equation $\eta_{i+1} = \hat{p}_X(\eta_i)$ for i = 0, 1, ... in order to obtain a sequence $(\eta_i)_{i \in \mathbb{N}}$ converging to some value. A natural question to ask in this case is if the sequence actually converges. Let $n, m \ge 0$.

$$|\eta_{m+1} - \eta_m| = |\hat{p}_X(\eta_m) - \hat{p}_X(\eta_{m-1})| \stackrel{\text{MVT}}{=} |\hat{p}_X'(\eta_{m-1}) \cdot (\eta_m - \eta_{m-1})|$$

$$< \alpha |\eta_m - \eta_{m-1}|$$

$$< \alpha^2 |\eta_{m-1} - \eta_{m-2}|$$

$$< \dots$$

$$< \alpha^m \longrightarrow 0 \text{ because } \alpha \in (0, 1).$$

Thus, $(\eta_i)_{i\in\mathbb{N}}\subset\mathbb{R}$ is Cauchy and therefore convergent because $(\mathbb{R},|\cdot|)$ is complete.

We can disregard any solutions greater than 1 because $\eta = \lim_{n \to \infty} \mathbb{P}(Z_n = 0) \leqslant 1$.

1.6 Markov Processes

1.6.1 FORMALISMS

Let $(X_n)_{n\geqslant 1}$ be a stochastic process. Let I be a countable set.

To define a Markov process and describe its behaviour, we intuitively need know only two pieces of information:

- (1) The nature of the start of the process: We may start from a random location so we may not know the value of X_0 but we often know its distribution, the initial distribution of the process.
- (2) How we move from one state to the next: We'll define this through objects called transition probabilities.

Definition 1.6.1 • Each $i \in I$ is called a state and I is called the state-space.

- We say that $\lambda = (\lambda_i : i \in I)$ is a **measure** on I if $0 \le \lambda_i < \infty$ for all $i \in I$. If, in addition, the total mass $\sum_{i \in I} \lambda_i = 1$, then we call λ a **distribution**.
- For a random variable $X : \Omega \to I$, suppose that we set

$$\lambda_i = \mathbb{P}(X = i) = \mathbb{P}(\{\omega \colon X(\omega) = i\}).$$

Then λ defines a distribution, the **distribution of** X. We think of X as modelling a random state which takes the value i with probability λ_i .

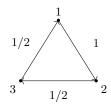
Definition 1.6.2 A matrix $P = (P_{ij}: i, j \in I)$ is called **stochastic** if every row is a distribution i.e. for all $i, j \in I$:

- $\sum_{j \in I} P_{ij} = 1$
- $P_{i,j} \in [0,1]$.

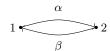
There is a one-to-one correspondence between stochastic matrices and state diagrams like those we'll see below. We realise stochastic matrices in terms of transition probabilities. For example, the probability to move from state 3 at t=0 to state 1 at t=1 in the first diagram below is equal to 1/2. We'll formalise this properly after some more exposition.

e.g. Consider the following state diagrams and their corresponding stochastic matrices:

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \end{pmatrix}$$



$$P = \begin{pmatrix} 1 - \alpha & a \\ \beta & 1 - \beta \end{pmatrix}$$



Thus, we can formalise the rules for a Markov chain with a definition involving the corresponding matrices P:

Definition 1.6.3 A process $(X_n)_{n\geqslant 0}$ is called a **Markov chain** with **initial distribution** λ and **transition matrix** P if

- (i) X_0 has distribution λ ;
- (ii) for $n \ge 0$, conditional on $X_n = i$, X_{n+1} has distribution $(P_{ij}: j \in I)$ and is independent of X_0, \dots, X_{n-1} .

More explicitly, these conditions state that for $n \ge 0$ and $i_0, \dots, i_{n+1} \in I$:

- (i) $\mathbb{P}(X_0 = i_0) = \lambda_{i_0}$;
- (ii) $\mathbb{P}(X_{n+1} = i_{n+1} | X_0 = i_0, \dots, X_n = i_n) = P_{i_n i_{n+1}}$.

For short, we say that $(X_n)_{n\geqslant 0}$ is Markov (λ, P) .

Theorem 1.6.4 A discrete-time random process $(X_n)_{n\geqslant 0}$ is Markov (λ, P) iff $\forall i_0, \ldots, i_n \in I$:

$$\mathbb{P}(X_0 = i_0, \dots, X_n = i_n) = \lambda_{i_0} \prod_{i=1}^n P_{i-1,i}$$

where λ is the initial distribution and P is the probability matrix.

Note that each entry in $\lambda = (\lambda_i)$ with $\lambda_i \ge 0$ and $\sum \lambda_i = 1$ is the probability that X is at position i.

Proof. The forward implication begins with supposing that X_i is a Markov (λ, P) chain.

$$\mathbb{P}(X_0 = i_0) = \lambda_{i_0}$$

$$\mathbb{P}(X_0 = i_0, X_1 = i_1) = \mathbb{P}(X_1 = i_1 \mid X_0 = i_0) \cdot \mathbb{P}(X_0 = i_0)$$
$$= P_{i_0, i_1} \lambda_{i_0}$$

$$\begin{split} \mathbb{P}(X_0 = i_0, X_1 = i_1, X_2 = i_2) &= \mathbb{P}(X_2 = i_2 \,|\, X_0 = i_0, X_1 = i_1) \mathbb{P}(X_0 = i_0, X_1 = i_1) \\ &= \mathbb{P}(X_2 = i_2 \,|\, X_0 = i_0, X_1 = i_1) P_{i_0, i_1} \lambda_{i_0} \\ &= \mathbb{P}(X_2 = i_2 \,|\, X_1 = i_1) P_{i_0, i_1} \lambda_{i_0} \quad \text{by the Markov property} \\ &= \lambda_{i_0} P_{i_0, i_1} P_{i_1, i_2} \end{split}$$

The general case is given by

$$\begin{split} & \mathbb{P}(X_0 = i_0, X_1 = i_1, \dots, X_n = i_n) \\ & = \mathbb{P}(X_n = i_n \, | \, X_0 = i_0, \dots, X_{n-1} = i_{n-1}) \mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1}) \\ & = P_{i_{n-1}, i_n} \cdot \dots \cdot P_{i_0, i_1} \lambda_{i_0} \quad \text{by the Markov property} \\ & = \lambda_{i_0} \prod_{j=1}^n P_{i_{j-1}, i_j} \end{split}$$

The reverse implication is as follows:

$$\mathbb{P}(X_n = i_n \mid X_{n-1} = i_{n-1}, \dots, X_0 = i_0) = \frac{\mathbb{P}(X_n = i_n, \dots, X_0 = i_0)}{\mathbb{P}(X_{n-1} = i_{n-1}, \dots, X_0 = i_0)}$$

$$= \frac{\lambda_{i_0} \prod_{j=1}^{n} P_{i_{j-1}, i_j}}{\lambda_{i_0} \prod_{j=1}^{n-1} P_{i_{j-1}, i_j}} = P_{i_{n-1}, i_n}$$

Thus, X_i is a Markov (λ, P) chain.

The next result reinforces the idea that a Markov chain has no memory. Write $\delta_i = (\delta_{ij} : j \in I)$ for the unit mass at i, where

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

1.6.2 MARKOV PROPERTY

Theorem 1.6.5 Let $(X_n)_{n\geqslant 0}$ be Markov (λ, P) . Then, conditional on $X_m = i$, $(X_{m+n})_{n\geqslant 0}$ is Markov (δ_i, P) and is independent of the random variables X_0, \ldots, X_m .

Proof. The goal is to show that for any event A determined by X_0, \ldots, X_m , we have that

$$\mathbb{P}(\{X_m = i_m, \dots, X_{m+n} = i_{m+n}\} \cap A \mid X_m = i) = \delta_{i, i_m} P_{i_m, i_{m+1}} \cdots P_{i_{m+n-1}, i_{m+n}} \mathbb{P}(A \mid X_m = i).$$

The result will thusly follow from the prior theorem. We'll begin by considering the case of elementary events $A = \{X_0 = i_0, \dots, X_m = i_m\}$. By the prior theorem, we have that

$$\frac{\mathbb{P}(\{X_0 = i_0, \dots, X_{m+n} = i_{m+n} \text{ and } i = i_m\})}{\mathbb{P}(X_m = i)}$$

$$= \frac{\delta_{i,i_m} P_{i_m,i_{m+1}} \cdot \dots \cdot P_{i_{m+n-1},i_{m+n}} \mathbb{P}(X_0 = i_0, \dots, X_m = i_m \text{ and } i = i_m)}{\mathbb{P}(X_m = i)}$$

Since any event A determined by X_0, \ldots, X_m can be written as a countable disjoint union of elementary events $A = \bigsqcup_{k=1}^{\infty} A_k$, the desired identity for A holds by summing up the corresponding identities for the A_k .

The rest of this section concerns the following question: What is the probability that after n steps, our Markov chain is in a given state? In other words, what is the value of $\mathbb{P}(X_n = i \mid X_0 = j)$?

Notation

- We regard distributions and measures λ as row vectors whose components are indexed by I, just as P is a matrix whose entries are indexed by $I \times I$.
- Thus, we can define a new measure λP by straight-forward matrix multiplication. This works for infinite matrices and infinite row vectors as well.
- We'll write $P_{i,j}^{(n)} = (P^n)_{i,j}$ for the $(i,j)^{\text{th}}$ entry of P^n .
- In the case where $\lambda_i > 0$, we'll write $\mathbb{P}_i(A)$ for the conditional probability $\mathbb{P}(A \mid X_0 = i)$.

By the Markov property at time m=0, under \mathbb{P}_i , $(X_n)_{n\geqslant 0}$ is Markov (δ_i, P) so the behaviour of $(X_n)_{n\geqslant 0}$ under \mathbb{P}_i doesn't depend on λ .

Theorem 1.6.6 Let $(X_n)_{n\geqslant 0}$ be Markov (λ, P) . Then, for all $n, m\geqslant 0$:

(i)
$$\mathbb{P}(X_n = j) = (\lambda P^n)_i$$
;

(ii)
$$\mathbb{P}_i(X_n = j) = \mathbb{P}(X_{n+m} = j \mid X_m = i) = P_{i,j}^{(n)}$$
.

Proof. (i) By theorem 1, we have that

$$\mathbb{P}(X_n = j) = \sum_{i_0 \in I} \dots \sum_{i_{n-1} \in I} \mathbb{P}(X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = j)$$

$$= \sum_{i_0 \in I} \dots \sum_{i_{n-1} \in I} \lambda_{i_0} P_{i_0, i_1} \cdot \dots \cdot P_{i_{n-1}, j}$$

$$= (\lambda P^n)_j$$

(ii) By the Markov property, conditional on $X_m = i$, $(X_{m+n})_{n \ge 0}$ is Markov (δ_i, P) so we just take $\lambda = \delta_i$ in (i).

In light of this theorem, we call $P_{i,j}^{(n)}$ the n-step transition probability from state i to state j.

e.g. Consider the second 2-state diagram from the beginning of this chapter.

$$1 \xrightarrow{\alpha} 2$$

$$\beta$$

Note that

$$\mathbb{P}_1(X_n = 1) = \begin{cases} 1 & \text{if } n = 0\\ 1 - \alpha & \text{if } n = 1\\ (1 - \alpha)^2 + \alpha\beta & \text{if } n = 2\\ ? & \text{for } n > 2. \end{cases}$$

How can one compute $\mathbb{P}_1(X_n=1)$ for n>2? Note that:

$$P^{2} = \begin{pmatrix} (1-\alpha)^{2} + \alpha\beta & \alpha(1-\alpha) + \alpha(1-\beta) \\ \beta(1-\alpha) + (1-\beta)\beta & \alpha\beta + (1-\beta)^{2} \end{pmatrix}$$

In general, we can see that $\mathbb{P}_1(X_n=1)=P_{1,1}^n$ so we need to compute P^n :

$$\begin{split} P^{n+1} &= P^n P = \begin{pmatrix} P_{1,1}^{(n+1)} & P_{1,2}^{(n+1)} \\ P_{2,1}^{(n+1)} & P_{2,2}^{(n+1)} \end{pmatrix} = \begin{pmatrix} P_{1,1}^{(n)} & P_{1,2}^{(n)} \\ P_{2,1}^{(n)} & P_{2,2}^{(n)} \end{pmatrix} \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \\ &= \begin{pmatrix} (1 - \alpha) P_{1,1}^{(n)} + \beta P_{1,2}^{(n)} & \alpha P_{1,1}^{(n)} + (1 - \beta) P_{1,2}^{(n)} \\ (1 - \alpha) P_{2,1}^{(n)} + \beta P_{2,2}^{(n)} & \alpha P_{2,1}^{(n)} + (1 - \beta) P_{2,2}^{(n)} \end{pmatrix} \end{split}$$

This tells us that the (1,1) entry in the P^{n+1} matrix is given by the recursive formula

$$P_{1,1}^{(n+1)} = (1 - \alpha)P_{1,1}^{(n)} + \beta P_{1,1}^{(n)}.$$

This is a non-closed equation so, in principle, it cannot be solved on its own. However, in this case we can close it because $P_{1,2}^{(n)} = 1 - P_{1,1}^{(n)}$ which implies that

$$P_{1,1}^{(n+1)} = (1 - \alpha - \beta)P_{1,1}^{(n)} + \beta$$
 where $P_{1,1}^{(0)} = 1$.

This is an inhomogeneous recursive equation of order 1.

We can solve equations like these by:

- (1) Find the general solution to the homogeneous equation $P_{1,1}^{(n+1)} = (1 \alpha \beta)P_{1,1}^{(n)}$
- (2) Find a special solution to the inhomogeneous equation (by guessing).
- (3) Finally, form a linear combination of the two and use initial/boundary conditions to determine the constants.

When we do this, the general solution of the equation that describes our process is given by

$$P_{1,1}^{(n)} = 1 \cdot \frac{\alpha}{\alpha + \beta} + \frac{\alpha}{\alpha + \beta} \cdot (1 - \alpha - \beta)^n.$$

$$\therefore \mathbb{P}_{1}(X_{n}=1) = (P^{n})_{1,1} =: P_{1,1}^{(n)} = \begin{cases} 1 & \text{if } n=0\\ 1-\alpha & \text{if } n=1\\ (1-\alpha)^{2} + \alpha\beta & \text{if } n=2\\ \frac{\alpha}{\alpha+\beta} + \frac{\alpha}{\alpha+\beta} (1-\alpha-\beta)^{n} & \text{if } n>2. \end{cases}$$

We had a 2-state Markov chain, we wanted to find $\mathbb{P}(X_n = 1)$ so we looked at special cases n = 0, n = 1, n = 2, played with matrices to get a recursive equation (not closed), closed the recursion and then solved it.

Here we outline the general approach to computing $\mathbb{P}_i(X_n = j)$ for a Markov chain with transition probability matrix P.

• Find the eigenvalues of P (of which there are as many eigenvalues as states |I| if they are distinct.

$$\implies \mathbb{P}_i(X_n = j) = \sum_{i=1}^{|I|} a_i \lambda_i^n$$

where the constants a_i are to be determined by |I| initial conditions.

• In the case that the eigenvalues are not distinct e.g. λ_1 has multiplicity m, then besides λ_1^n , one will also have to include $n\lambda_1^n, \ldots, n^{m-1}\lambda_1^n$ in the subsequent computations.

$$\implies \mathbb{P}_i(X_n = j) = \sum_{i=0}^{m-1} a_i n^i \lambda_1^n + \sum_{i=2}^{|I|} a_i \lambda_i^n$$

1.6.3 CLASS STRUCTURE

Figure 1.6: A sketch of two classes that don't communicate.

If there isn't a link between two classes, then we call the diagram reducible. We can break the whole system into smaller classes that don't communicate. If a link does exist, we say the classes communicate. If we have a situation like above, we say the Markov chain irreducible.

Definition 1.6.7 We'll say that state i communicates with state j if $\mathbb{P}_i(X_n = j \text{ for some } n > 0) > 0$.

 $\mathbb{P}_i(\tau_{\{j\}} < \infty) > 0$ where $\tau_{\{j\}}$ or τ_j denotes $\min\{n \ge 0 \colon X_n = j\}$.

Theorem 1.6.8 If $i \neq j$, TFAE:

- i communicates with j
- $\exists i_1, \ldots, i_n \in I \text{ for some } n \geqslant 0 \text{ s.t. } p_{i_1, i_2} \cdot \cdots \cdot p_{i_n, j} > 0$
- $p_{i,j}^{(n)} > 0$ for some $n \ge 0$

Figure 1.7: A sketch of two classes that don't communicate.

1.6.4 HITTING PROBABILITIES

Let's assume that $(X_n)_{n\geqslant 0}$ is a Markov chain with state space I and let $A\subseteq I$. The hitting time of A is the random variable $\tau_A\colon\Omega\to\{0,1,2,\dots\}\cup\{\infty\}$ defined by

$$\tau_A(\omega) := \inf\{n \geqslant 0 \colon X_n(\omega) \in A\}.$$

So far, we've been using a singleton set $A = \{j\}$. The question, as always, is how we can compute $\mathbb{P}_x(\tau_A < \infty)$. Previously, when $(X_n)_{n \geqslant 0}$ was a random walk, we found the hitting probability when $A = \{0\}$.

To answer the question, we'll set up a boundary value problem. Let $h_A(x) := \mathbb{P}_x(\tau_A < \infty)$.

Theorem 1.6.9

$$h_A(x) = \begin{cases} \sum_y p_{x,y} h_A(y), & \text{if } x \notin A \\ 1, & \text{if } x \in A \end{cases}$$

is the minimal solution to the above boundary value problem. (It's also an example of a harmonic function)

Proof. • h_A indeed solves the boundary value problem:

$$\begin{split} h_A(x) &:= \mathbb{P}_x(\tau_A < \infty) \\ &= \sum_{y \in I} \mathbb{P}_x(\tau_A < \infty, x_1 = y) \\ &= \sum_{y \in I} \mathbb{P}_x(\tau_A < \infty \,|\, x_1 = y) \mathbb{P}(x_1 = y) \\ &= \sum_{y \in I} P_{x,y} \mathbb{P}_y(\tau_A < \infty) \\ &=: \sum_{y \in I} P_{x,y} h_A(y) \end{split}$$

:

:

1.6.5 BIRTH & DEATH

Let $I = \mathbb{N}_0$ and consider

where $p_i + q_i = 1$ (i.e. the population model is simplified by disregarding the case where the population remains the same).

e.g. Compute $\mathbb{P}_i(\tau_0 < \infty) =: h(i)$ where $\tau_0 := \min\{n \ge 0 : X_n = 0\}$.

Any question of this type can be formulated by a difference equation with boundary values.

$$\begin{split} h(i) &= q_i h(i-1) + p_i h(i+1) \\ \iff & (p_i + q_i) h(i) = q_i h(i-1) + p_i h(i+1) \\ \implies & q_i \underbrace{(h_i - h_{i-1})}_{=: \ H(i)} = p_i \underbrace{(h_{i+1} - h_i)}_{=: \ H(i+1)} \\ \implies & H(i+1) = \frac{q_i}{p_i} H(i) \end{split}$$

So we've written our 2-term difference equation in a single term. Using the recursion, we get:

$$H(i+1) = \prod_{k=1}^{i} \frac{q_k}{p_k} H(1)$$

$$\iff h(i) - h(i-1) = \left(\prod_{k=1}^{i} \frac{q_k}{p_k}\right) (h(1) - h(0))$$

End of Stochastic1.pdf document.